1
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025:MPMI09240115FI. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
2
|
Kordana N, Johnson A, Quinn K, Obar JJ, Cramer RA. Recent developments in Aspergillus fumigatus research: diversity, drugs, and disease. Microbiol Mol Biol Rev 2025; 89:e0001123. [PMID: 39927770 PMCID: PMC11948498 DOI: 10.1128/mmbr.00011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025] Open
Abstract
SUMMARYAdvances in modern medical therapies for many previously intractable human diseases have improved patient outcomes. However, successful disease treatment outcomes are often prevented due to invasive fungal infections caused by the environmental mold Aspergillus fumigatus. As contemporary antifungal therapies have not experienced the same robust advances as other medical therapies, defining mechanisms of A. fumigatus disease initiation and progression remains a critical research priority. To this end, the World Health Organization recently identified A. fumigatus as a research priority human fungal pathogen and the Centers for Disease Control has highlighted the emergence of triazole-resistant A. fumigatus isolates. The expansion in the diversity of host populations susceptible to aspergillosis and the complex and dynamic A. fumigatus genotypic and phenotypic diversity call for a reinvigorated assessment of aspergillosis pathobiological and drug-susceptibility mechanisms. Here, we summarize recent advancements in the field and discuss challenges in our understanding of A. fumigatus heterogeneity and its pathogenesis in diverse host populations.
Collapse
Affiliation(s)
- Nicole Kordana
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Angus Johnson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Katherine Quinn
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joshua J. Obar
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Robert A. Cramer
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
3
|
Hill R, Grey M, Fedi MO, Smith D, Canning G, Ward SJ, Irish N, Smith J, McMillan VE, Hammond J, Osborne SJ, Reynolds G, Smith E, Chancellor T, Swarbreck D, Hall N, Palma-Guerrero J, Hammond-Kosack KE, McMullan M. Evolutionary genomics reveals variation in structure and genetic content implicated in virulence and lifestyle in the genus Gaeumannomyces. BMC Genomics 2025; 26:239. [PMID: 40075289 PMCID: PMC11905480 DOI: 10.1186/s12864-025-11432-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Gaeumannomyces tritici is responsible for take-all disease, one of the most important wheat root threats worldwide. High-quality annotated genome resources are sorely lacking for this pathogen, as well as for the closely related antagonist and potential wheat take-all biocontrol agent, G. hyphopodioides. As such, we know very little about the genetic basis of the interactions in this host-pathogen-antagonist system. Using PacBio HiFi sequencing technology we have generated nine near-complete assemblies, including two different virulence lineages for G. tritici and the first assemblies for G. hyphopodioides and G. avenae (oat take-all). Genomic signatures support the presence of two distinct virulence lineages in G. tritici (types A and B), with A strains potentially employing a mechanism to prevent gene copy-number expansions. The CAZyme repertoire was highly conserved across Gaeumannomyces, while candidate secreted effector proteins and biosynthetic gene clusters showed more variability and may distinguish pathogenic and non-pathogenic lineages. A transition from self-sterility (heterothallism) to self-fertility (homothallism) may also be a key innovation implicated in lifestyle. We did not find evidence for transposable element and effector gene compartmentalisation in the genus, however the presence of Starship giant transposable elements may contribute to genomic plasticity in the genus. Our results depict Gaeumannomyces as an ideal system to explore interactions within the rhizosphere, the nuances of intraspecific virulence, interspecific antagonism, and fungal lifestyle evolution. The foundational genomic resources provided here will enable the development of diagnostics and surveillance of understudied but agriculturally important fungal pathogens.
Collapse
Affiliation(s)
- Rowena Hill
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| | - Michelle Grey
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | | | - Daniel Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- John Innes Centre, Norwich, Norfolk, NR4 7UH, UK
| | | | - Sabrina J Ward
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Naomi Irish
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Jade Smith
- Rothamsted Research, Harpenden, AL5 2JQ, UK
| | | | | | - Sarah-Jane Osborne
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- AHDB, Siskin Parkway East, Middlemarch Business Park, Coventry, CV3 4PE, UK
| | | | - Ellie Smith
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Tania Chancellor
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Javier Palma-Guerrero
- Rothamsted Research, Harpenden, AL5 2JQ, UK
- Research Institute of Organic Agriculture Fibl, Frick, 5070, Switzerland
| | | | - Mark McMullan
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK.
| |
Collapse
|
4
|
Lalanne C, Silar P. FungANI, a BLAST-based program for analyzing average nucleotide identity (ANI) between two fungal genomes, enables easy fungal species delimitation. Fungal Genet Biol 2025; 177:103969. [PMID: 39894199 DOI: 10.1016/j.fgb.2025.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/18/2024] [Accepted: 01/25/2025] [Indexed: 02/04/2025]
Abstract
Fungal species delimitation and phylogeny will likely rely in the future upon whole genome sequence comparison, as the costs of such sequences are rapidly decreasing. Average Nucleotide Identity (ANI) between genomes is a convenient metric that can be rapidly calculated for species delimitation. However, there is presently no easy-to-use program calculating the ANI between two fungal genomes and providing easy-to interpret results that can be help mycologists having limited access to bioinformatic facilities. Here, we present FungANI, a customizable BLAST-based program that calculate ANI between genomes. The program primarily targets Linux workstations or servers but it can be run on the latest Windows, macOS and Linux 64-Bit operating systems as a standalone desktop application. It was tested with various publicly-available genomes from species belonging to the Sordariales order. It proved efficient to differentiate closely related species and retrace their possible phylogenetic relationships. However, FungANI did not perform well for phylogenetic reconstruction on a broader evolutionary scale such as inferring relationships between distant genera. The program is freely available at https://github.com/podo-gec/fungani.
Collapse
Affiliation(s)
- Christophe Lalanne
- Univ Paris Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cité CEDEX 13, France
| | - Philippe Silar
- Univ Paris Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, 75205 Paris Cité CEDEX 13, France.
