1
|
Kaljusto HK, Wilson E, Fletcher-Watson S. Do Influential Articles on the Genetics of Autism Show Evidence of Engagement With the Autistic Community? Am J Med Genet B Neuropsychiatr Genet 2025:e33030. [PMID: 40271759 DOI: 10.1002/ajmg.b.33030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 04/25/2025]
Abstract
Investigations into the etiology and genetic basis of autism continue to drive much autism research, yet reports are emerging of this research not aligning with priorities of autistic people. Engagement of autistic people in the research process is a key way to take their perspectives on board. We investigated whether influential genetic autism research shows evidence of engagement with the autistic community via indicators in published article texts. Through text mining of the abstracts of articles mentioning the words "autism" or "autistic," we found minimal prevalence of progressive terminology associated with autism. We also devised a novel rating system to assess three hallmarks of autistic community engagement: presence of non-stigmatizing language, referencing community priorities, and the use of participatory methods. We reviewed 149 articles within leading autism and genetic journals. Minimal evidence of engagement with the autistic community was found within all three hallmarks. Genetics researchers focused on autism should embrace opportunities to engage with the autistic community to bring their work into closer alignment with their priorities, yielding scientific and moral benefits.
Collapse
Affiliation(s)
| | - Emma Wilson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
2
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of autism spectrum disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. Mol Psychiatry 2025:10.1038/s41380-025-02997-z. [PMID: 40188316 DOI: 10.1038/s41380-025-02997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 03/06/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA.
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Wu W, Wang S, Zhang K, Li H, Qiao S, Zhang Y, Pang S. scMDCL: A Deep Collaborative Contrastive Learning Framework for Matched Single-Cell Multiomics Data Clustering. J Chem Inf Model 2025; 65:3048-3063. [PMID: 40068854 DOI: 10.1021/acs.jcim.4c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Single-cell multiomics clustering integrates multiple omics data to analyze cellular heterogeneity and is crucial for uncovering complex biological processes and disease mechanisms. However, existing matched single-cell multiomics clustering methods often neglect the full utilization of intercellular relationships and the interactions and synergy between features from different omics, leading to suboptimal clustering performance. In this paper, we propose a deep collaborative contrastive learning framework for matched single-cell multiomics data clustering, named scMDCL. This framework fully leverages intercell relationships while enhancing feature interactions among identical cells across different omics data, thereby facilitating efficient clustering of multiomics data. Specifically, to fully utilize the topological information between cells, a graph autoencoder and a feature information enhancement module are designed for different omics, enabling the extraction and augmentation of cell features. Additionally, contrastive learning techniques are employed to strengthen the interactions among the different omics features of the same cell. Ultimately, multiomics deep collaborative clustering modules are utilized to achieve single-cell multiomics clustering. Extensive experiments conducted on nine publicly available single-cell multiomics datasets demonstrate the superior performance of the proposed framework in integrating multiomics data for clustering tasks.
Collapse
Affiliation(s)
- Wenhao Wu
- Qingdao Institute of Software, College of Computer Science and Technology, State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Shudong Wang
- Qingdao Institute of Software, College of Computer Science and Technology, State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Kuijie Zhang
- Qingdao Institute of Software, College of Computer Science and Technology, State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Hengxiao Li
- Qingdao Institute of Software, College of Computer Science and Technology, State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| | - Sibo Qiao
- School of software, Tiangong university, Tianjin 300387, China
| | - Yuanyuan Zhang
- The College of Information and Control Engineering, Qingdao University of Technology, Qingdao, Shandong 266520, China
| | - Shanchen Pang
- Qingdao Institute of Software, College of Computer Science and Technology, State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Oil & Gas Industrial Software, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
4
|
Dougherty JD, Sarafinovska S, Chaturvedi SM, Law TE, Akinwe TM, Gabel HW. Single-cell technology grows up: Leveraging high-resolution omics approaches to understand neurodevelopmental disorders. Curr Opin Neurobiol 2025; 92:102990. [PMID: 40036988 DOI: 10.1016/j.conb.2025.102990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/30/2025] [Accepted: 02/05/2025] [Indexed: 03/06/2025]
Abstract
The identification of hundreds of neurodevelopmental disorder (NDD) genes in the last decade led to numerous genetic models for understanding NDD gene mutation consequences and delineating putative neurobiological mediators of disease. In parallel, single-cell and single-nucleus genomic technologies have been developed and implemented to create high-resolution atlases of cell composition, gene expression, and circuit connectivity in the brain. Here, we discuss the opportunities to leverage mutant models (or human tissue, where available) and genomics approaches to systematically define NDD etiology at cellular resolution. We review progress in applying single-cell and spatial transcriptomics to interrogate developmental trajectories, cellular composition, circuit activity, and connectivity across human tissue and NDD models. We discuss considerations for implementing these approaches at scale to maximize insights and facilitate reproducibility. Finally, we highlight how standardized application of these technologies promises to not only define etiologies of individual disorders but also identify molecular, cellular, and circuit level convergence across NDDs.
Collapse
Affiliation(s)
- Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Simona Sarafinovska
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Sneha M Chaturvedi
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Travis E Law
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| | - Titilope M Akinwe
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA; Department of Psychiatry, Washington University School of Medicine, Saint Louis, MO, USA
| | - Harrison W Gabel
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, USA; Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
5
|
Du JH, Shen M, Mathys H, Roeder K. Causal differential expression analysis under unmeasured confounders with causarray. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635593. [PMID: 39975097 PMCID: PMC11838442 DOI: 10.1101/2025.01.30.635593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Advances in single-cell sequencing and CRISPR technologies have enabled detailed case-control comparisons and experimental perturbations at single-cell resolution. However, uncovering causal relationships in observational genomic data remains challenging due to selection bias and inadequate adjustment for unmeasured confounders, particularly in heterogeneous datasets. To address these challenges, we introduce causarray, a doubly robust causal inference framework for analyzing array-based genomic data at both bulk-cell and single-cell levels. causarray integrates a generalized confounder adjustment method to account for unmeasured confounders and employs semiparametric inference with flexible machine learning techniques to ensure robust statistical estimation of treatment effects. Benchmarking results show that causarray robustly separates treatment effects from confounders while preserving biological signals across diverse settings. We also apply causarray to two single-cell genomic studies: (1) an in vivo Perturb-seq study of autism risk genes in developing mouse brains and (2) a case-control study of Alzheimer's disease using three human brain transcriptomic datasets. In these applications, causarray identifies clustered causal effects of multiple autism risk genes and consistent causally affected genes across Alzheimer's disease datasets, uncovering biologically relevant pathways directly linked to neuronal development and synaptic functions that are critical for understanding disease pathology.
Collapse
Affiliation(s)
- Jin-Hong Du
- Department of Statistics and Data Science, Carnegie Mellon University
- Machine Learning Department, Carnegie Mellon University
| | - Maya Shen
- Department of Statistics and Data Science, Carnegie Mellon University
| | | | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University
- Computational Biology Department, Carnegie Mellon University
| |
Collapse
|
6
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
7
|
Mihailovich M, Tolinački M, Soković Bajić S, Lestarevic S, Pejovic-Milovancevic M, Golić N. The Microbiome-Genetics Axis in Autism Spectrum Disorders: A Probiotic Perspective. Int J Mol Sci 2024; 25:12407. [PMID: 39596472 PMCID: PMC11594817 DOI: 10.3390/ijms252212407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Autism spectrum disorder (commonly known as autism) is a complex and prevalent neurodevelopmental condition characterized by challenges in social behavior, restricted interests, and repetitive behaviors. It is projected that the annual cost of autism spectrum disorder in the US will reach USD 461 billion by 2025. However, despite being a major public health problem, effective treatment for the underlying symptoms remains elusive. As numerous literature data indicate the role of gut microbiota in autism prognosis, particularly in terms of alleviating gastrointestinal (GI) symptoms, high hopes have been placed on probiotics for autism treatment. Approximately twenty clinical studies have been conducted using single or mixed probiotic cultures. However, unequivocal results on the effect of probiotics on people with autism have not been obtained. The small sample sizes, differences in age of participants, choice of probiotics, dose and duration of treatment, outcome measures, and analytical methods used are largely inconsistent, making it challenging to draw distinctive conclusions. Here, we discuss the experimental evidence for specific gut bacteria and their metabolites and how they affect autism in light of the phenotypic and etiological complexity and heterogeneity. We propose a personalized medicine approach for using probiotics to increase the quality of life of individuals with autism by selecting specific probiotics to improve particular features of the condition.
Collapse
Affiliation(s)
- Marija Mihailovich
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
- Human Technopole, 20157 Milan, Italy
| | - Maja Tolinački
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Svetlana Soković Bajić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| | - Sanja Lestarevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
| | - Milica Pejovic-Milovancevic
- Institute of Mental Health, 11000 Belgrade, Serbia; (S.L.); (M.P.-M.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nataša Golić
- Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, 11042 Belgrade, Serbia; (M.T.); (S.S.B.); (N.G.)
| |
Collapse
|
8
|
Teter OM, McQuade A, Hagan V, Liang W, Dräger NM, Sattler SM, Holmes BB, Castillo VC, Papakis V, Leng K, Boggess S, Nowakowski TJ, Wells J, Kampmann M. CRISPRi-based screen of Autism Spectrum Disorder risk genes in microglia uncovers roles of ADNP in microglia endocytosis and synaptic pruning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596962. [PMID: 39605704 PMCID: PMC11601228 DOI: 10.1101/2024.06.01.596962] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Autism Spectrum Disorders (ASD) are a set of neurodevelopmental disorders with complex biology. The identification of ASD risk genes from exome-wide association studies and de novo variation analyses has enabled mechanistic investigations into how ASD-risk genes alter development. Most functional genomics studies have focused on the role of these genes in neurons and neural progenitor cells. However, roles for ASD risk genes in other cell types are largely uncharacterized. There is evidence from postmortem tissue that microglia, the resident immune cells of the brain, appear activated in ASD. Here, we used CRISPRi-based functional genomics to systematically assess the impact of ASD risk gene knockdown on microglia activation and phagocytosis. We developed an iPSC-derived microglia-neuron coculture system and high-throughput flow cytometry readout for synaptic pruning to enable parallel CRISPRi-based screening of phagocytosis of beads, synaptosomes, and synaptic pruning. Our screen identified ADNP, a high-confidence ASD risk genes, as a modifier of microglial synaptic pruning. We found that microglia with ADNP loss have altered endocytic trafficking, remodeled proteomes, and increased motility in coculture.