| |
Collapse
|
5
|
Ament-Velásquez SL, Furneaux B, Dheur S, Granger-Farbos A, Stelkens R, Johannesson H, Saupe SJ. Reconstructing NOD-like receptor alleles with high internal conservation in Podospora anserina using long-read sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632504. [PMID: 39868110 PMCID: PMC11761791 DOI: 10.1101/2025.01.13.632504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
NOD-like receptors (NLRs) are intracellular immune receptors that detect pathogen-associated cues and trigger defense mechanisms, including regulated cell death. In filamentous fungi, some NLRs mediate heterokaryon incompatibility, a self/non-self recognition process that prevents the vegetative fusion of genetically distinct individuals, reducing the risk of parasitism. The het-d and het-e NLRs in Podospora anserina are highly polymorphic incompatibility genes (het genes) whose products recognize different alleles of the het-c gene via a sensor domain composed of WD40 repeats. These repeats display unusually high sequence identity maintained by concerted evolution. However, some sites within individual repeats are hypervariable and under diversifying selection. Despite extensive genetic studies, inconsistencies in the reported WD40 domain sequence have hindered functional and evolutionary analyses. Here we demonstrate that the WD40 domain can be accurately reconstructed from long-read sequencing (Oxford Nanopore and PacBio) data, but not from Illumina-based assemblies. Functional alleles are usually formed by 11 highly conserved repeats, with different repeat combinations underlying the same phenotypic het-d and het-e incompatibility reactions. Protein structure models suggest that their WD40 domain folds into two 7-blade β-propellers composed of the highly conserved repeats, as well as three cryptic divergent repeats at the C-terminus. We additionally show that one particular het-e allele does not have an incompatibility reaction with common het-c alleles, despite being 11-repeats long. Our findings provide a robust foundation for future research into the molecular mechanisms and evolutionary dynamics of het NLRs, while also highlighting both the fragility and the flexibility of β-propellers as immune sensor domains.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Sonia Dheur
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| | | | - Rike Stelkens
- Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Hanna Johannesson
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
| | - Sven J Saupe
- IBGC UMR 5095 CNRS University of Bordeaux, 33077 Bordeaux,France
| |
Collapse
|
6
|
Gluck-Thaler E, Shaikh MA, Wood CW. Multivariate Divergence in Wild Microbes: No Evidence for Evolution along a Genetic Line of Least Resistance. Am Nat 2025; 205:107-124. [PMID: 39718788 DOI: 10.1086/733184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
AbstractTrait evolution depends both on the direct fitness effects of specific traits and on indirect selection arising from genetically correlated traits. Although well established in plants and animals, the role of trait correlations in microbial evolution remains a major open question. Here, we tested whether genetic correlations in a suite of metabolic traits are conserved between two sister lineages of fungal endophytes and whether phenotypic divergence between lineages occurred in the direction of the multivariate trait combination containing the most genetic variance within lineages (i.e., the genetic lines of least resistance). We found that while one lineage grew faster across nearly all substrates, lineages differed in their mean response to specific substrates and in their overall multivariate metabolic trait means. The structure of the genetic variance-covariance (G) matrix was conserved between lineages, yet to our surprise divergence in metabolic phenotypes between lineages was nearly orthogonal to the major axis of genetic variation within lineages, indicating that divergence did not occur along the genetic lines of least resistance. Our findings suggest that the evolutionary genetics of trait correlations in microorganisms warrant further research and highlight the extensive functional variation that exists at very fine taxonomic scales in host-associated microbial communities.
Collapse
|
7
|
Urquhart A, Vogan AA, Gluck-Thaler E. Starships: a new frontier for fungal biology. Trends Genet 2024; 40:1060-1073. [PMID: 39299886 DOI: 10.1016/j.tig.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Transposable elements (TEs) are semiautonomous genetic entities that proliferate in genomes. We recently discovered the Starships, a previously hidden superfamily of giant TEs found in a diverse subphylum of filamentous fungi, the Pezizomycotina. Starships are unlike other eukaryotic TEs because they have evolved mechanisms for both mobilizing entire genes, including those encoding conditionally beneficial phenotypes, and for horizontally transferring between individuals. We argue that Starships have unrivaled capacity to engage their fungal hosts as genetic parasites and mutualists, revealing unexplored terrain for investigating the ecoevolutionary dynamics of TE-eukaryote interactions. We build on existing models of fungal genome evolution by conceptualizing Starships as a distinct genomic compartment whose dynamics profoundly shape fungal biology.
Collapse
Affiliation(s)
- Andrew Urquhart
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin - Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. Proc Natl Acad Sci U S A 2024; 121:e2416656121. [PMID: 39536081 PMCID: PMC11588098 DOI: 10.1073/pnas.2416656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in a gene encoding an RNA interference (RNAi) component, ZNF3, combined with a tremendous transposon burden. To elucidate adaptive mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function (LOF) mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test whether these RNAi LOF mutations can cause hypermutation, the mutations were introduced into a nonhypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate whether RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged Cryptococcus deneoformans strain with an increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a gigantic DNA transposon KDZ1 (~11 kb) contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | | | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
9
|
Huang J, Larmore CJ, Priest SJ, Xu Z, Dietrich FS, Yadav V, Magwene PM, Sun S, Heitman J. Distinct evolutionary trajectories following loss of RNA interference in Cryptococcus neoformans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608186. [PMID: 39185155 PMCID: PMC11343200 DOI: 10.1101/2024.08.15.608186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
While increased mutation rates typically have negative consequences in multicellular organisms, hypermutation can be advantageous for microbes adapting to the environment. Previously, we identified two hypermutator Cryptococcus neoformans clinical isolates that rapidly develop drug resistance due to transposition of a retrotransposon, Cnl1. Cnl1-mediated hypermutation is caused by a nonsense mutation in the gene encoding a novel RNAi component, Znf3, combined with a tremendous transposon burden. To elucidate adaptative mechanisms following RNAi loss, two bioinformatic pipelines were developed to identify RNAi loss-of-function mutations in a collection of 387 sequenced C. neoformans isolates. Remarkably, several RNAi-loss isolates were identified that are not hypermutators and have not accumulated transposons. To test if these RNAi loss-of-function mutations can cause hypermutation, the mutations were introduced into a non-hypermutator strain with a high transposon burden, which resulted in a hypermutator phenotype. To further investigate if RNAi-loss isolates can become hypermutators, in vitro passaging was performed. Although no hypermutators were found in two C. neoformans RNAi-loss strains after short-term passage, hypermutation was observed in a passaged C. deneoformans strain with increased transposon burden. Consistent with a two-step evolution, when an RNAi-loss isolate was crossed with an isolate containing a high Cnl1 burden, F1 hypermutator progeny inheriting a high transposon burden were identified. In addition to Cnl1 transpositions, insertions of a novel gigantic DNA transposon KDZ1 (~11 kb), contributed to hypermutation in the progeny. Our results suggest that RNAi loss is relatively common (7/387, ~1.8%) and enables distinct evolutionary trajectories: hypermutation following transposon accumulation or survival without hypermutation.
Collapse
Affiliation(s)
- Jun Huang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Connor J. Larmore
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shelby J. Priest
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Fred S. Dietrich
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Vikas Yadav
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paul M. Magwene
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Sheng Sun
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
10
|
Gervais NC, Shapiro RS. Discovering the hidden function in fungal genomes. Nat Commun 2024; 15:8219. [PMID: 39300175 DOI: 10.1038/s41467-024-52568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
New molecular technologies have helped unveil previously unexplored facets of the genome beyond the canonical proteome, including microproteins and short ORFs, products of alternative splicing, regulatory non-coding RNAs, as well as transposable elements, cis-regulatory DNA, and other highly repetitive regions of DNA. In this Review, we highlight what is known about this 'hidden genome' within the fungal kingdom. Using well-established model systems as a contextual framework, we describe key elements of this hidden genome in diverse fungal species, and explore how these factors perform critical functions in regulating fungal metabolism, stress tolerance, and pathogenesis. Finally, we discuss new technologies that may be adapted to further characterize the hidden genome in fungi.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
11
|
López Hernández JF, Rubinstein BY, Unckless RL, Zanders SE. Modeling the evolution of Schizosaccharomyces pombe populations with multiple killer meiotic drivers. G3 (BETHESDA, MD.) 2024; 14:jkae142. [PMID: 38938172 PMCID: PMC11491527 DOI: 10.1093/g3journal/jkae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/23/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
Meiotic drivers are selfish genetic loci that can be transmitted to more than half of the viable gametes produced by a heterozygote. This biased transmission gives meiotic drivers an evolutionary advantage that can allow them to spread over generations until all members of a population carry the driver. This evolutionary power can also be exploited to modify natural populations using synthetic drivers known as "gene drives." Recently, it has become clear that natural drivers can spread within genomes to birth multicopy gene families. To understand intragenomic spread of drivers, we model the evolution of 2 or more distinct meiotic drivers in a population. We employ the wtf killer meiotic drivers from Schizosaccharomyces pombe, which are multicopy in all sequenced isolates, as models. We find that a duplicate wtf driver identical to the parent gene can spread in a population unless, or until, the original driver is fixed. When the duplicate driver diverges to be distinct from the parent gene, we find that both drivers spread to fixation under most conditions, but both drivers can be lost under some conditions. Finally, we show that stronger drivers make weaker drivers go extinct in most, but not all, polymorphic populations with absolutely linked drivers. These results reveal the strong potential for natural meiotic drive loci to duplicate and diverge within genomes. Our findings also highlight duplication potential as a factor to consider in the design of synthetic gene drives.
Collapse
Affiliation(s)
| | - Boris Y Rubinstein
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS 66045, USA
| | - Sarah E Zanders
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
12
|
Tralamazza SM, Gluck-Thaler E, Feurtey A, Croll D. Copy number variation introduced by a massive mobile element facilitates global thermal adaptation in a fungal wheat pathogen. Nat Commun 2024; 15:5728. [PMID: 38977688 PMCID: PMC11231334 DOI: 10.1038/s41467-024-49913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 06/25/2024] [Indexed: 07/10/2024] Open
Abstract
Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.
Collapse
Affiliation(s)
- Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
13
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
14
|
Gluck-Thaler E, Vogan A. Systematic identification of cargo-mobilizing genetic elements reveals new dimensions of eukaryotic diversity. Nucleic Acids Res 2024; 52:5496-5513. [PMID: 38686785 PMCID: PMC11162782 DOI: 10.1093/nar/gkae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Cargo-mobilizing mobile elements (CMEs) are genetic entities that faithfully transpose diverse protein coding sequences. Although common in bacteria, we know little about eukaryotic CMEs because no appropriate tools exist for their annotation. For example, Starships are giant fungal CMEs whose functions are largely unknown because they require time-intensive manual curation. To address this knowledge gap, we developed starfish, a computational workflow for high-throughput eukaryotic CME annotation. We applied starfish to 2 899 genomes of 1 649 fungal species and found that starfish recovers known Starships with 95% combined precision and recall while expanding the number of annotated elements ten-fold. Extant Starship diversity is partitioned into 11 families that differ in their enrichment patterns across fungal classes. Starship cargo changes rapidly such that elements from the same family differ substantially in their functional repertoires, which are predicted to contribute to diverse biological processes such as metabolism. Many elements have convergently evolved to insert into 5S rDNA and AT-rich sequence while others integrate into random locations, revealing both specialist and generalist strategies for persistence. Our work establishes a framework for advancing mobile element biology and provides the means to investigate an emerging dimension of eukaryotic genetic diversity, that of genomes within genomes.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Neuchâtel 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Wisconsin Institute for Discovery, Madison, WI 53706, USA
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
15
|
Ament-Velásquez SL, Vogan AA, Wallerman O, Hartmann FE, Gautier V, Silar P, Giraud T, Johannesson H. High-Quality Genome Assemblies of 4 Members of the Podospora anserina Species Complex. Genome Biol Evol 2024; 16:evae034. [PMID: 38386982 PMCID: PMC10936905 DOI: 10.1093/gbe/evae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/29/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
The filamentous fungus Podospora anserina is a model organism used extensively in the study of molecular biology, senescence, prion biology, meiotic drive, mating-type chromosome evolution, and plant biomass degradation. It has recently been established that P. anserina is a member of a complex of 7 closely related species. In addition to P. anserina, high-quality genomic resources are available for 2 of these taxa. Here, we provide chromosome-level annotated assemblies of the 4 remaining species of the complex, as well as a comprehensive data set of annotated assemblies from a total of 28 Podospora genomes. We find that all 7 species have genomes of around 35 Mb arranged in 7 chromosomes that are mostly collinear and less than 2% divergent from each other at genic regions. We further attempt to resolve their phylogenetic relationships, finding significant levels of phylogenetic conflict as expected from a rapid and recent diversification.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Comparative Genetics and Functional Genomics, Uppsala University, 752 37 Uppsala, Sweden
| | - Fanny E Hartmann
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris Cité, F-75013 Paris, France
| | - Tatiana Giraud
- Ecologie Systematique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, 91198 Gif-sur-Yvette, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36 Uppsala, Sweden
- The Royal Swedish Academy of Sciences, 114 18 Stockholm, Sweden
- Department of Ecology, Environmental and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
16
|
Clavé C, Dheur S, Ament-Velásquez SL, Granger-Farbos A, Saupe SJ. het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein. PLoS Genet 2024; 20:e1011114. [PMID: 38346076 PMCID: PMC10890737 DOI: 10.1371/journal.pgen.1011114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Filamentous fungi display allorecognition genes that trigger regulated cell death (RCD) when strains of unlike genotype fuse. Podospora anserina is one of several model species for the study of this allorecognition process termed heterokaryon or vegetative incompatibility. Incompatibility restricts transmission of mycoviruses between isolates. In P. anserina, genetic analyses have identified nine incompatibility loci, termed het loci. Here we set out to clone the genes controlling het-B incompatibility. het-B displays two incompatible alleles, het-B1 and het-B2. We find that the het-B locus encompasses two adjacent genes, Bh and Bp that exist as highly divergent allelic variants (Bh1/Bh2 and Bp1/Bp2) in the incompatible haplotypes. Bh encodes a protein with an N-terminal HET domain, a cell death inducing domain bearing homology to Toll/interleukin-1 receptor (TIR) domains and a C-terminal domain with a predicted lectin fold. The Bp product is homologous to PII-like proteins, a family of small trimeric proteins acting as sensors of adenine nucleotides in bacteria. We show that although the het-B system appears genetically allelic, incompatibility is in fact determined by the non-allelic Bh1/Bp2 interaction while the reciprocal Bh2/Bp1 interaction plays no role in incompatibility. The highly divergent C-terminal lectin fold domain of BH determines recognition specificity. Population studies and genome analyses indicate that het-B is under balancing selection with trans-species polymorphism, highlighting the evolutionary significance of the two incompatible haplotypes. In addition to emphasizing anew the central role of TIR-like HET domains in fungal RCD, this study identifies novel players in fungal allorecognition and completes the characterization of the entire het gene set in that species.
Collapse
Affiliation(s)
- Corinne Clavé
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | - Sonia Dheur
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| | | | | | - Sven J. Saupe
- IBGC, UMR 5095, CNRS-Université de Bordeaux, Bordeaux, France
| |
Collapse
|
17
|
Oggenfuss U, Badet T, Croll D. A systematic screen for co-option of transposable elements across the fungal kingdom. Mob DNA 2024; 15:2. [PMID: 38245743 PMCID: PMC10799480 DOI: 10.1186/s13100-024-00312-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
How novel protein functions are acquired is a central question in molecular biology. Key paths to novelty include gene duplications, recombination or horizontal acquisition. Transposable elements (TEs) are increasingly recognized as a major source of novel domain-encoding sequences. However, the impact of TE coding sequences on the evolution of the proteome remains understudied. Here, we analyzed 1237 genomes spanning the phylogenetic breadth of the fungal kingdom. We scanned proteomes for evidence of co-occurrence of TE-derived domains along with other conventional protein functional domains. We detected more than 13,000 predicted proteins containing potentially TE-derived domain, of which 825 were identified in more than five genomes, indicating that many host-TE fusions may have persisted over long evolutionary time scales. We used the phylogenetic context to identify the origin and retention of individual TE-derived domains. The most common TE-derived domains are helicases derived from Academ, Kolobok or Helitron. We found putative TE co-options at a higher rate in genomes of the Saccharomycotina, providing an unexpected source of protein novelty in these generally TE depleted genomes. We investigated in detail a candidate host-TE fusion with a heterochromatic transcriptional silencing function that may play a role in TE and gene regulation in ascomycetes. The affected gene underwent multiple full or partial losses within the phylum. Overall, our work establishes a kingdom-wide view of putative host-TE fusions and facilitates systematic investigations of candidate fusion proteins.