Collapse
Affiliation(s)
- Olivia M Teter
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Amanda McQuade
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Venus Hagan
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Weiwei Liang
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Nina M Dräger
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Sydney M Sattler
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Brandon B Holmes
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Vincent Cele Castillo
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Vasileios Papakis
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Kun Leng
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Steven Boggess
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Martin Kampmann
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Wang X, Lalli M, Thopte U, Buxbaum JD. A scalable, high-throughput neural development platform identifies shared impact of ASD genes on cell fate and differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614184. [PMID: 39386704 PMCID: PMC11463611 DOI: 10.1101/2024.09.25.614184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Background Deleterious mutations in hundreds of genes confer high risk for neurodevelopmental disorders (NDDs), posing significant challenges for therapeutic development. Identifying convergent pathways shared across NDD genes could reveal high-impact therapeutic targets. Methods To identity convergent pathways in NDD genes, we optimized Perturb-seq, a method combining CRISPR perturbation with single-cell RNA sequencing (scRNA-seq), and applied structural topic modeling (STM) to simultaneously assess impact on cell fate and developmental stage. We then studied a subset of autism spectrum disorder (ASD) genes implicated in regulation of gene expression using these improved molecular and analytical approaches. Results Results from targeting 60 high-confidence ASD risk genes revealed significant effects on neural development. As expected, ASD risk genes impacted both progenitor fate and/or neuronal differentiation. Using STM, we could identify latent topics jointly capturing cell types, cell fate, and differentiation stages. Repression of ASD risk genes led to changes in topic proportions and effects of four genes (DEAF1, KMT2A, MED13L, and MYT1L) were validated in an independent dataset. Conclusions Our optimized Perturb-seq method, combined with a novel analytical approach, provides a powerful, cost-effective framework for uncovering convergent mechanisms among genes involved in complex neurodevelopmental processes. Application of these methods advanced understanding of the impact of ASD mutations on multiple dimensions of neural development, and provides a framework for a broader examination of the function of NDD risk genes.
Collapse
Affiliation(s)
- Xuran Wang
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Matthew Lalli
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph D. Buxbaum
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York NY, USA
| |
Collapse
|
10
|
Garcia MF, Retallick-Townsley K, Pruitt A, Davidson E, Dai Y, Fitzpatrick SE, Sen A, Cohen S, Livoti O, Khan S, Dossou G, Cheung J, Deans PJM, Wang Z, Huckins L, Hoffman E, Brennand K. Dynamic convergence of autism disorder risk genes across neurodevelopment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609190. [PMID: 39229156 PMCID: PMC11370590 DOI: 10.1101/2024.08.23.609190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Over a hundred risk genes underlie risk for autism spectrum disorder (ASD) but the extent to which they converge on shared downstream targets to increase ASD risk is unknown. To test the hypothesis that cellular context impacts the nature of convergence, here we apply a pooled CRISPR approach to target 29 ASD loss-of-function genes in human induced pluripotent stem cell (hiPSC)-derived neural progenitor cells, glutamatergic neurons, and GABAergic neurons. Two distinct approaches (gene-level and network-level analyses) demonstrate that convergence is greatest in mature glutamatergic neurons. Convergent effects are dynamic, varying in strength, composition, and biological role between cell types, increasing with functional similarity of the ASD genes examined, and driven by cell-type-specific gene co-expression patterns. Stratification of ASD genes yield targeted drug predictions capable of reversing gene-specific convergent signatures in human cells and ASD-related behaviors in zebrafish. Altogether, convergent networks downstream of ASD risk genes represent novel points of individualized therapeutic intervention.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Kayla Retallick-Townsley
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - April Pruitt
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Elizabeth Davidson
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Yi Dai
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Sarah E Fitzpatrick
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
| | - Annabel Sen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Sophie Cohen
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Olivia Livoti
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Suha Khan
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Grace Dossou
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Jen Cheung
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - P J Michael Deans
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
| | - Zuoheng Wang
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Laura Huckins
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ellen Hoffman
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Child Study Center, Yale University School of Medicine, New Haven, CT 06511
| | - Kristen Brennand
- Departments of Psychiatry and Genetics, Division of Molecular Psychiatry, Department of Genetics, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT 06511
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06511
- Pamela Sklar Division of Psychiatric Genomics, Department of Genetics and Genomics, Icahn Institute of Genomics and Multiscale Biology, Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
11
|
Stanisheuski S, Ebrahimi A, Vaidya KA, Jang HS, Yang L, Eddins AJ, Marean-Reardon C, Franco MC, Maier CS. Thermal inkjet makes label-free single-cell proteomics accessible and easy. Front Chem 2024; 12:1428547. [PMID: 39233922 PMCID: PMC11371764 DOI: 10.3389/fchem.2024.1428547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
In this study, we adapted an HP D100 Single Cell Dispenser - a novel low-cost thermal inkjet (TIJ) platform with impedance-based single cell detection - for dispensing of individual cells and one-pot sample preparation. We repeatedly achieved label-free identification of up to 1,300 proteins from a single cell in a single run using an Orbitrap Fusion Lumos Mass Spectrometer coupled to either an Acquity UPLC M-class system or a Vanquish Neo UHPLC system. The developed sample processing workflow is highly reproducible, robust, and applicable to standardized 384- and 1536-well microplates, as well as glass LC vials. We demonstrate the applicability of the method for proteomics of single cells from multiple cell lines, mixed cell suspensions, and glioblastoma tumor spheroids. As additional proof of robustness, we monitored the results of genetic manipulations and the expression of engineered proteins in individual cells. Our cost-effective and robust single-cell proteomics workflow can be transferred to other labs interested in studying cells at the individual cell level.
Collapse
Affiliation(s)
| | - Arpa Ebrahimi
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Kavi Aashish Vaidya
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | | | - Liping Yang
- Department of Chemistry, Oregon State University, Corvallis, OR, United States
| | - Alex Jordan Eddins
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Carrie Marean-Reardon
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
| | - Maria Clara Franco
- Department of Biochemistry and Biophysics, College of Science, Oregon State University, Corvallis, OR, United States
- Center for Translational Science, Florida International University, Port St. Lucie, FL, United States
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | | |
Collapse
|
12
|
Lewis SA, Ruttenberg A, Iyiyol T, Kong N, Jin SC, Kruer MC. Potential clinical applications of advanced genomic analysis in cerebral palsy. EBioMedicine 2024; 106:105229. [PMID: 38970919 PMCID: PMC11282942 DOI: 10.1016/j.ebiom.2024.105229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 07/08/2024] Open
Abstract
Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.
Collapse
Affiliation(s)
- Sara A Lewis
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States
| | - Andrew Ruttenberg
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Tuğçe Iyiyol
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Nahyun Kong
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, United States; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States.
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, United States; Departments of Child Health, Neurology, and Cellular & Molecular Medicine and Program in Genetics, University of Arizona College of Medicine, Phoenix, AZ, United States; Programs in Neuroscience and Molecular & Cellular Biology, School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
13
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
14
|
Mihailovich M, Germain PL, Shyti R, Pozzi D, Noberini R, Liu Y, Aprile D, Tenderini E, Troglio F, Trattaro S, Fabris S, Ciptasari U, Rigoli MT, Caporale N, D’Agostino G, Mirabella F, Vitriolo A, Capocefalo D, Skaros A, Franchini AV, Ricciardi S, Biunno I, Neri A, Nadif Kasri N, Bonaldi T, Aebersold R, Matteoli M, Testa G. Multiscale modeling uncovers 7q11.23 copy number variation-dependent changes in ribosomal biogenesis and neuronal maturation and excitability. J Clin Invest 2024; 134:e168982. [PMID: 39007270 PMCID: PMC11245157 DOI: 10.1172/jci168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/24/2024] [Indexed: 07/16/2024] Open
Abstract
Copy number variation (CNV) at 7q11.23 causes Williams-Beuren syndrome (WBS) and 7q microduplication syndrome (7Dup), neurodevelopmental disorders (NDDs) featuring intellectual disability accompanied by symmetrically opposite neurocognitive features. Although significant progress has been made in understanding the molecular mechanisms underlying 7q11.23-related pathophysiology, the propagation of CNV dosage across gene expression layers and their interplay remains elusive. Here we uncovered 7q11.23 dosage-dependent symmetrically opposite dynamics in neuronal differentiation and intrinsic excitability. By integrating transcriptomics, translatomics, and proteomics of patient-derived and isogenic induced neurons, we found that genes related to neuronal transmission follow 7q11.23 dosage and are transcriptionally controlled, while translational factors and ribosomal genes are posttranscriptionally buffered. Consistently, we found phosphorylated RPS6 (p-RPS6) downregulated in WBS and upregulated in 7Dup. Surprisingly, p-4EBP was changed in the opposite direction, reflecting dosage-specific changes in total 4EBP levels. This highlights different dosage-sensitive dyregulations of the mTOR pathway as well as distinct roles of p-RPS6 and p-4EBP during neurogenesis. Our work demonstrates the importance of multiscale disease modeling across molecular and functional layers, uncovers the pathophysiological relevance of ribosomal biogenesis in a paradigmatic pair of NDDs, and uncouples the roles of p-RPS6 and p-4EBP as mechanistically actionable relays in NDDs.
Collapse
Affiliation(s)
- Marija Mihailovich
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Pierre-Luc Germain
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Computational Neurogenomics, D-HEST Institute for Neuroscience, Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Reinald Shyti
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | - Davide Pozzi
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | | | - Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Davide Aprile
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Flavia Troglio
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sebastiano Trattaro
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Sonia Fabris
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ummi Ciptasari
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Marco Tullio Rigoli
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Nicolò Caporale
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | | | - Alessandro Vitriolo
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Daniele Capocefalo
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Adrianos Skaros
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
| | | | - Sara Ricciardi
- Department of Biosciences, University of Milan, Milan, Italy
- National Institute of Molecular Genetics, Fondazione Romeo ed Enrica Invernizzi, Milan, Italy
| | - Ida Biunno
- Integrated Systems Engineering Srl, c/o OpenZone, Bresso, Milan, Italy
| | - Antonino Neri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Nael Nadif Kasri
- Department of Cognitive Neurosciences, RadboudUmc, Donders Institute for Brain Cognition and Behaviour, Nijmegen, Netherlands
| | - Tiziana Bonaldi
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Rudolf Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Michela Matteoli
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Milan, Italy
| | - Giuseppe Testa
- European Institute of Oncology (IEO) IRCCS, Milan, Italy
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Barry T, Mason K, Roeder K, Katsevich E. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. Genome Biol 2024; 25:124. [PMID: 38760839 PMCID: PMC11100084 DOI: 10.1186/s13059-024-03254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.