Collapse
Affiliation(s)
- Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
- Department of Microbiology and Immunology, University of Minnesota, Medical School, Minneapolis, Minnesota, United States of America
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
18
|
Westerberg I, Ament-Velásquez SL, Vogan AA, Johannesson H. Evolutionary dynamics of the LTR-retrotransposon crapaud in the Podospora anserina species complex and the interaction with repeat-induced point mutations. Mob DNA 2024; 15:1. [PMID: 38218923 PMCID: PMC10787394 DOI: 10.1186/s13100-023-00311-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND The genome of the filamentous ascomycete Podospora anserina shows a relatively high abundance of retrotransposons compared to other interspersed repeats. The LTR-retrotransposon family crapaud is particularly abundant in the genome, and consists of multiple diverged sequence variations specifically localized in the 5' half of both long terminal repeats (LTRs). P. anserina is part of a recently diverged species-complex, which makes the system ideal to classify the crapaud family based on the observed LTR variation and to study the evolutionary dynamics, such as the diversification and bursts of the elements over recent evolutionary time. RESULTS We developed a sequence similarity network approach to classify the crapaud repeats of seven genomes representing the P. anserina species complex into 14 subfamilies. This method does not utilize a consensus sequence, but instead it connects any copies that share enough sequence similarity over a set sequence coverage. Based on phylogenetic analyses, we found that the crapaud repeats likely diversified in the ancestor of the complex and have had activity at different time points for different subfamilies. Furthermore, while we hypothesized that the evolution into multiple subfamilies could have been a direct effect of escaping the genome defense system of repeat induced point mutations, we found this not to be the case. CONCLUSIONS Our study contributes to the development of methods to classify transposable elements in fungi, and also highlights the intricate patterns of retrotransposon evolution over short timescales and under high mutational load caused by nucleotide-altering genome defense.
Collapse
Affiliation(s)
- Ivar Westerberg
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden
| | - S Lorena Ament-Velásquez
- Division of Population Genetics, Department of Zoology, Stockholm University, Stockholm, 106 91, Sweden
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden.
| | - Hanna Johannesson
- Department of Ecology, environmental and Plant Sciences, Stockholm University, Stockholm, 106 91, Sweden.
- The Royal Swedish Academy of Sciences, Stockholm, 114 18, Sweden.
| |
Collapse
|
19
|
Kawato S, Nozaki R, Kondo H, Hirono I. Integrase-associated niche differentiation of endogenous large DNA viruses in crustaceans. Microbiol Spectr 2024; 12:e0055923. [PMID: 38063384 PMCID: PMC10871703 DOI: 10.1128/spectrum.00559-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 11/15/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Crustacean genomes harbor sequences originating from a family of large DNA viruses called nimaviruses, but it is unclear why they are present. We show that endogenous nimaviruses selectively insert into repetitive sequences within the host genome, and this insertion specificity was correlated with different types of integrases, which are DNA recombination enzymes encoded by the nimaviruses themselves. This suggests that endogenous nimaviruses have colonized various genomic niches through the acquisition of integrases with different insertion specificities. Our results point to a novel survival strategy of endogenous large DNA viruses colonizing the host genomes. These findings may clarify the evolution and spread of nimaviruses in crustaceans and lead to measures to control and prevent the spread of pathogenic nimaviruses in aquaculture settings.
Collapse
Affiliation(s)
- Satoshi Kawato
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Reiko Nozaki
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
20
|
Unckless RL. Meiotic drive, postzygotic isolation, and the Snowball Effect. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.567107. [PMID: 38014228 PMCID: PMC10680770 DOI: 10.1101/2023.11.14.567107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
As populations diverge, they accumulate incompatibilities which reduce gene flow and facilitate the formation of new species. Simple models suggest that the genes that cause Dobzhansky-Muller incompatibilities should accumulate at least as fast as the square of the number of substitutions between taxa, the so-called snowball effect. We show, however, that in the special- but possibly common- case in which hybrid sterility is due primarily to cryptic meiotic (gametic) drive, the number of genes that cause postzygotic isolation may increase nearly linearly with the number of substitutions between species.
Collapse
Affiliation(s)
- Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|
21
|
Lai EC, Vogan AA. Proliferation and dissemination of killer meiotic drive loci. Curr Opin Genet Dev 2023; 82:102100. [PMID: 37625205 PMCID: PMC10900872 DOI: 10.1016/j.gde.2023.102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/27/2023]
Abstract
Killer meiotic drive elements are selfish genetic entities that manipulate the sexual cycle to promote their own inheritance via destructive means. Two broad classes are sperm killers, typical of animals and plants, and spore killers, which are present in ascomycete fungi. Killer meiotic drive systems operate via toxins that destroy or disable meiotic products bearing the alternative allele. To avoid suicidal autotargeting, cells that bear these selfish elements must either lack the toxin target, or express an antidote. Historically, these systems were presumed to require large nonrecombining haplotypes to link multiple functional interacting loci. However, recent advances on fungal spore killers reveal that numerous systems are enacted by single genes, and similar molecular genetic studies in Drosophila pinpoint individual loci that distort gamete sex. Notably, many meiotic drivers duplicate readily, forming gene families that can have complex interactions within and between species, and providing substrates for their rapid functional diversification. Here, we summarize the known families of meiotic drivers in fungi and fruit flies, and highlight shared principles about their evolution and proliferation that promote the spread of these noxious genes.
Collapse
Affiliation(s)
- Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 430 East 67th St, ROC-10, New York, NY 10065, USA.
| | - Aaron A Vogan
- Institute of Organismal Biology, Uppsala University, Norbyvägen 18D, Uppsala 752 36, Sweden.
| |
Collapse
|
22
|
Bucknell AH, McDonald MC. That's no moon, it's a Starship: Giant transposons driving fungal horizontal gene transfer. Mol Microbiol 2023; 120:555-563. [PMID: 37434470 DOI: 10.1111/mmi.15118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/13/2023]
Abstract
To date, most reports of horizontal gene transfer (HGT) in fungi rely on genome sequence data and are therefore an indirect measure of HGT after the event has occurred. However, a novel group of class II-like transposons known as Starships may soon alter this status quo. Starships are giant transposable elements that carry dozens of genes, some of which are host-beneficial, and are linked to many recent HGT events in the fungal kingdom. These transposons remain active and mobile in many fungal genomes and their transposition has recently been shown to be driven by a conserved tyrosine-recombinase called 'Captain'. This perspective explores some of the remaining unanswered questions about how these Starship transposons move, both within a genome and between different species. We seek to outline several experimental approaches that can be used to identify the genes essential for Starship-mediated HGT and draw links to other recently discovered giant transposons outside of the fungal kingdom.
Collapse
Affiliation(s)
- Angus H Bucknell
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Megan C McDonald
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| |
Collapse
|
23
|
Weisberg AJ, Chang JH. Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution. Annu Rev Microbiol 2023; 77:603-624. [PMID: 37437216 DOI: 10.1146/annurev-micro-032521-022006] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
24
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
25
|
Widen SA, Bes IC, Koreshova A, Pliota P, Krogull D, Burga A. Virus-like transposons cross the species barrier and drive the evolution of genetic incompatibilities. Science 2023; 380:eade0705. [PMID: 37384706 DOI: 10.1126/science.ade0705] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Horizontal gene transfer, the movement of genetic material between species, has been reported across all major eukaryotic lineages. However, the underlying mechanisms of transfer and their impact on genome evolution are still poorly understood. While studying the evolutionary origin of a selfish element in the nematode Caenorhabditis briggsae, we discovered that Mavericks, ancient virus-like transposons related to giant viruses and virophages, are one of the long-sought vectors of horizontal gene transfer. We found that Mavericks gained a novel herpesvirus-like fusogen in nematodes, leading to the widespread exchange of cargo genes between extremely divergent species, bypassing sexual and genetic barriers spanning hundreds of millions of years. Our results show how the union between viruses and transposons causes horizontal gene transfer and ultimately genetic incompatibilities in natural populations.
Collapse
Affiliation(s)
- Sonya A Widen
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Israel Campo Bes
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Alevtina Koreshova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Pinelopi Pliota
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daniel Krogull
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030 Vienna, Austria
| | - Alejandro Burga
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|
26
|
Inoue Y, Takeda H. Teratorn and its relatives - a cross-point of distinct mobile elements, transposons and viruses. Front Vet Sci 2023; 10:1158023. [PMID: 37187934 PMCID: PMC10175614 DOI: 10.3389/fvets.2023.1158023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mobile genetic elements (e.g., transposable elements and plasmids) and viruses display significant diversity with various life cycles, but how this diversity emerges remains obscure. We previously reported a novel and giant (180 kb long) mobile element, Teratorn, originally identified in the genome of medaka, Oryzias latipes. Teratorn is a composite DNA transposon created by a fusion of a piggyBac-like DNA transposon (piggyBac) and a novel herpesvirus of the Alloherpesviridae family. Genomic survey revealed that Teratorn-like herpesviruses are widely distributed among teleost genomes, the majority of which are also fused with piggyBac, suggesting that fusion with piggyBac is a trigger for the life-cycle shift of authentic herpesviruses to an intragenomic parasite. Thus, Teratorn-like herpesvirus provides a clear example of how novel mobile elements emerge, that is to say, the creation of diversity. In this review, we discuss the unique sequence and life-cycle characteristics of Teratorn, followed by the evolutionary process of piggyBac-herpesvirus fusion based on the distribution of Teratorn-like herpesviruses (relatives) among teleosts. Finally, we provide other examples of evolutionary associations between different classes of elements and propose that recombination could be a driving force generating novel mobile elements.
Collapse
Affiliation(s)
- Yusuke Inoue
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Urquhart AS, Vogan AA, Gardiner DM, Idnurm A. Starships are active eukaryotic transposable elements mobilized by a new family of tyrosine recombinases. Proc Natl Acad Sci U S A 2023; 120:e2214521120. [PMID: 37023132 PMCID: PMC10104507 DOI: 10.1073/pnas.2214521120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/04/2023] [Indexed: 04/07/2023] Open
Abstract
Transposable elements in eukaryotic organisms have historically been considered "selfish," at best conferring indirect benefits to their host organisms. The Starships are a recently discovered feature in fungal genomes that are, in some cases, predicted to confer beneficial traits to their hosts and also have hallmarks of being transposable elements. Here, we provide experimental evidence that Starships are indeed autonomous transposons, using the model Paecilomyces variotii, and identify the HhpA "Captain" tyrosine recombinase as essential for their mobilization into genomic sites with a specific target site consensus sequence. Furthermore, we identify multiple recent horizontal gene transfers of Starships, implying that they jump between species. Fungal genomes have mechanisms to defend against mobile elements, which are frequently detrimental to the host. We discover that Starships are also vulnerable to repeat-induced point mutation defense, thereby having implications on the evolutionary stability of such elements.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- Applied Biosciences, Macquarie University, Macquarie Park, NSW2109, Australia
| | - Aaron A. Vogan
- Department of Organismal Biology, Uppsala University, 752 36Uppsala, Sweden
| | - Donald M. Gardiner
- Commonwealth Scientific and Industrial Research Organisation, St Lucia, QLD4067, Australia
- University of Queensland, St Lucia, QLD4067, Australia
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Parkville, VIC3010, Australia
| |
Collapse
|
28
|
A Natural Fungal Gene Drive Enacts Killing via DNA Disruption. mBio 2023; 14:e0317322. [PMID: 36537809 PMCID: PMC9972908 DOI: 10.1128/mbio.03173-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fungal spore killers are a class of selfish genetic elements that positively bias their own inheritance by killing non-inheriting gametes following meiosis. As killing takes place specifically within the developing fungal ascus, a tissue which is experimentally difficult to isolate, our understanding of the mechanisms underlying spore killers are limited. In particular, how these loci kill other spores within the fungal ascus is largely unknown. Here, we overcome these experimental barriers by developing model systems in 2 evolutionary distant organisms, Escherichia coli (bacterium) and Saccharomyces cerevisiae (yeast), similar to previous approaches taken to examine the wtf spore killers. Using these systems, we show that the Podospora anserina spore killer protein SPOK1 enacts killing through targeting DNA. IMPORTANCE Natural gene drives have shaped the genomes of many eukaryotes and recently have been considered for applications to control undesirable species. In fungi, these loci are called spore killers. Despite their importance in evolutionary processes and possible applications, our understanding of how they enact killing is limited. We show that the spore killer protein Spok1, which has homologues throughout the fungal tree of life, acts via DNA disruption. Spok1 is only the second spore killer locus in which the cellular target of killing has been identified and is the first known to target DNA. We also show that the DNA disrupting activity of Spok1 is functional in both bacteria and yeast suggesting a highly conserved mode of action.
Collapse
|
29
|
Vittorelli N, Rodríguez de la Vega RC, Snirc A, Levert E, Gautier V, Lalanne C, De Filippo E, Gladieux P, Guillou S, Zhang Y, Tejomurthula S, Grigoriev IV, Debuchy R, Silar P, Giraud T, Hartmann FE. Stepwise recombination suppression around the mating-type locus in an ascomycete fungus with self-fertile spores. PLoS Genet 2023; 19:e1010347. [PMID: 36763677 PMCID: PMC9949647 DOI: 10.1371/journal.pgen.1010347] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 02/23/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023] Open
Abstract
Recombination is often suppressed at sex-determining loci in plants and animals, and at self-incompatibility or mating-type loci in plants and fungi. In fungal ascomycetes, recombination suppression around the mating-type locus is associated with pseudo-homothallism, i.e. the production of self-fertile dikaryotic sexual spores carrying the two opposite mating types. This has been well studied in two species complexes from different families of Sordariales: Podospora anserina and Neurospora tetrasperma. However, it is unclear whether this intriguing association holds in other species. We show here that Schizothecium tetrasporum, a fungus from a third family in the order Sordariales, also produces mostly self-fertile dikaryotic spores carrying the two opposite mating types. This was due to a high frequency of second meiotic division segregation at the mating-type locus, indicating the occurrence of a single and systematic crossing-over event between the mating-type locus and the centromere, as in P. anserina. The mating-type locus has the typical Sordariales organization, plus a MAT1-1-1 pseudogene in the MAT1-2 haplotype. High-quality genome assemblies of opposite mating types and segregation analyses revealed a suppression of recombination in a region of 1.47 Mb around the mating-type locus. We detected three evolutionary strata, indicating a stepwise extension of recombination suppression. The three strata displayed no rearrangement or transposable element accumulation but gene losses and gene disruptions were present, and precisely at the strata margins. Our findings indicate a convergent evolution of self-fertile dikaryotic sexual spores across multiple ascomycete fungi. The particular pattern of meiotic segregation at the mating-type locus was associated with recombination suppression around this locus, that had extended stepwise. This association between pseudo-homothallism and recombination suppression across lineages and the presence of gene disruption at the strata limits are consistent with a recently proposed mechanism of sheltering deleterious alleles to explain stepwise recombination suppression.