Collapse
Affiliation(s)
- Timothy Barry
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, USA.
| | - Kaishu Mason
- Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, USA
| | - Kathryn Roeder
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, USA
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, USA
| | - Eugene Katsevich
- Department of Statistics and Data Science, Wharton School, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
16
|
Barry T, Mason K, Roeder K, Katsevich E. Robust differential expression testing for single-cell CRISPR screens at low multiplicity of infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.15.540875. [PMID: 38659821 PMCID: PMC11042176 DOI: 10.1101/2023.05.15.540875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic changes in individual cells. The most fundamental task in perturb-seq analysis is to test for association between a perturbation and a count outcome, such as gene expression. We conduct the first-ever comprehensive benchmarking study of association testing methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing methods produce excess false positives. We conduct an extensive empirical investigation of the data, identifying three core analysis challenges: sparsity, confounding, and model misspecification. Finally, we develop an association testing method - SCEPTRE low-MOI - that resolves these analysis challenges and demonstrates improved calibration and power.
Collapse
|
17
|
Beirute-Herrera J, López-Amo Calvo B, Edenhofer F, Esk C. The promise of genetic screens in human in vitro brain models. Biol Chem 2024; 405:13-24. [PMID: 37697643 DOI: 10.1515/hsz-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
Advances of in vitro culture models have allowed unprecedented insights into human neurobiology. At the same time genetic screening has matured into a robust and accessible experimental strategy allowing for the simultaneous study of many genes in parallel. The combination of both technologies is a newly emerging tool for neuroscientists, opening the door to identifying causal cell- and tissue-specific developmental and disease mechanisms. However, with complex experimental genetic screening set-ups new challenges in data interpretation and experimental scope arise that require a deep understanding of the benefits and challenges of individual approaches. In this review, we summarize the literature that applies genetic screening to in vitro brain models, compare experimental strengths and weaknesses and point towards future directions of these promising approaches.
Collapse
Affiliation(s)
- Julianne Beirute-Herrera
- Institute of Molecular Biology, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Beatriz López-Amo Calvo
- Institute of Molecular Biology, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Frank Edenhofer
- Institute of Molecular Biology, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
| | - Christopher Esk
- Institute of Molecular Biology, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, Technikerstr. 25, A-6020 Innsbruck, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna BioCenter (VBC), Dr. Bohr Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
18
|
Sun N, Teyssier N, Wang B, Drake S, Seyler M, Zaltsman Y, Everitt A, Teerikorpi N, Willsey HR, Goodarzi H, Tian R, Kampmann M, Willsey AJ. Autism genes converge on microtubule biology and RNA-binding proteins during excitatory neurogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.22.573108. [PMID: 38187634 PMCID: PMC10769323 DOI: 10.1101/2023.12.22.573108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Recent studies have identified over one hundred high-confidence (hc) autism spectrum disorder (ASD) genes. Systems biological and functional analyses on smaller subsets of these genes have consistently implicated excitatory neurogenesis. However, the extent to which the broader set of hcASD genes are involved in this process has not been explored systematically nor have the biological pathways underlying this convergence been identified. Here, we leveraged CROP-Seq to repress 87 hcASD genes in a human in vitro model of cortical neurogenesis. We identified 17 hcASD genes whose repression significantly alters developmental trajectory and results in a common cellular state characterized by disruptions in proliferation, differentiation, cell cycle, microtubule biology, and RNA-binding proteins (RBPs). We also characterized over 3,000 differentially expressed genes, 286 of which had expression profiles correlated with changes in developmental trajectory. Overall, we uncovered transcriptional disruptions downstream of hcASD gene perturbations, correlated these disruptions with distinct differentiation phenotypes, and reinforced neurogenesis, microtubule biology, and RBPs as convergent points of disruption in ASD.
Collapse
|
19
|
Li D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O’Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, et alLi D, Wang Q, Bayat A, Battig MR, Zhou Y, Bosch DG, van Haaften G, Granger L, Petersen AK, Pérez-Jurado LA, Aznar-Laín G, Aneja A, Hancarova M, Bendova S, Schwarz M, Kremlikova Pourova R, Sedlacek Z, Keena BA, March ME, Hou C, O’Connor N, Bhoj EJ, Harr MH, Lemire G, Boycott KM, Towne M, Li M, Tarnopolsky M, Brady L, Parker MJ, Faghfoury H, Parsley LK, Agolini E, Dentici ML, Novelli A, Wright M, Palmquist R, Lai K, Scala M, Striano P, Iacomino M, Zara F, Cooper A, Maarup TJ, Byler M, Lebel RR, Balci TB, Louie R, Lyons M, Douglas J, Nowak C, Afenjar A, Hoyer J, Keren B, Maas SM, Motazacker MM, Martinez-Agosto JA, Rabani AM, McCormick EM, Falk MJ, Ruggiero SM, Helbig I, Møller RS, Tessarollo L, Tomassoni Ardori F, Palko ME, Hsieh TC, Krawitz PM, Ganapathi M, Gelb BD, Jobanputra V, Wilson A, Greally J, Jacquemont S, Jizi K, Bruel AL, Quelin C, Misra VK, Chick E, Romano C, Greco D, Arena A, Morleo M, Nigro V, Seyama R, Uchiyama Y, Matsumoto N, Taira R, Tashiro K, Sakai Y, Yigit G, Wollnik B, Wagner M, Kutsche B, Hurst AC, Thompson ML, Schmidt R, Randolph L, Spillmann RC, Shashi V, Higginbotham EJ, Cordeiro D, Carnevale A, Costain G, Khan T, Funalot B, Tran Mau-Them F, Fernandez Garcia Moya L, García-Miñaúr S, Osmond M, Chad L, Quercia N, Carrasco D, Li C, Sanchez-Valle A, Kelley M, Nizon M, Jensson BO, Sulem P, Stefansson K, Gorokhova S, Busa T, Rio M, Hadj Habdallah H, Lesieur-Sebellin M, Amiel J, Pingault V, Mercier S, Vincent M, Philippe C, Fatus-Fauconnier C, Friend K, Halligan RK, Biswas S, Rosser J, Shoubridge C, Corbett M, Barnett C, Gecz J, Leppig K, Slavotinek A, Marcelis C, Pfundt R, de Vries BB, van Slegtenhorst MA, Brooks AS, Cogne B, Rambaud T, Tümer Z, Zackai EH, Akizu N, Song Y, Hakonarson H. Spliceosome malfunction causes neurodevelopmental disorders with overlapping features. J Clin Invest 2024; 134:e171235. [PMID: 37962958 PMCID: PMC10760965 DOI: 10.1172/jci171235] [Show More Authors] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Pre-mRNA splicing is a highly coordinated process. While its dysregulation has been linked to neurological deficits, our understanding of the underlying molecular and cellular mechanisms remains limited. We implicated pathogenic variants in U2AF2 and PRPF19, encoding spliceosome subunits in neurodevelopmental disorders (NDDs), by identifying 46 unrelated individuals with 23 de novo U2AF2 missense variants (including 7 recurrent variants in 30 individuals) and 6 individuals with de novo PRPF19 variants. Eight U2AF2 variants dysregulated splicing of a model substrate. Neuritogenesis was reduced in human neurons differentiated from human pluripotent stem cells carrying two U2AF2 hyper-recurrent variants. Neural loss of function (LoF) of the Drosophila orthologs U2af50 and Prp19 led to lethality, abnormal mushroom body (MB) patterning, and social deficits, which were differentially rescued by wild-type and mutant U2AF2 or PRPF19. Transcriptome profiling revealed splicing substrates or effectors (including Rbfox1, a third splicing factor), which rescued MB defects in U2af50-deficient flies. Upon reanalysis of negative clinical exomes followed by data sharing, we further identified 6 patients with NDD who carried RBFOX1 missense variants which, by in vitro testing, showed LoF. Our study implicates 3 splicing factors as NDD-causative genes and establishes a genetic network with hierarchy underlying human brain development and function.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Qin Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Allan Bayat
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department for Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Yijing Zhou
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Daniëlle G.M. Bosch
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Gijs van Haaften
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Leslie Granger
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Andrea K. Petersen
- Department of Genetics and Metabolism, Randall Children’s Hospital at Legacy Emanuel Medical Center, Portland, Oregon, USA
| | - Luis A. Pérez-Jurado
- Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain
- Genetic Service, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Gemma Aznar-Laín
- Universitat Pompeu Fabra, Barcelona, Spain
- Pediatric Neurology, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Anushree Aneja
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Miroslava Hancarova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Sarka Bendova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Martin Schwarz
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Radka Kremlikova Pourova
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Zdenek Sedlacek
- Department of Biology and Medical Genetics, Charles University Second Faculty of Medicine and University Hospital Motol, Prague, Czech Republic
| | - Beth A. Keena
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | | | - Elizabeth J. Bhoj
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - Gabrielle Lemire
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Kym M. Boycott
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Megan Li
- Invitae, San Francisco, California, USA
| | - Mark Tarnopolsky
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Lauren Brady
- Division of Neuromuscular and Neurometabolic Disorders, Department of Paediatrics, McMaster University Children’s Hospital, Hamilton, Ontario, Canada
| | - Michael J. Parker
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, United Kingdom
| | | | - Lea Kristin Parsley
- University of Illinois College of Medicine, Mercy Health Systems, Rockford, Illinois, USA
| | - Emanuele Agolini
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit, Academic Department of Pediatrics, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Meredith Wright
- Rady Children’s Institute for Genomic Medicine, San Diego, California, USA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Khanh Lai
- Division of Pediatric Pulmonary and Sleep Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
- Pediatric Neurology and Muscular Diseases Unit, and
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCCS, Istituto Giannina Gaslini, Genoa, Italy
| | - Annina Cooper
- Department of Genetics, Southern California Permanente Medical Group, Kaiser Permanente, San Diego, California, USA
| | - Timothy J. Maarup
- Department of Genetics, Kaiser Permanente, Los Angeles, California, USA
| | - Melissa Byler
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Tugce B. Balci
- Division of Genetics, Department of Paediatrics, London Health Sciences Centre, London, Ontario, Canada
| | - Raymond Louie
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Michael Lyons
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Jessica Douglas
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Catherine Nowak
- Division of Genetics and Metabolism, Mass General Hospital for Children, Boston, Massachusetts, USA
| | - Alexandra Afenjar
- APHP. SU, Reference Center for Intellectual Disabilities Caused by Rare Causes, Department of Genetics and Medical Embryology, Hôpital Trousseau, Paris, France
| | - Juliane Hoyer
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Boris Keren
- Department of Genetics, Hospital Pitié-Salpêtrière, Paris, France
| | - Saskia M. Maas
- Department of Human Genetics, Academic Medical Center, and
| | - Mahdi M. Motazacker
- Laboratory of Genome Diagnostics, Department of Human Genetics, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Ahna M. Rabani
- Division of Medical Genetics, Department of Pediatrics, UCLA, Los Angeles, California, USA
| | - Elizabeth M. McCormick
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Marni J. Falk
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics
| | - Sarah M. Ruggiero
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ingo Helbig
- Division of Neurology, and
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Rikke S. Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Francesco Tomassoni Ardori
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Mary Ellen Palko
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute (NCI), Frederick, Maryland, USA
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Peter M. Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Mythily Ganapathi
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | - Bruce D. Gelb
- Mindich Child Health and Development Institute and the Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine, New York, New York, USA
| | - Vaidehi Jobanputra
- New York Genome Center, New York, New York, USA
- Department of Pathology, Columbia University Irving Medical Center, New York, New York, USA
| | | | - John Greally
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sébastien Jacquemont