Collapse
Affiliation(s)
- Nina Vittorelli
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | | | - Alodie Snirc
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Emilie Levert
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Christophe Lalanne
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Elsa De Filippo
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia Guillou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Yu Zhang
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sravanthi Tejomurthula
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Robert Debuchy
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université Paris Cité, Paris, France
| | - Tatiana Giraud
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| | - Fanny E. Hartmann
- Ecologie Systematique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Martinossi-Allibert I, Ament-Velásquez SL, Saupe SJ, Johannesson H. To self or not to self? Absence of mate choice despite costly outcrossing in the fungus Podospora anserina. J Evol Biol 2023; 36:238-250. [PMID: 36263943 PMCID: PMC10092876 DOI: 10.1111/jeb.14108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023]
Abstract
Fungi have a large potential for flexibility in their mode of sexual reproduction, resulting in mating systems ranging from haploid selfing to outcrossing. However, we know little about which mating strategies are used in nature, and why, even in well-studied model organisms. Here, we explored the fitness consequences of alternative mating strategies in the ascomycete fungus Podospora anserina. We measured and compared fitness proxies of nine genotypes in either diploid selfing or outcrossing events, over two generations, and with or without environmental stress. We showed that fitness was consistently lower in outcrossing events, irrespective of the environment. The cost of outcrossing was partly attributed to non-self recognition genes with pleiotropic effects on fertility. We then predicted that when presented with options to either self or outcross, individuals would perform mate choice in favour of the reproductive strategy that yields higher fitness. Contrary to our prediction, individuals did not seem to avoid outcrossing when a choice was offered, in spite of the fitness cost incurred. Our results suggest that, although functionally diploid, P. anserina does not benefit from outcrossing in most cases. We outline different explanations for the apparent lack of mate choice in face of high fitness costs associated with outcrossing, including a new perspective on the pleiotropic effect of non-self recognition genes.
Collapse
Affiliation(s)
- Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France.,Department of Biology, Realfagbygget, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, Bordeaux CEDEX, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
31
|
Chou JY, Hsu PC, Leu JY. Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiol Mol Biol Rev 2022; 86:e0009822. [PMID: 36098649 PMCID: PMC9769731 DOI: 10.1128/mmbr.00098-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Understanding the molecular basis of speciation is a primary goal in evolutionary biology. The formation of the postzygotic reproductive isolation that causes hybrid dysfunction, thereby reducing gene flow between diverging populations, is crucial for speciation. Using various advanced approaches, including chromosome replacement, hybrid introgression and transcriptomics, population genomics, and experimental evolution, scientists have revealed multiple mechanisms involved in postzygotic barriers in the fungal kingdom. These results illuminate both unique and general features of fungal speciation. Our review summarizes experiments on fungi exploring how Dobzhansky-Muller incompatibility, killer meiotic drive, chromosome rearrangements, and antirecombination contribute to postzygotic reproductive isolation. We also discuss possible evolutionary forces underlying different reproductive isolation mechanisms and the potential roles of the evolutionary arms race under the Red Queen hypothesis and epigenetic divergence in speciation.
Collapse
Affiliation(s)
- Jui-Yu Chou
- Department of Biology, National Changhua University of Education, Changhua, Taiwan
| | - Po-Chen Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Jun-Yi Leu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
32
|
Ament-Velásquez SL, Vogan AA. Podospora anserina. Trends Microbiol 2022; 30:1243-1244. [PMID: 36182622 DOI: 10.1016/j.tim.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 01/13/2023]
Affiliation(s)
| | - Aaron A Vogan
- Independent researcher, Uppsala Universitet, Institute of Organismal Biology, Norbyvagen 18D, Uppsala, 75644, Sweden.
| |
Collapse
|
33
|
De Carvalho M, Jia GS, Nidamangala Srinivasa A, Billmyre RB, Xu YH, Lange JJ, Sabbarini IM, Du LL, Zanders SE. The wtf meiotic driver gene family has unexpectedly persisted for over 100 million years. eLife 2022; 11:e81149. [PMID: 36227631 PMCID: PMC9562144 DOI: 10.7554/elife.81149] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/21/2022] [Indexed: 11/21/2022] Open
Abstract
Meiotic drivers are selfish elements that bias their own transmission into more than half of the viable progeny produced by a driver+/driver- heterozygote. Meiotic drivers are thought to exist for relatively short evolutionary timespans because a driver gene or gene family is often found in a single species or in a group of very closely related species. Additionally, drivers are generally considered doomed to extinction when they spread to fixation or when suppressors arise. In this study, we examine the evolutionary history of the wtf meiotic drivers first discovered in the fission yeast Schizosaccharomyces pombe. We identify homologous genes in three other fission yeast species, S. octosporus, S. osmophilus, and S. cryophilus, which are estimated to have diverged over 100 million years ago from the S. pombe lineage. Synteny evidence supports that wtf genes were present in the common ancestor of these four species. Moreover, the ancestral genes were likely drivers as wtf genes in S. octosporus cause meiotic drive. Our findings indicate that meiotic drive systems can be maintained for long evolutionary timespans.
Collapse
Affiliation(s)
- Mickaël De Carvalho
- Stowers Institute for Medical ResearchKansas CityUnited States
- Open UniversityMilton KeynesUnited Kingdom
| | - Guo-Song Jia
- PTN Joint Graduate Program, School of Life Sciences, Tsinghua UniversityBeijingChina
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Ananya Nidamangala Srinivasa
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| | | | - Yan-Hui Xu
- National Institute of Biological Sciences, BeijingBeijingChina
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Li-Lin Du
- National Institute of Biological Sciences, BeijingBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
34
|
Abstract
Spore killers are specific genetic elements in fungi that kill sexual spores that do not contain them. A range of studies in the last few years have provided the long-awaited first insights into the molecular mechanistic aspects of spore killing in different fungal models, including both yeast-forming and filamentous Ascomycota. Here we describe these recent advances, focusing on the wtf system in the fission yeast Schizosaccharomyces pombe; the Sk spore killers of Neurospora species; and two spore-killer systems in Podospora anserina, Spok and [Het-s]. The spore killers appear thus far mechanistically unrelated. They can involve large genomic rearrangements but most often rely on the action of just a single gene. Data gathered so far show that the protein domains involved in the killing and resistance processes differ among the systems and are not homologous. The emerging picture sketched by these studies is thus one of great mechanistic and evolutionary diversity of elements that cheat during meiosis and are thereby preferentially inherited over sexual generations.
Collapse
Affiliation(s)
- Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, CNRS UMR 5095, Université de Bordeaux, Bordeaux, France;
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden;
| |
Collapse
|
35
|
Ament-Velásquez SL, Vogan AA, Granger-Farbos A, Bastiaans E, Martinossi-Allibert I, Saupe SJ, de Groot S, Lascoux M, Debets AJM, Clavé C, Johannesson H. Allorecognition genes drive reproductive isolation in Podospora anserina. Nat Ecol Evol 2022; 6:910-923. [PMID: 35551248 PMCID: PMC9262711 DOI: 10.1038/s41559-022-01734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/15/2022] [Indexed: 11/09/2022]
Abstract
Allorecognition, the capacity to discriminate self from conspecific non-self, is a ubiquitous organismal feature typically governed by genes evolving under balancing selection. Here, we show that in the fungus Podospora anserina, allorecognition loci controlling vegetative incompatibility (het genes), define two reproductively isolated groups through pleiotropic effects on sexual compatibility. These two groups emerge from the antagonistic interactions of the unlinked loci het-r (encoding a NOD-like receptor) and het-v (encoding a methyltransferase and an MLKL/HeLo domain protein). Using a combination of genetic and ecological data, supported by simulations, we provide a concrete and molecularly defined example whereby the origin and coexistence of reproductively isolated groups in sympatry is driven by pleiotropic genes under balancing selection.