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Khadijé Jizi
- Division of Genetics and Genomics, CHU Ste-Justine Hospital and CHU Sainte-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Ange-Line Bruel
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
- FHU-TRANSLAD, Fédération Hospitalo-Universitaire Translational Medicine in Developmental Anomalies, CHU Dijon Bourgogne, Dijon, France
| | - Chloé Quelin
- Medical Genetics Department, Centre de Référence Maladies Rares CLAD-Ouest, CHU Hôpital Sud, Rennes, France
| | - Vinod K. Misra
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
- Central Michigan University College of Medicine, Discipline of Pediatrics, Mount Pleasant, Michigan, USA
| | - Erika Chick
- Division of Genetic, Genomic, and Metabolic Disorders, Children’s Hospital of Michigan, Detroit, Michigan, USA
| | - Corrado Romano
- Research Unit of Rare Diseases and Neurodevelopmental Disorders, Oasi Research Institute-IRCCS, Troina, Italy
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | | | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rie Seyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan
| | - Yuri Uchiyama
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Rare Disease Genomics, Yokohama City University Hospital, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Katsuya Tashiro
- Department of Pediatrics, Karatsu Red Cross Hospital, Saga, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Michael Wagner
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Barbara Kutsche
- Kinderzentrum Oldenburg, Sozialpädiatrisches Zentrum, Diakonisches Werk Oldenburg, Oldenburg, Germany
| | - Anna C.E. Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Ryan Schmidt
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, California, USA
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - Linda Randolph
- Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
- Division of Medical Genetics, Children’s Hospital Los Angeles, California, USA
| | - Rebecca C. Spillmann
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vandana Shashi
- Department of Pediatrics–Medical Genetics, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Dawn Cordeiro
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amanda Carnevale
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Gregory Costain
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tayyaba Khan
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Benoît Funalot
- Department of Genetics, Hôpital Henri-Mondor APHP and CHI Creteil, University Paris Est Creteil, IMRB, Inserm U.955, Creteil, France
| | - Frederic Tran Mau-Them
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
- UF Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France
| | | | - Sixto García-Miñaúr
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Madrid, Spain
| | - Matthew Osmond
- Children’s Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Lauren Chad
- Department of Pediatrics, Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nada Quercia
- Department of Genetic Counselling, Division of Clinical and Metabolic Genetics, Hospital for Sick Children, Ottawa, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Diana Carrasco
- Department of Clinical Genetics, Cook Children’s Hospital, Fort Worth, Texas, USA
| | - Chumei Li
- Division of Genetics, Department of Paediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Meghan Kelley
- Division of Genetics and Metabolism, Department of Pediatrics, University of South Florida, Tampa, Florida, USA
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | | | | | - Kari Stefansson
- deCODE genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Svetlana Gorokhova
- Aix Marseille University, Inserm, U1251-MMG, Marseille Medical Genetics, Marseille, France
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Tiffany Busa
- Department of Medical Genetics, Timone Hospital, APHM, Marseille, France
| | - Marlène Rio
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Hamza Hadj Habdallah
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Marion Lesieur-Sebellin
- Department of Genomic Medicine of Rare Disorders, Necker Hospital, APHP Center, University Paris Cité, Paris, France
| | - Jeanne Amiel
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
| | - Véronique Pingault
- Rare Disease Genetics Department, APHP, Hôpital Necker, Paris, France
- Université Paris Cité, Inserm, Institut Imagine, Embryology and Genetics of Malformations Laboratory, Paris, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Sandra Mercier
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Marie Vincent
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
| | - Christophe Philippe
- INSERM UMR 1231, Genetics of Developmental Anomalies, Université de Bourgogne Franche-Comté, Dijon, France
| | | | - Kathryn Friend
- Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | | | | | - Jane Rosser
- Department of General Medicine, Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Cheryl Shoubridge
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Mark Corbett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
| | - Christopher Barnett
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- Pediatric and Reproductive Genetics Unit, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
| | - Jozef Gecz
- Adelaide Medical School and Robinson Research Institute, The University of Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Kathleen Leppig
- Genetic Services, Kaiser Permenante of Washington, Seattle, Washington, USA
| | - Anne Slavotinek
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carlo Marcelis
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B.A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Benjamin Cogne
- Nantes Université, CHU Nantes, Medical Genetics Department, Nantes, France
- Nantes Université, CNRS, INSERM, l’Institut du Thorax, Nantes, France
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Thomas Rambaud
- Laboratoire de Biologie Médicale Multi-Sites SeqOIA (laboratoire-seqoia.fr), Paris, France
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Elaine H. Zackai
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuanquan Song
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, and
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Zhou Y, Luo K, Liang L, Chen M, He X. A new Bayesian factor analysis method improves detection of genes and biological processes affected by perturbations in single-cell CRISPR screening. Nat Methods 2023; 20:1693-1703. [PMID: 37770710 PMCID: PMC10630124 DOI: 10.1038/s41592-023-02017-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/18/2023] [Indexed: 09/30/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) screening coupled with single-cell RNA sequencing has emerged as a powerful tool to characterize the effects of genetic perturbations on the whole transcriptome at a single-cell level. However, due to its sparsity and complex structure, analysis of single-cell CRISPR screening data is challenging. In particular, standard differential expression analysis methods are often underpowered to detect genes affected by CRISPR perturbations. We developed a statistical method for such data, called guided sparse factor analysis (GSFA). GSFA infers latent factors that represent coregulated genes or gene modules; by borrowing information from these factors, it infers the effects of genetic perturbations on individual genes. We demonstrated through extensive simulation studies that GSFA detects perturbation effects with much higher power than state-of-the-art methods. Using single-cell CRISPR data from human CD8+ T cells and neural progenitor cells, we showed that GSFA identified biologically relevant gene modules and specific genes affected by CRISPR perturbations, many of which were missed by existing methods, providing new insights into the functions of genes involved in T cell activation and neurodevelopment.
Collapse
Affiliation(s)
- Yifan Zhou
- Graduate Program of Biophysical Sciences, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Kaixuan Luo
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Lifan Liang
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Mengjie Chen
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
- Department of Medicine, University of Chicago, Chicago, IL, USA.
| | - Xin He
- Department of Human Genetics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
21
|
Mastropasqua F, Oksanen M, Soldini C, Alatar S, Arora A, Ballarino R, Molinari M, Agostini F, Poulet A, Watts M, Rabkina I, Becker M, Li D, Anderlid BM, Isaksson J, Lundin Remnelius K, Moslem M, Jacob Y, Falk A, Crosetto N, Bienko M, Santini E, Borgkvist A, Bölte S, Tammimies K. Deficiency of the Heterogeneous Nuclear Ribonucleoprotein U locus leads to delayed hindbrain neurogenesis. Biol Open 2023; 12:bio060113. [PMID: 37815090 PMCID: PMC10581386 DOI: 10.1242/bio.060113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 10/11/2023] Open
Abstract
Genetic variants affecting Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) have been identified in several neurodevelopmental disorders (NDDs). HNRNPU is widely expressed in the human brain and shows the highest postnatal expression in the cerebellum. Recent studies have investigated the role of HNRNPU in cerebral cortical development, but the effects of HNRNPU deficiency on cerebellar development remain unknown. Here, we describe the molecular and cellular outcomes of HNRNPU locus deficiency during in vitro neural differentiation of patient-derived and isogenic neuroepithelial stem cells with a hindbrain profile. We demonstrate that HNRNPU deficiency leads to chromatin remodeling of A/B compartments, and transcriptional rewiring, partly by impacting exon inclusion during mRNA processing. Genomic regions affected by the chromatin restructuring and host genes of exon usage differences show a strong enrichment for genes implicated in epilepsies, intellectual disability, and autism. Lastly, we show that at the cellular level HNRNPU downregulation leads to an increased fraction of neural progenitors in the maturing neuronal population. We conclude that the HNRNPU locus is involved in delayed commitment of neural progenitors to differentiate in cell types with hindbrain profile.
Collapse
Affiliation(s)
- Francesca Mastropasqua
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Marika Oksanen
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Cristina Soldini
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Shemim Alatar
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Abishek Arora
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Roberto Ballarino
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Federico Agostini
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Axel Poulet
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Michelle Watts
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Ielyzaveta Rabkina
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Martin Becker
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Danyang Li
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 17164 Stockholm, Sweden
| | - Johan Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Department of Medical Sciences, Child and Adolescent Psychiatry Unit, Uppsala University, 75309 Uppsala, Sweden
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
| | - Mohsen Moslem
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
- Lund Stem Cell Center, Lund University, 22100 Lund, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17164 Stockholm, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, 17165 Solna, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157 Milan, Italy
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institutet, 17176 Solna, Sweden
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, 6845 Perth, Western Australia
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, 10431 Stockholm, Sweden
| | - Kristiina Tammimies
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institute, Region Stockholm, 17164 Stockholm, Sweden
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region Stockholm, 17164 Stockholm, Sweden
| |
Collapse
|
22
|
Pigoni M, Uzquiano A, Paulsen B, Kedaigle AJ, Yang SM, Symvoulidis P, Adiconis X, Velasco S, Sartore R, Kim K, Tucewicz A, Tropp SY, Tsafou K, Jin X, Barrett L, Chen F, Boyden ES, Regev A, Levin JZ, Arlotta P. Cell-type specific defects in PTEN-mutant cortical organoids converge on abnormal circuit activity. Hum Mol Genet 2023; 32:2773-2786. [PMID: 37384417 PMCID: PMC10481103 DOI: 10.1093/hmg/ddad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
De novo heterozygous loss-of-function mutations in phosphatase and tensin homolog (PTEN) are strongly associated with autism spectrum disorders; however, it is unclear how heterozygous mutations in this gene affect different cell types during human brain development and how these effects vary across individuals. Here, we used human cortical organoids from different donors to identify cell-type specific developmental events that are affected by heterozygous mutations in PTEN. We profiled individual organoids by single-cell RNA-seq, proteomics and spatial transcriptomics and revealed abnormalities in developmental timing in human outer radial glia progenitors and deep-layer cortical projection neurons, which varied with the donor genetic background. Calcium imaging in intact organoids showed that both accelerated and delayed neuronal development phenotypes resulted in similar abnormal activity of local circuits, irrespective of genetic background. The work reveals donor-dependent, cell-type specific developmental phenotypes of PTEN heterozygosity that later converge on disrupted neuronal activity.