Collapse
Affiliation(s)
- S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden. .,Department of Zoology, Stockholm University, Stockholm, Sweden.
| | - Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Alexandra Granger-Farbos
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Eric Bastiaans
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Suzette de Groot
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Martin Lascoux
- Plant Ecology and Evolution, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Alfons J M Debets
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Corinne Clavé
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095, CNRS, Université de Bordeaux, Bordeaux, France
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
36
|
Gluck-Thaler E, Ralston T, Konkel Z, Ocampos CG, Ganeshan VD, Dorrance AE, Niblack TL, Wood CW, Slot JC, Lopez-Nicora HD, Vogan AA. Giant Starship Elements Mobilize Accessory Genes in Fungal Genomes. Mol Biol Evol 2022; 39:msac109. [PMID: 35588244 PMCID: PMC9156397 DOI: 10.1093/molbev/msac109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager's activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum.
Collapse
Affiliation(s)
- Emile Gluck-Thaler
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Timothy Ralston
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Veena Devi Ganeshan
- Arabidopsis Biological Resource Center, The Ohio State University, Columbus, OH, USA
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, USA
| | - Terry L. Niblack
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Corlett W. Wood
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jason C. Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
| | - Horacio D. Lopez-Nicora
- Department of Plant Pathology, The Ohio State University, Columbus, OH, USA
- Departamento de Producción Agrícola, Universidad San Carlos, Asunción, Paraguay
| | - Aaron A. Vogan
- Systematic Biology, Department of Organismal Biology, University of Uppsala, Uppsala, Sweden
| |
Collapse
|
37
|
Gluck-Thaler E, Vogan AA, Branco S. Giant mobile elements: Agents of multivariate phenotypic evolution in fungi. Curr Biol 2022; 32:R234-R236. [DOI: 10.1016/j.cub.2022.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Rico-Ramírez AM, Pedro Gonçalves A, Louise Glass N. Fungal Cell Death: The Beginning of the End. Fungal Genet Biol 2022; 159:103671. [PMID: 35150840 DOI: 10.1016/j.fgb.2022.103671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/04/2022] [Accepted: 01/29/2022] [Indexed: 11/04/2022]
Abstract
Death is an important part of an organism's existence and also marks the end of life. On a cellular level, death involves the execution of complex processes, which can be classified into different types depending on their characteristics. Despite their "simple" lifestyle, fungi carry out highly specialized and sophisticated mechanisms to regulate the way their cells die, and the pathways underlying these mechanisms are comparable with those of plants and metazoans. This review focuses on regulated cell death in fungi and discusses the evidence for the occurrence of apoptotic-like, necroptosis-like, pyroptosis-like death, and the role of the NLR proteins in fungal cell death. We also describe recent data on meiotic drive elements involved in "spore killing" and the molecular basis of allorecognition-related cell death during cell fusion of genetically dissimilar cells. Finally, we discuss how fungal regulated cell death can be relevant in developing strategies to avoid resistance and tolerance to antifungal agents.
Collapse
Affiliation(s)
- Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720
| | - A Pedro Gonçalves
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan City, 701, Taiwan
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720.
| |
Collapse
|
39
|
Vogan AA, Martinossi-Allibert I, Ament-Velásquez SL, Svedberg J, Johannesson H. The spore killers, fungal meiotic driver elements. Mycologia 2022; 114:1-23. [PMID: 35138994 DOI: 10.1080/00275514.2021.1994815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During meiosis, both alleles of any given gene should have equal chances of being inherited by the progeny. There are a number of reasons why, however, this is not the case, with one of the most intriguing instances presenting itself as the phenomenon of meiotic drive. Genes that are capable of driving can manipulate the ratio of alleles among viable meiotic products so that they are inherited in more than half of them. In many cases, this effect is achieved by direct antagonistic interactions, where the driving allele inhibits or otherwise eliminates the alternative allele. In ascomycete fungi, meiotic products are packaged directly into ascospores; thus, the effect of meiotic drive has been given the nefarious moniker, "spore killing." In recent years, many of the known spore killers have been elevated from mysterious phenotypes to well-described systems at genetic, genomic, and molecular levels. In this review, we describe the known diversity of spore killers and synthesize the varied pieces of data from each system into broader trends regarding genome architecture, mechanisms of resistance, the role of transposable elements, their effect on population dynamics, speciation and gene flow, and finally how they may be developed as synthetic drivers. We propose that spore killing is common, but that it is under-observed because of a lack of studies on natural populations. We encourage researchers to seek new spore killers to build on the knowledge that these remarkable genetic elements can teach us about meiotic drive, genomic conflict, and evolution more broadly.
Collapse
Affiliation(s)
- Aaron A Vogan
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden.,Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS, Université de Bordeaux, 33077, Bordeaux CEDEX, France
| | - S Lorena Ament-Velásquez
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| | - Jesper Svedberg
- Department of Biomolecular Engineering, University of California, -Santa Cruz, Santa Cruz, California 95064
| | - Hanna Johannesson
- Systematic Biology, Department of Organismal Biology, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
40
|
A large transposable element mediates metal resistance in the fungus Paecilomyces variotii. Curr Biol 2022; 32:937-950.e5. [PMID: 35063120 DOI: 10.1016/j.cub.2021.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/11/2021] [Accepted: 12/17/2021] [Indexed: 12/19/2022]
Abstract
The horizontal transfer of large gene clusters by mobile elements is a key driver of prokaryotic adaptation in response to environmental stresses. Eukaryotic microbes face similar stresses; however, a parallel role for mobile elements has not been established. A stress faced by many microorganisms is toxic metal ions in their environment. In fungi, identified mechanisms for protection against metals generally rely on genes that are dispersed within an organism's genome. Here, we discover a large (∼85 kb) region that confers tolerance to five metal/metalloid ions (arsenate, cadmium, copper, lead, and zinc) in the genomes of some, but not all, strains of a fungus, Paecilomyces variotii. We name this region HEPHAESTUS (Hφ) and present evidence that it is mobile within the P. variotii genome with features characteristic of a transposable element. HEPHAESTUS contains the greatest complement of host-beneficial genes carried by a transposable element in eukaryotes, suggesting that eukaryotic transposable elements might play a role analogous to bacteria in the horizontal transfer of large regions of host-beneficial DNA. Genes within HEPHAESTUS responsible for individual metal tolerances include those encoding a P-type ATPase transporter-PcaA-required for cadmium and lead tolerance, a transporter-ZrcA-providing tolerance to zinc, and a multicopper oxidase-McoA-conferring tolerance to copper. In addition, a subregion of Hφ confers tolerance to arsenate. The genome sequences of other fungi in the Eurotiales contain further examples of HEPHAESTUS, suggesting that it is responsible for independently assembling tolerance to a diverse array of ions, including chromium, mercury, and sodium.