Collapse
Affiliation(s)
- Martina Pigoni
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ana Uzquiano
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bruna Paulsen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amanda J Kedaigle
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sung Min Yang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Panagiotis Symvoulidis
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Xian Adiconis
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Silvia Velasco
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rafaela Sartore
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kwanho Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ashley Tucewicz
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Yoshimi Tropp
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kalliopi Tsafou
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xin Jin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
| | - Lindy Barrett
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Fei Chen
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Edward S Boyden
- McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- MIT Center for Neurobiological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Harvard-MIT Health Sciences & Technology Program (HST), Harvard Medical School, Boston, MA 02115, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, MIT, Cambridge, MA 02138, USA
- Department of Brain of Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Media Arts and Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua Z Levin
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Paola Arlotta
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Ahmed M, Muffat J, Li Y. Understanding neural development and diseases using CRISPR screens in human pluripotent stem cell-derived cultures. Front Cell Dev Biol 2023; 11:1158373. [PMID: 37101616 PMCID: PMC10123288 DOI: 10.3389/fcell.2023.1158373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
The brain is arguably the most complex part of the human body in form and function. Much remains unclear about the molecular mechanisms that regulate its normal and pathological physiology. This lack of knowledge largely stems from the inaccessible nature of the human brain, and the limitation of animal models. As a result, brain disorders are difficult to understand and even more difficult to treat. Recent advances in generating human pluripotent stem cells (hPSCs)-derived 2-dimensional (2D) and 3-dimensional (3D) neural cultures have provided an accessible system to model the human brain. Breakthroughs in gene editing technologies such as CRISPR/Cas9 further elevate the hPSCs into a genetically tractable experimental system. Powerful genetic screens, previously reserved for model organisms and transformed cell lines, can now be performed in human neural cells. Combined with the rapidly expanding single-cell genomics toolkit, these technological advances culminate to create an unprecedented opportunity to study the human brain using functional genomics. This review will summarize the current progress of applying CRISPR-based genetic screens in hPSCs-derived 2D neural cultures and 3D brain organoids. We will also evaluate the key technologies involved and discuss their related experimental considerations and future applications.
Collapse
Affiliation(s)
- Mai Ahmed
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Julien Muffat
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Yun Li
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
24
|
Weinschutz Mendes H, Neelakantan U, Liu Y, Fitzpatrick SE, Chen T, Wu W, Pruitt A, Jin DS, Jamadagni P, Carlson M, Lacadie CM, Enriquez KD, Li N, Zhao D, Ijaz S, Sakai C, Szi C, Rooney B, Ghosh M, Nwabudike I, Gorodezky A, Chowdhury S, Zaheer M, McLaughlin S, Fernandez JM, Wu J, Eilbott JA, Vander Wyk B, Rihel J, Papademetris X, Wang Z, Hoffman EJ. High-throughput functional analysis of autism genes in zebrafish identifies convergence in dopaminergic and neuroimmune pathways. Cell Rep 2023; 42:112243. [PMID: 36933215 PMCID: PMC10277173 DOI: 10.1016/j.celrep.2023.112243] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/15/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
Advancing from gene discovery in autism spectrum disorders (ASDs) to the identification of biologically relevant mechanisms remains a central challenge. Here, we perform parallel in vivo functional analysis of 10 ASD genes at the behavioral, structural, and circuit levels in zebrafish mutants, revealing both unique and overlapping effects of gene loss of function. Whole-brain mapping identifies the forebrain and cerebellum as the most significant contributors to brain size differences, while regions involved in sensory-motor control, particularly dopaminergic regions, are associated with altered baseline brain activity. Finally, we show a global increase in microglia resulting from ASD gene loss of function in select mutants, implicating neuroimmune dysfunction as a key pathway relevant to ASD biology.
Collapse
Affiliation(s)
| | - Uma Neelakantan
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Yunqing Liu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Sarah E Fitzpatrick
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianying Chen
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - April Pruitt
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - David S Jin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; Department of Neurology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Marina Carlson
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Ningshan Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA; SJTU-Yale Joint Center for Biostatistics and Data Science, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dejian Zhao
- Department of Genetics, Yale Center for Genome Analysis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sundas Ijaz
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Catalina Sakai
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christina Szi
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brendan Rooney
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Marcus Ghosh
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ijeoma Nwabudike
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06510, USA; MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Andrea Gorodezky
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sumedha Chowdhury
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Meeraal Zaheer
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sarah McLaughlin
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | | | - Jia Wu
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeffrey A Eilbott
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Brent Vander Wyk
- Department of Internal Medicine, Section of Geriatrics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Xenophon Papademetris
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Ellen J Hoffman
- Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
25
|
Ritchie FD, Lizarraga SB. The role of histone methyltransferases in neurocognitive disorders associated with brain size abnormalities. Front Neurosci 2023; 17:989109. [PMID: 36845425 PMCID: PMC9950662 DOI: 10.3389/fnins.2023.989109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Brain size is controlled by several factors during neuronal development, including neural progenitor proliferation, neuronal arborization, gliogenesis, cell death, and synaptogenesis. Multiple neurodevelopmental disorders have co-morbid brain size abnormalities, such as microcephaly and macrocephaly. Mutations in histone methyltransferases that modify histone H3 on Lysine 36 and Lysine 4 (H3K36 and H3K4) have been identified in neurodevelopmental disorders involving both microcephaly and macrocephaly. H3K36 and H3K4 methylation are both associated with transcriptional activation and are proposed to sterically hinder the repressive activity of the Polycomb Repressor Complex 2 (PRC2). During neuronal development, tri-methylation of H3K27 (H3K27me3) by PRC2 leads to genome wide transcriptional repression of genes that regulate cell fate transitions and neuronal arborization. Here we provide a review of neurodevelopmental processes and disorders associated with H3K36 and H3K4 histone methyltransferases, with emphasis on processes that contribute to brain size abnormalities. Additionally, we discuss how the counteracting activities of H3K36 and H3K4 modifying enzymes vs. PRC2 could contribute to brain size abnormalities which is an underexplored mechanism in relation to brain size control.
Collapse
|
26
|
Cheng J, Lin G, Wang T, Wang Y, Guo W, Liao J, Yang P, Chen J, Shao X, Lu X, Zhu L, Wang Y, Fan X. Massively Parallel CRISPR-Based Genetic Perturbation Screening at Single-Cell Resolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204484. [PMID: 36504444 PMCID: PMC9896079 DOI: 10.1002/advs.202204484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/09/2022] [Indexed: 06/17/2023]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-based genetic screening has been demonstrated as a powerful approach for unbiased functional genomics research. Single-cell CRISPR screening (scCRISPR) techniques, which result from the combination of single-cell toolkits and CRISPR screening, allow dissecting regulatory networks in complex biological systems at unprecedented resolution. These methods allow cells to be perturbed en masse using a pooled CRISPR library, followed by high-content phenotyping. This is technically accomplished by annotating cells with sgRNA-specific barcodes or directly detectable sgRNAs. According to the integration of distinct single-cell technologies, these methods principally fall into four categories: scCRISPR with RNA-seq, scCRISPR with ATAC-seq, scCRISPR with proteome probing, and imaging-based scCRISPR. scCRISPR has deciphered genotype-phenotype relationships, genetic regulations, tumor biological issues, and neuropathological mechanisms. This review provides insight into the technical breakthrough of scCRISPR by systematically summarizing the advancements of various scCRISPR methodologies and analyzing their merits and limitations. In addition, an application-oriented approach guide is offered to meet researchers' individualized demands.
Collapse
Affiliation(s)
- Junyun Cheng
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Gaole Lin
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Tianhao Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Yunzhu Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Wenbo Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Liao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Jie Chen
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xin Shao
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
| | - Ling Zhu
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
| | - Yi Wang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouZhejiang310058China
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhou310058China
- Jinhua Institute of Zhejiang UniversityJinhua321016China
- The Save Sight InstituteFaculty of Medicine and Healththe University of SydneySydneyNSW2000Australia
- Future Health LaboratoryInnovation Center of Yangtze River DeltaZhejiang UniversityJiaxing314100China
- Westlake Laboratory of Life Sciences and BiomedicineHangzhou310024China
| |
Collapse
|
27
|
Benchmarking brain organoid recapitulation of fetal corticogenesis. Transl Psychiatry 2022; 12:520. [PMID: 36539399 PMCID: PMC9767930 DOI: 10.1038/s41398-022-02279-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are becoming increasingly relevant to dissect the molecular mechanisms underlying psychiatric and neurological conditions. The in vitro recapitulation of key features of human brain development affords the unique opportunity of investigating the developmental antecedents of neuropsychiatric conditions in the context of the actual patients' genetic backgrounds. Specifically, multiple strategies of brain organoid (BO) differentiation have enabled the investigation of human cerebral corticogenesis in vitro with increasing accuracy. However, the field lacks a systematic investigation of how closely the gene co-expression patterns seen in cultured BO from different protocols match those observed in fetal cortex, a paramount information for ensuring the sensitivity and accuracy of modeling disease trajectories. Here we benchmark BO against fetal corticogenesis by integrating transcriptomes from in-house differentiated cortical BO (CBO), other BO systems, human fetal brain samples processed in-house, and prenatal cortices from the BrainSpan Atlas. We identified co-expression patterns and prioritized hubs of human corticogenesis and CBO differentiation, highlighting both well-preserved and discordant trends across BO protocols. We evaluated the relevance of identified gene modules for neurodevelopmental disorders and psychiatric conditions finding significant enrichment of disease risk genes especially in modules related to neuronal maturation and synapsis development. The longitudinal transcriptomic analysis of CBO revealed a two-step differentiation composed of a fast-evolving phase, corresponding to the appearance of the main cell populations of the cortex, followed by a slow-evolving one characterized by milder transcriptional changes. Finally, we observed heterochronicity of differentiation across BO models compared to fetal cortex. Our approach provides a framework to directly compare the extent of in vivo/in vitro alignment of neurodevelopmentally relevant processes and their attending temporalities, structured as a resource to query for modeling human corticogenesis and the neuropsychiatric outcomes of its alterations.