Collapse
|
41
|
Zanders S, Johannesson H. Molecular Mechanisms and Evolutionary Consequences of Spore Killers in Ascomycetes. Microbiol Mol Biol Rev 2021; 85:e0001621. [PMID: 34756084 PMCID: PMC8579966 DOI: 10.1128/mmbr.00016-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this review, we examine the fungal spore killers. These are meiotic drive elements that cheat during sexual reproduction to increase their transmission into the next generation. Spore killing has been detected in a number of ascomycete genera, including Podospora, Neurospora, Schizosaccharomyces, Bipolaris, and Fusarium. There have been major recent advances in spore killer research that have increased our understanding of the molecular identity, function, and evolutionary history of the known killers. The spore killers vary in the mechanism by which they kill and are divided into killer-target and poison-antidote drivers. In killer-target systems, the drive locus encodes an element that can be described as a killer, while the target is an allele found tightly linked to the drive locus but on the nondriving haplotype. The poison-antidote drive systems encode both a poison and an antidote element within the drive locus. The key to drive in this system is the restricted distribution of the antidote: only the spores that inherit the drive locus receive the antidote and are rescued from the toxicity of the poison. Spore killers also vary in their genome architecture and can consist of a single gene or multiple linked genes. Due to their ability to distort meiosis, spore killers gain a selective advantage at the gene level that allows them to increase in frequency in a population over time, even if they reduce host fitness, and they may have significant impact on genome architecture and macroevolutionary processes such as speciation.
Collapse
Affiliation(s)
- Sarah Zanders
- Stowers Institute for Medical Research, Kansas City, Kansas, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
López Hernández JF, Helston RM, Lange JJ, Billmyre RB, Schaffner SH, Eickbush MT, McCroskey S, Zanders SE. Diverse mating phenotypes impact the spread of wtf meiotic drivers in Schizosaccharomyces pombe. eLife 2021; 10:e70812. [PMID: 34895466 PMCID: PMC8789285 DOI: 10.7554/elife.70812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Meiotic drivers are genetic elements that break Mendel's law of segregation to be transmitted into more than half of the offspring produced by a heterozygote. The success of a driver relies on outcrossing (mating between individuals from distinct lineages) because drivers gain their advantage in heterozygotes. It is, therefore, curious that Schizosaccharomyces pombe, a species reported to rarely outcross, harbors many meiotic drivers. To address this paradox, we measured mating phenotypes in S. pombe natural isolates. We found that the propensity for cells from distinct clonal lineages to mate varies between natural isolates and can be affected both by cell density and by the available sexual partners. Additionally, we found that the observed levels of preferential mating between cells from the same clonal lineage can slow, but not prevent, the spread of a wtf meiotic driver in the absence of additional fitness costs linked to the driver. These analyses reveal parameters critical to understanding the evolution of S. pombe and help explain the success of meiotic drivers in this species.
Collapse
Affiliation(s)
| | | | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Samantha H Schaffner
- Stowers Institute for Medical ResearchKansas CityUnited States
- Kenyon CollegeGambierUnited States
| | | | - Scott McCroskey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
43
|
Fouché S, Oggenfuss U, Chanclud E, Croll D. A devil's bargain with transposable elements in plant pathogens. Trends Genet 2021; 38:222-230. [PMID: 34489138 DOI: 10.1016/j.tig.2021.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
Transposable elements (TEs) spread in genomes through self-copying mechanisms and are a major cause of genome expansions. Plant pathogens have finely tuned the expression of virulence factors to rely on epigenetic control targeted at nearby TEs. Stress experienced during the plant infection process leads to derepression of TEs and concurrently allows the expression of virulence factors. We argue that the derepression of TEs elements causes an evolutionary conflict by favoring TEs that can be reactivated. Active TEs and recent genome size expansions indicate that plant pathogens could face long-term consequences from the short-term benefit of fine-tuning the infection process. Hence, encoding key virulence factors close to TEs under epigenetic control constitutes a devil's bargain for pathogens.
Collapse
Affiliation(s)
- Simone Fouché
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland; Department of Organismal Biology - Systematic Biology, Uppsala University, Norbyvägen 18D, SE-752 36, Uppsala, Sweden
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Emilie Chanclud
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
44
|
Hartmann FE, Ament-Velásquez SL, Vogan AA, Gautier V, Le Prieur S, Berramdane M, Snirc A, Johannesson H, Grognet P, Malagnac F, Silar P, Giraud T. Size Variation of the Nonrecombining Region on the Mating-Type Chromosomes in the Fungal Podospora anserina Species Complex. Mol Biol Evol 2021; 38:2475-2492. [PMID: 33555341 PMCID: PMC8136517 DOI: 10.1093/molbev/msab040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Sex chromosomes often carry large nonrecombining regions that can extend progressively over time, generating evolutionary strata of sequence divergence. However, some sex chromosomes display an incomplete suppression of recombination. Large genomic regions without recombination and evolutionary strata have also been documented around fungal mating-type loci, but have been studied in only a few fungal systems. In the model fungus Podospora anserina (Ascomycota, Sordariomycetes), the reference S strain lacks recombination across a 0.8-Mb region around the mating-type locus. The lack of recombination in this region ensures that nuclei of opposite mating types are packaged into a single ascospore (pseudohomothallic lifecycle). We found evidence for a lack of recombination around the mating-type locus in the genomes of ten P. anserina strains and six closely related pseudohomothallic Podospora species. Importantly, the size of the nonrecombining region differed between strains and species, as indicated by the heterozygosity levels around the mating-type locus and experimental selfing. The nonrecombining region is probably labile and polymorphic, differing in size and precise location within and between species, resulting in occasional, but infrequent, recombination at a given base pair. This view is also supported by the low divergence between mating types, and the lack of strong linkage disequilibrium, chromosomal rearrangements, transspecific polymorphism and genomic degeneration. We found a pattern suggestive of evolutionary strata in P. pseudocomata. The observed heterozygosity levels indicate low but nonnull outcrossing rates in nature in these pseudohomothallic fungi. This study adds to our understanding of mating-type chromosome evolution and its relationship to mating systems.
Collapse
Affiliation(s)
- Fanny E Hartmann
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Aaron A Vogan
- Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Valérie Gautier
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Stephanie Le Prieur
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Myriam Berramdane
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Pierre Grognet
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Fabienne Malagnac
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris, Paris, France
| | - Tatiana Giraud
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
45
|
Witte TE, Villeneuve N, Boddy CN, Overy DP. Accessory Chromosome-Acquired Secondary Metabolism in Plant Pathogenic Fungi: The Evolution of Biotrophs Into Host-Specific Pathogens. Front Microbiol 2021; 12:664276. [PMID: 33968000 PMCID: PMC8102738 DOI: 10.3389/fmicb.2021.664276] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Accessory chromosomes are strain- or pathotype-specific chromosomes that exist in addition to the core chromosomes of a species and are generally not considered essential to the survival of the organism. Among pathogenic fungal species, accessory chromosomes harbor pathogenicity or virulence factor genes, several of which are known to encode for secondary metabolites that are involved in plant tissue invasion. Accessory chromosomes are of particular interest due to their capacity for horizontal transfer between strains and their dynamic "crosstalk" with core chromosomes. This review focuses exclusively on secondary metabolism (including mycotoxin biosynthesis) associated with accessory chromosomes in filamentous fungi and the role accessory chromosomes play in the evolution of secondary metabolite gene clusters. Untargeted metabolomics profiling in conjunction with genome sequencing provides an effective means of linking secondary metabolite products with their respective biosynthetic gene clusters that reside on accessory chromosomes. While the majority of literature describing accessory chromosome-associated toxin biosynthesis comes from studies of Alternaria pathotypes, the recent discovery of accessory chromosome-associated biosynthetic genes in Fusarium species offer fresh insights into the evolution of biosynthetic enzymes such as non-ribosomal peptide synthetases (NRPSs), polyketide synthases (PKSs) and regulatory mechanisms governing their expression.
Collapse
Affiliation(s)
- Thomas E. Witte
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Nicolas Villeneuve
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Christopher N. Boddy
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - David P. Overy
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
| |
Collapse
|