Collapse
|
28
|
Yenkin AL, Bramley JC, Kremitzki CL, Waligorski JE, Liebeskind MJ, Xu XE, Chandrasekaran VD, Vakaki MA, Bachman GW, Mitra RD, Milbrandt JD, Buchser WJ. Pooled image-base screening of mitochondria with microraft isolation distinguishes pathogenic mitofusin 2 mutations. Commun Biol 2022; 5:1128. [PMID: 36284160 PMCID: PMC9596453 DOI: 10.1038/s42003-022-04089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 10/11/2022] [Indexed: 11/08/2022] Open
Abstract
Most human genetic variation is classified as variants of uncertain significance. While advances in genome editing have allowed innovation in pooled screening platforms, many screens deal with relatively simple readouts (viability, fluorescence) and cannot identify the complex cellular phenotypes that underlie most human diseases. In this paper, we present a generalizable functional genomics platform that combines high-content imaging, machine learning, and microraft isolation in a method termed "Raft-Seq". We highlight the efficacy of our platform by showing its ability to distinguish pathogenic point mutations of the mitochondrial regulator Mitofusin 2, even when the cellular phenotype is subtle. We also show that our platform achieves its efficacy using multiple cellular features, which can be configured on-the-fly. Raft-Seq enables a way to perform pooled screening on sets of mutations in biologically relevant cells, with the ability to physically capture any cell with a perturbed phenotype and expand it clonally, directly from the primary screen.
Collapse
Affiliation(s)
- Alex L Yenkin
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - John C Bramley
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Colin L Kremitzki
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Jason E Waligorski
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Mariel J Liebeskind
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Xinyuan E Xu
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Vinay D Chandrasekaran
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Maria A Vakaki
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Graham W Bachman
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - Jeffrey D Milbrandt
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA
| | - William J Buchser
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.
- Functional Imaging for Variant Elucidation at the McDonnell Genome Institute, St Louis, MO, USA.
| |
Collapse
|
29
|
Lewis EMA, Chapman G, Kaushik K, Determan J, Antony I, Meganathan K, Narasimhan M, Gontarz P, Zhang B, Kroll KL. Regulation of human cortical interneuron development by the chromatin remodeling protein CHD2. Sci Rep 2022; 12:15636. [PMID: 36115870 PMCID: PMC9482661 DOI: 10.1038/s41598-022-19654-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the chromodomain helicase DNA binding protein 2 (CHD2) gene are associated with neurodevelopmental disorders. However, mechanisms by which CHD2 regulates human brain development remain largely uncharacterized. Here, we used a human embryonic stem cell model of cortical interneuron (hcIN) development to elucidate its roles in this process. We identified genome-wide CHD2 binding profiles during hcIN differentiation, defining direct CHD2 targets related to neurogenesis in hcIN progenitors and to neuronal function in hcINs. CHD2 bound sites were frequently coenriched with histone H3 lysine 27 acetylation (H3K27ac) and associated with high gene expression, indicating roles for CHD2 in promoting gene expression during hcIN development. Binding sites for different classes of transcription factors were enriched at CHD2 bound regions during differentiation, suggesting transcription factors that may cooperatively regulate stage-specific gene expression with CHD2. We also demonstrated that CHD2 haploinsufficiency altered CHD2 and H3K27ac coenrichment on chromatin and expression of associated genes, decreasing acetylation and expression of cell cycle genes while increasing acetylation and expression of neuronal genes, to cause precocious differentiation. Together, these data describe CHD2 direct targets and mechanisms by which CHD2 prevents precocious hcIN differentiation, which are likely to be disrupted by pathogenic CHD2 mutation to cause neurodevelopmental disorders.
Collapse
Affiliation(s)
- E M A Lewis
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - G Chapman
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - K Kaushik
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - J Determan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - I Antony
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - K Meganathan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - M Narasimhan
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - P Gontarz
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - B Zhang
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - K L Kroll
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
30
|
Nowakowski TJ, Salama SR. Cerebral Organoids as an Experimental Platform for Human Neurogenomics. Cells 2022; 11:2803. [PMID: 36139380 PMCID: PMC9496777 DOI: 10.3390/cells11182803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
The cerebral cortex forms early in development according to a series of heritable neurodevelopmental instructions. Despite deep evolutionary conservation of the cerebral cortex and its foundational six-layered architecture, significant variations in cortical size and folding can be found across mammals, including a disproportionate expansion of the prefrontal cortex in humans. Yet our mechanistic understanding of neurodevelopmental processes is derived overwhelmingly from rodent models, which fail to capture many human-enriched features of cortical development. With the advent of pluripotent stem cells and technologies for differentiating three-dimensional cultures of neural tissue in vitro, cerebral organoids have emerged as an experimental platform that recapitulates several hallmarks of human brain development. In this review, we discuss the merits and limitations of cerebral organoids as experimental models of the developing human brain. We highlight innovations in technology development that seek to increase its fidelity to brain development in vivo and discuss recent efforts to use cerebral organoids to study regeneration and brain evolution as well as to develop neurological and neuropsychiatric disease models.
Collapse
Affiliation(s)
- Tomasz J. Nowakowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA 94158, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94158, USA
| | - Sofie R. Salama
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95060, USA
| |
Collapse
|
31
|
Barragán-Álvarez CP, Flores-Fernandez JM, Hernández-Pérez OR, Ávila-Gónzalez D, Díaz NF, Padilla-Camberos E, Dublan-García O, Gómez-Oliván LM, Diaz-Martinez NE. Recent advances in the use of CRISPR/Cas for understanding the early development of molecular gaps in glial cells. Front Cell Dev Biol 2022; 10:947769. [PMID: 36120556 PMCID: PMC9479146 DOI: 10.3389/fcell.2022.947769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/01/2022] [Indexed: 12/03/2022] Open
Abstract
Glial cells are non-neuronal elements of the nervous system (NS) and play a central role in its development, maturation, and homeostasis. Glial cell interest has increased, leading to the discovery of novel study fields. The CRISPR/Cas system has been widely employed for NS understanding. Its use to study glial cells gives crucial information about their mechanisms and role in the central nervous system (CNS) and neurodegenerative disorders. Furthermore, the increasingly accelerated discovery of genes associated with the multiple implications of glial cells could be studied and complemented with the novel screening methods of high-content and single-cell screens at the genome-scale as Perturb-Seq, CRISP-seq, and CROPseq. Besides, the emerging methods, GESTALT, and LINNAEUS, employed to generate large-scale cell lineage maps have yielded invaluable information about processes involved in neurogenesis. These advances offer new therapeutic approaches to finding critical unanswered questions about glial cells and their fundamental role in the nervous system. Furthermore, they help to better understanding the significance of glial cells and their role in developmental biology.
Collapse
Affiliation(s)
- Carla Patricia Barragán-Álvarez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - José Miguel Flores-Fernandez
- Departamento de Investigación e Innovación, Universidad Tecnológica de Oriental, Oriental, Mexico
- Department of Biochemistry & Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada
| | | | - Daniela Ávila-Gónzalez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Nestor Fabian Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología, México City, Mexico
| | - Eduardo Padilla-Camberos
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| | - Octavio Dublan-García
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Alimentos y Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Toluca, México
| | - Nestor Emmanuel Diaz-Martinez
- Laboratorio de Reprogramación Celular y Bioingeniería de Tejidos, Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño Del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
32
|
Lalli M, Yen A, Thopte U, Dong F, Moudgil A, Chen X, Milbrandt J, Dougherty JD, Mitra RD. Measuring transcription factor binding and gene expression using barcoded self-reporting transposon calling cards and transcriptomes. NAR Genom Bioinform 2022; 4:lqac061. [PMID: 36062164 PMCID: PMC9428926 DOI: 10.1093/nargab/lqac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/04/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover in vitro binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in vivo in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.
Collapse
Affiliation(s)
- Matthew Lalli
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Allen Yen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Urvashi Thopte
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fengping Dong
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Arnav Moudgil
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Jeffrey Milbrandt
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, School of Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.,Edison Family Center for Genome Sciences and Systems Biology Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
33
|
Levine J, Hakim F, Kooy RF, Gozes I. Vineland Adaptive Behavior Scale in a Cohort of Four ADNP Syndrome Patients Implicates Age-Dependent Developmental Delays with Increased Impact of Activities of Daily Living. J Mol Neurosci 2022; 72:1531-1546. [PMID: 35920977 DOI: 10.1007/s12031-022-02048-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/07/2022] [Indexed: 02/07/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) is one of the lead genes in autism spectrum disorder/intellectual disability. Heterozygous, de novo ADNP mutations cause the ADNP syndrome. Here, to evaluate natural history of the syndrome, mothers of two ADNP syndrome boys aged 6 and a half and two adults aged 27 years (man and woman) were subjected to Vineland III questionnaire assessing adaptive behavior. The boys were assessed again about 2 years after the first measurements. The skill measures, presented as standard scores (SS) included domains of communication, daily living, socialization, motor skills and a sum of adaptive behavior composite. The age equivalent (AE) and growth scale values (GSV) encompassing 11 subdomains assess the age level at which the subject's raw score is found at a norm sample median and the individual temporal progression, respectively. The norm referenced standard scores age-matched, mean 100 ± 15 of the two children showed the lowest outcome in communication (SS: 20-30). Daily living skills presented SS of 50-60, with a possible potential loss of some activities as the child ages, especially in interpersonal relationships with people outside of the immediate family (boy A). In contrast, in socialization, both children were at the SS of 38, with some positive increase to SS of ~ 45 (interpersonal relations with family members and coping skills, depending on the particular individual), 2 years later. Interestingly, there was an apparent large difference in motor skills (gross and fine) at the young age, with subject B showing a relatively higher level of skills (SS: 70), decreasing to subject A level (SS: 40) 2 years later. Together, the adaptive behavior composite suggested a level of SS: 39-48 with B showing a potential increase (SS: 41-44) and A, a substantial decrease (SS: 48-39), suggesting a strong impact of daily living skills. Adults were at SS: 20, which is the lowest possible score. AE showed minor improvements for subject A and B, with all AE values being below 3 years. GSVs for subject A showed some improvement with age, especially in interpersonal, play and leisure, and gross motor subdomains. GSV for subject B showed minor improvements in the various subdomains. Notably, all subjects showed a percentile rank < 1 compared with age-matched norms except for subject B as to motor domain (2nd percentile) at the age of 6 years. In summary, the results, especially comparing SS and AEs between childhood and adulthood, implied a continuous deterioration of activities compared to the general population, encompassing a slower developmental process coupled to possible neurodegeneration, strongly supporting a great need for disease modifying medicinal procedures.
Collapse
Affiliation(s)
- Joseph Levine
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.,Psychiatric Division, Ben Gurion University, Beersheba, Israel
| | | | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
34
|
Willsey HR, Willsey AJ, Wang B, State MW. Genomics, convergent neuroscience and progress in understanding autism spectrum disorder. Nat Rev Neurosci 2022; 23:323-341. [PMID: 35440779 PMCID: PMC10693992 DOI: 10.1038/s41583-022-00576-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/31/2022]
Abstract
More than a hundred genes have been identified that, when disrupted, impart large risk for autism spectrum disorder (ASD). Current knowledge about the encoded proteins - although incomplete - points to a very wide range of developmentally dynamic and diverse biological processes. Moreover, the core symptoms of ASD involve distinctly human characteristics, presenting challenges to interpreting evolutionarily distant model systems. Indeed, despite a decade of striking progress in gene discovery, an actionable understanding of pathobiology remains elusive. Increasingly, convergent neuroscience approaches have been recognized as an important complement to traditional uses of genetics to illuminate the biology of human disorders. These methods seek to identify intersection among molecular-level, cellular-level and circuit-level functions across multiple risk genes and have highlighted developing excitatory neurons in the human mid-gestational prefrontal cortex as an important pathobiological nexus in ASD. In addition, neurogenesis, chromatin modification and synaptic function have emerged as key potential mediators of genetic vulnerability. The continued expansion of foundational 'omics' data sets, the application of higher-throughput model systems and incorporating developmental trajectories and sex differences into future analyses will refine and extend these results. Ultimately, a systems-level understanding of ASD genetic risk holds promise for clarifying pathobiology and advancing therapeutics.
Collapse
Affiliation(s)
- Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - A Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew W State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
35
|
Gao Y, Aljazi MB, He J. Kdm6b Haploinsufficiency Causes ASD/ADHD-Like Behavioral Deficits in Mice. Front Behav Neurosci 2022; 16:905783. [PMID: 35711692 PMCID: PMC9194811 DOI: 10.3389/fnbeh.2022.905783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease that has intellectual disability (ID) and attention-deficit/hyperactivity disorder (ADHD) as its common comorbidities. Recent genetic and clinical studies report that KDM6B, a gene encoding a histone H3 lysine 27-specific demethylase, is one of the highest ASD risk genes. However, the relationship between KDM6B mutations and neurodevelopmental diseases remains unclear. Here we use an animal model to show that genetic deletion of one Kdm6b allele in mice leads to autistic-like impaired sociability and object recognition memory. In addition, the mutant mice display markedly increased locomotor activity and impulsivity, two ADHD-like behavioral traits that are ameliorated by methylphenidate treatment. Thus, our study not only uncovers a potential causal link between disruptive KDM6B mutations and ASD/ADHD-like behavioral deficits but also provides a new mouse model for studying the cellular and molecular mechanisms underlying the Kdm6b-mutation-related neurodevelopmental diseases.
Collapse
|
36
|
Gao Y, Aljazi MB, He J. Neural Hyperactivity Is a Core Pathophysiological Change Induced by Deletion of a High Autism Risk Gene Ash1L in the Mouse Brain. Front Behav Neurosci 2022; 16:873466. [PMID: 35449559 PMCID: PMC9016273 DOI: 10.3389/fnbeh.2022.873466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
ASH1L is one of the highest risk genes associated with autism spectrum disorder (ASD) and intellectual disability (ID). Our recent studies demonstrate that loss of Ash1l in the mouse brain is sufficient to induce ASD/ID-like behavioral and cognitive deficits, suggesting that disruptive ASH1L mutations are likely to have a positive correlation with ASD/ID genesis. However, the core pathophysiological changes in the Ash1l-deficient brain remain largely unknown. Here we show that loss of Ash1l in the mouse brain causes locomotor hyperactivity, high metabolic activity, and hyperactivity-related disturbed sleep and lipid metabolic changes. In addition, the mutant mice display lower thresholds for the convulsant reagent-induced epilepsy and increased neuronal activities in multiple brain regions. Thus, our current study reveals that neural hyperactivity is a core pathophysiological change in the Ash1l-deficient mouse brain, which may function as a brain-level mechanism leading to the Ash1l-deletion-induced brain functional abnormalities and autistic-like behavioral deficits.
Collapse
|
37
|
Cheon S, Culver AM, Bagnell AM, Ritchie FD, Vacharasin JM, McCord MM, Papendorp CM, Chukwurah E, Smith AJ, Cowen MH, Moreland TA, Ghate PS, Davis SW, Liu JS, Lizarraga SB. Counteracting epigenetic mechanisms regulate the structural development of neuronal circuitry in human neurons. Mol Psychiatry 2022; 27:2291-2303. [PMID: 35210569 PMCID: PMC9133078 DOI: 10.1038/s41380-022-01474-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/02/2022] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASD) are associated with defects in neuronal connectivity and are highly heritable. Genetic findings suggest that there is an overrepresentation of chromatin regulatory genes among the genes associated with ASD. ASH1 like histone lysine methyltransferase (ASH1L) was identified as a major risk factor for ASD. ASH1L methylates Histone H3 on Lysine 36, which is proposed to result primarily in transcriptional activation. However, how mutations in ASH1L lead to deficits in neuronal connectivity associated with ASD pathogenesis is not known. We report that ASH1L regulates neuronal morphogenesis by counteracting the catalytic activity of Polycomb Repressive complex 2 group (PRC2) in stem cell-derived human neurons. Depletion of ASH1L decreases neurite outgrowth and decreases expression of the gene encoding the neurotrophin receptor TrkB whose signaling pathway is linked to neuronal morphogenesis. The neuronal morphogenesis defect is overcome by inhibition of PRC2 activity, indicating that a balance between the Trithorax group protein ASH1L and PRC2 activity determines neuronal morphology. Thus, our work suggests that ASH1L may epigenetically regulate neuronal morphogenesis by modulating pathways like the BDNF-TrkB signaling pathway. Defects in neuronal morphogenesis could potentially impair the establishment of neuronal connections which could contribute to the neurodevelopmental pathogenesis associated with ASD in patients with ASH1L mutations.
Collapse
Affiliation(s)
- Seonhye Cheon
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Allison M Culver
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Anna M Bagnell
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Foster D Ritchie
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Janay M Vacharasin
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mikayla M McCord
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Carin M Papendorp
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Evelyn Chukwurah
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Austin J Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Mara H Cowen
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Trevor A Moreland
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Pankaj S Ghate
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA
| | - Judy S Liu
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
- Department of Neurology, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sofia B Lizarraga
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
- Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
38
|
Whiteley JT, Fernandes S, Sharma A, Mendes APD, Racha V, Benassi SK, Marchetto MC. Reaching into the toolbox: Stem cell models to study neuropsychiatric disorders. Stem Cell Reports 2022; 17:187-210. [PMID: 35063127 PMCID: PMC8828548 DOI: 10.1016/j.stemcr.2021.12.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in genetics, molecular biology, and stem cell biology have accelerated our understanding of neuropsychiatric disorders, like autism spectrum disorder (ASD), major depressive disorder (MDD), bipolar disorder (BD), and schizophrenia (SZ). This progress highlights the incredible complexity of both the human brain and mental illnesses from the biochemical to the cellular level. Contributing to the complexity of neuropsychiatric disorders are their polygenic nature, cellular and brain region interconnectivity, and dysregulation of human-specific neurodevelopmental processes. Here, we discuss available tools, including CRISPR-Cas9, and the applications of these tools to develop cell-based two-dimensional (2D) models and 3D brain organoid models that better represent and unravel the intricacies of neuropsychiatric disorder pathophysiology.
Collapse
Affiliation(s)
- Jack T Whiteley
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Doctoral Program in Neurobiology and Behavior, Department of Neuroscience, Columbia University, Jerome L. Greene Science Center, 3227 Broadway, L7-028, MC 9872, New York, NY 10027, USA
| | - Sarah Fernandes
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Biological Sciences, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Amandeep Sharma
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ana Paula D Mendes
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Vipula Racha
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Simone K Benassi
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria C Marchetto
- Laboratory of Genetics, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA; Department of Anthropology, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
| |
Collapse
|
39
|
Impaired KDM2B-mediated PRC1 recruitment to chromatin causes defective neural stem cell self-renewal and ASD/ID-like behaviors. iScience 2022; 25:103742. [PMID: 35128353 PMCID: PMC8800019 DOI: 10.1016/j.isci.2022.103742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 01/05/2022] [Indexed: 01/19/2023] Open
|
40
|
Deficiency of autism risk factor ASH1L in prefrontal cortex induces epigenetic aberrations and seizures. Nat Commun 2021; 12:6589. [PMID: 34782621 PMCID: PMC8593046 DOI: 10.1038/s41467-021-26972-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/29/2021] [Indexed: 12/30/2022] Open
Abstract
ASH1L, a histone methyltransferase, is identified as a top-ranking risk factor for autism spectrum disorder (ASD), however, little is known about the biological mechanisms underlying the link of ASH1L haploinsufficiency to ASD. Here we show that ASH1L expression and H3K4me3 level are significantly decreased in the prefrontal cortex (PFC) of postmortem tissues from ASD patients. Knockdown of Ash1L in PFC of juvenile mice induces the downregulation of risk genes associated with ASD, intellectual disability (ID) and epilepsy. These downregulated genes are enriched in excitatory and inhibitory synaptic function and have decreased H3K4me3 occupancy at their promoters. Furthermore, Ash1L deficiency in PFC causes the diminished GABAergic inhibition, enhanced glutamatergic transmission, and elevated PFC pyramidal neuronal excitability, which is associated with severe seizures and early mortality. Chemogenetic inhibition of PFC pyramidal neuronal activity, combined with the administration of GABA enhancer diazepam, rescues PFC synaptic imbalance and seizures, but not autistic social deficits or anxiety-like behaviors. These results have revealed the critical role of ASH1L in regulating synaptic gene expression and seizures, which provides insights into treatment strategies for ASH1L-associated brain diseases.
Collapse
|
41
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
42
|
Gao Y, Aljazi MB, Wu Y, He J. Vorinostat, a histone deacetylase inhibitor, ameliorates the sociability and cognitive memory in an Ash1L-deletion-induced ASD/ID mouse model. Neurosci Lett 2021; 764:136241. [PMID: 34509565 PMCID: PMC8572157 DOI: 10.1016/j.neulet.2021.136241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
Autism spectrum disorder (ASD) and intellectual disability (ID) are neurodevelopmental diseases associated with various gene mutations. Previous genetic and clinical studies reported that ASH1L is a high ASD risk gene identified in human patients. Our recent study used a mouse model to demonstrate that loss of ASH1L in the developing mouse brain was sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory, suggesting that the disruptive ASH1L mutations are the causative drivers leading the human ASD/ID genesis. Using this Ash1L-deletion-induced ASD/ID mouse model, here we showed that postnatal administration of vorinostat (SAHA), a histone deacetylase inhibitor (HDACi), significantly ameliorated both ASD-like behaviors and ID-like cognitive memory deficit. Thus, our study demonstrates that SAHA is a promising reagent for the pharmacological treatment of core ASD/ID behavioral and memory deficits caused by disruptive ASH1L mutations.
Collapse
Affiliation(s)
- Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI 48824, United States.
| |
Collapse
|
43
|
Nomura J, Mardo M, Takumi T. Molecular signatures from multi-omics of autism spectrum disorders and schizophrenia. J Neurochem 2021; 159:647-659. [PMID: 34537986 DOI: 10.1111/jnc.15514] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/11/2021] [Accepted: 09/07/2021] [Indexed: 01/25/2023]
Abstract
The genetic and phenotypic heterogeneity of autism spectrum disorder (ASD) impedes the unification of multiple biological hypotheses in an attempt to explain the complex features of ASD, such as impaired social communication, social interaction deficits, and restricted and repetitive patterns of behavior. However, recent psychiatric genetic studies have identified numerous risk genes and chromosome loci (copy number variation: CNV) which enable us to analyze at the single gene level and utilize system-level approaches. In this review, we focus on ASD as a major neurodevelopmental disorder and review recent findings mainly from the bioinformatics of omics studies. Additionally, by comparing these data with other major psychiatric disorders, including schizophrenia (SCZ), we identify unique characteristics of both diseases from multiple enrichment, pathway, and protein-protein interaction networks (PPIs) analyses using susceptible genes found in recent large-scale genetic studies. These unified, systematic approaches highlight unique characteristics of both disorders from multiple aspects and demonstrate how convergent pathways can contribute to an understanding of the complex etiology of such neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jun Nomura
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| | - Matthew Mardo
- Neuroscience concentration, Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Toru Takumi
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe, Japan
| |
Collapse
|
44
|
Gao Y, Duque-Wilckens N, Aljazi MB, Wu Y, Moeser AJ, Mias GI, Robison AJ, He J. Loss of histone methyltransferase ASH1L in the developing mouse brain causes autistic-like behaviors. Commun Biol 2021; 4:756. [PMID: 34145365 PMCID: PMC8213741 DOI: 10.1038/s42003-021-02282-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 01/22/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disease associated with various gene mutations. Recent genetic and clinical studies report that mutations of the epigenetic gene ASH1L are highly associated with human ASD and intellectual disability (ID). However, the causality and underlying molecular mechanisms linking ASH1L mutations to genesis of ASD/ID remain undetermined. Here we show loss of ASH1L in the developing mouse brain is sufficient to cause multiple developmental defects, core autistic-like behaviors, and impaired cognitive memory. Gene expression analyses uncover critical roles of ASH1L in regulating gene expression during neural cell development. Thus, our study establishes an ASD/ID mouse model revealing the critical function of an epigenetic factor ASH1L in normal brain development, a causality between Ash1L mutations and ASD/ID-like behaviors in mice, and potential molecular mechanisms linking Ash1L mutations to brain functional abnormalities.
Collapse
Affiliation(s)
- Yuen Gao
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Natalia Duque-Wilckens
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Mohammad B Aljazi
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Yan Wu
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Adam J Moeser
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, USA
- Gastrointestinal Stress Biology Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, East Lansing, MI, USA
| | - George I Mias
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Alfred J Robison
- Department of Physiology, College of Natural Science, Michigan State University, East Lansing, MI, USA
| | - Jin He
- Department of Biochemistry and Molecular Biology, College of Natural Science, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
45
|
Mulvey B, Lagunas T, Dougherty JD. Massively Parallel Reporter Assays: Defining Functional Psychiatric Genetic Variants Across Biological Contexts. Biol Psychiatry 2021; 89:76-89. [PMID: 32843144 PMCID: PMC7938388 DOI: 10.1016/j.biopsych.2020.06.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
Neuropsychiatric phenotypes have long been known to be influenced by heritable risk factors, directly confirmed by the past decade of genetic studies that have revealed specific genetic variants enriched in disease cohorts. However, the initial hope that a small set of genes would be responsible for a given disorder proved false. The more complex reality is that a given disorder may be influenced by myriad small-effect noncoding variants and/or by rare but severe coding variants, many de novo. Noncoding genomic sequences-for which molecular functions cannot usually be inferred-harbor a large portion of these variants, creating a substantial barrier to understanding higher-order molecular and biological systems of disease. Fortunately, novel genetic technologies-scalable oligonucleotide synthesis, RNA sequencing, and CRISPR (clustered regularly interspaced short palindromic repeats)-have opened novel avenues to experimentally identify biologically significant variants en masse. Massively parallel reporter assays (MPRAs) are an especially versatile technique resulting from such innovations. MPRAs are powerful molecular genetics tools that can be used to screen thousands of untranscribed or untranslated sequences and their variants for functional effects in a single experiment. This approach, though underutilized in psychiatric genetics, has several useful features for the field. We review methods for assaying putatively functional genetic variants and regions, emphasizing MPRAs and the opportunities they hold for dissection of psychiatric polygenicity. We discuss literature applying functional assays in neurogenetics, highlighting strengths, caveats, and design considerations-especially regarding disease-relevant variables (cell type, neurodevelopment, and sex), and we ultimately propose applications of MPRA to both computational and experimental neurogenetics of polygenic disease risk.
Collapse
Affiliation(s)
- Bernard Mulvey
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Tomás Lagunas
- Division of Biology and Biomedical Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, Missouri; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, Missouri.
| |
Collapse
|
46
|
Hernandez LM, Kim M, Hoftman GD, Haney JR, de la Torre-Ubieta L, Pasaniuc B, Gandal MJ. Transcriptomic Insight Into the Polygenic Mechanisms Underlying Psychiatric Disorders. Biol Psychiatry 2021; 89:54-64. [PMID: 32792264 PMCID: PMC7718368 DOI: 10.1016/j.biopsych.2020.06.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022]
Abstract
Over the past decade, large-scale genetic studies have successfully identified hundreds of genetic variants robustly associated with risk for psychiatric disorders. However, mechanistic insight and clinical translation continue to lag the pace of risk variant identification, hindered by the sheer number of targets and their predominant noncoding localization, as well as pervasive pleiotropy and incomplete penetrance. Successful next steps require identification of "causal" genetic variants and their proximal biological consequences; placing variants within biologically defined functional contexts, reflecting specific molecular pathways, cell types, circuits, and developmental windows; and characterizing the downstream, convergent neurobiological impact of polygenicity within an individual. Here, we discuss opportunities and challenges of high-throughput transcriptomic profiling in the human brain, and how transcriptomic approaches can help pinpoint mechanisms underlying genetic risk for psychiatric disorders at a scale necessary to tackle daunting levels of polygenicity. These include transcriptome-wide association studies for risk gene prioritization through integration of genome-wide association studies with expression quantitative trait loci. We outline transcriptomic results that inform our understanding of the brain-level molecular pathology of psychiatric disorders, including autism spectrum disorder, bipolar disorder, major depressive disorder, and schizophrenia. Finally, we discuss systems-level approaches for integration of distinct genetic, genomic, and phenotypic levels, including combining spatially resolved gene expression and human neuroimaging maps. Results highlight the importance of understanding gene expression (dys)regulation across human brain development as a major contributor to psychiatric disease pathogenesis, from common variants acting as expression quantitative trait loci to rare variants enriched for gene expression regulatory pathways.
Collapse
Affiliation(s)
- Leanna M Hernandez
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Minsoo Kim
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Gil D Hoftman
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Jillian R Haney
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Luis de la Torre-Ubieta
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Bogdan Pasaniuc
- Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Michael J Gandal
- Department of Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Program in Neurobehavioral Genetics, Semel Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
47
|
Zhang C, Xu L, Zheng X, Liu S, Che F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev Neurobiol 2020; 81:79-91. [PMID: 33258273 PMCID: PMC8048680 DOI: 10.1002/dneu.22795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023]
Abstract
Ash1l potentially contributes to neurodevelopmental diseases. Although specific Ash1l mutations are rare, they have led to informative studies in animal models that may bring therapeutic advances. Ash1l is highly expressed in the brain and correlates with the neuropathology of Tourette syndrome (TS), autism spectrum disorder, and intellectual disability during development, implicating shared epigenetic factors and overlapping neuropathological mechanisms. Functional convergence of Ash1l generated several significant signaling pathways: chromatin remodeling and transcriptional regulation, protein synthesis and cellular metabolism, and synapse development and function. Here, we systematically review the literature on Ash1l, including its discovery, expression, function, regulation, implication in the nervous system, signaling pathway, mutations, and putative involvement in TS and other neurodevelopmental traits. Such findings highlight Ash1l pleiotropy and the necessity of transcending a single gene to complicated mechanisms of network convergence underlying these diseases. With the progress in functional genomic analysis (highlighted in this review), and although the importance and necessity of Ash1l becomes increasingly apparent in the medical field, further research is required to discover the precise function and molecular regulatory mechanisms related to Ash1l. Thus, a new perspective is proposed for basic scientific research and clinical interventions for cross‐disorder diseases.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| | - Lulu Xu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xueping Zheng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fengyuan Che
- Department of Neurology, The Eleventh Clinical Medical College of Qingdao University, Linyi People's Hospital, Linyi, China
| |
Collapse
|
48
|
Townsley KG, Brennand KJ, Huckins LM. Massively parallel techniques for cataloguing the regulome of the human brain. Nat Neurosci 2020; 23:1509-1521. [PMID: 33199899 PMCID: PMC8018778 DOI: 10.1038/s41593-020-00740-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Complex brain disorders are highly heritable and arise from a complex polygenic risk architecture. Many disease-associated loci are found in non-coding regions that house regulatory elements. These elements influence the transcription of target genes-many of which demonstrate cell-type-specific expression patterns-and thereby affect phenotypically relevant molecular pathways. Thus, cell-type-specificity must be considered when prioritizing candidate risk loci, variants and target genes. This Review discusses the use of high-throughput assays in human induced pluripotent stem cell-based neurodevelopmental models to probe genetic risk in a cell-type- and patient-specific manner. The application of massively parallel reporter assays in human induced pluripotent stem cells can characterize the human regulome and test the transcriptional responses of putative regulatory elements. Parallel CRISPR-based screens can further functionally dissect this genetic regulatory architecture. The integration of these emerging technologies could decode genetic risk into medically actionable information, thereby improving genetic diagnosis and identifying novel points of therapeutic intervention.
Collapse
Affiliation(s)
- Kayla G Townsley
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen J Brennand
- Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, USA.
| |
Collapse
|
49
|
Moudgil A, Wilkinson MN, Chen X, He J, Cammack AJ, Vasek MJ, Lagunas T, Qi Z, Lalli MA, Guo C, Morris SA, Dougherty JD, Mitra RD. Self-Reporting Transposons Enable Simultaneous Readout of Gene Expression and Transcription Factor Binding in Single Cells. Cell 2020; 182:992-1008.e21. [PMID: 32710817 PMCID: PMC7510185 DOI: 10.1016/j.cell.2020.06.037] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/14/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.
Collapse
Affiliation(s)
- Arnav Moudgil
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael N Wilkinson
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Xuhua Chen
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - June He
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Alexander J Cammack
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Michael J Vasek
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Tomás Lagunas
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Zongtai Qi
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Matthew A Lalli
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Chuner Guo
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Medical Scientist Training Program, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|