1
|
Lim H, Kobayashi MJ, Marsoem SN, Irawati D, Kosugi A, Kondo T, Tani N. Transcriptomic responses of oil palm ( Elaeis guineensis) stem to waterlogging at plantation in relation to precipitation seasonality. FRONTIERS IN PLANT SCIENCE 2023; 14:1213496. [PMID: 37636106 PMCID: PMC10448820 DOI: 10.3389/fpls.2023.1213496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Global warming-induced climate change causes significant agricultural problems by increasing the incidence of drought and flooding events. Waterlogging is an inevitable consequence of these changes but its effects on oil palms have received little attention and are poorly understood. Recent waterlogging studies have focused on oil palm seedlings, with particular emphasis on phenology. However, the transcriptomic waterlogging response of mature oil palms remains elusive in real environments. We therefore investigated transcriptomic changes over time in adult oil palms at plantations over a two-year period with pronounced seasonal variation in precipitation. A significant transcriptional waterlogging response was observed in the oil palm stem core but not in leaf samples when gene expression was correlated with cumulative precipitation over two-day periods. Pathways and processes upregulated or enriched in the stem core response included hypoxia, ethylene signaling, and carbon metabolism. Post-waterlogging recovery in oil palms was found to be associated with responses to heat stress and carotenoid biosynthesis. Nineteen transcription factors (TFs) potentially involved in the waterlogging response of mature oil palms were also identified. These data provide new insights into the transcriptomic responses of planted oil palms to waterlogging and offer valuable guidance on the sensitivity of oil palm plantations to future climate changes.
Collapse
Affiliation(s)
- Hui Lim
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masaki J. Kobayashi
- Forestry Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | | | - Denny Irawati
- Faculty of Forestry, Universitas Gadjah Mada (UGM), Yogyakarta, Indonesia
| | - Akihiko Kosugi
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiaki Kondo
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
| | - Naoki Tani
- Forestry Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Liu H, Jiang L, Wen Z, Yang Y, Singer SD, Bennett D, Xu W, Su Z, Yu Z, Cohn J, Chae H, Que Q, Liu Y, Liu C, Liu Z. Rice RS2-9, which is bound by transcription factor OSH1, blocks enhancer-promoter interactions in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:541-554. [PMID: 34773305 PMCID: PMC9303810 DOI: 10.1111/tpj.15574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/02/2021] [Indexed: 05/13/2023]
Abstract
Insulators characterized in Drosophila and mammals have been shown to play a key role in the restriction of promiscuous enhancer-promoter interactions, as well as reshaping the topological landscape of chromosomes. Yet the role of insulators in plants remains poorly understood, in large part because of a lack of well-characterized insulators and binding factor(s). In this study, we isolated a 1.2-kb RS2-9 insulator from the Oryza sativa (rice) genome that can, when interposed between an enhancer and promoter, efficiently block the activation function of both constitutive and floral organ-specific enhancers in transgenic Arabidopsis and Nicotiana tabacum (tobacco). In the rice genome, the genes flanking RS2-9 exhibit an absence of mutual transcriptional interactions, as well as a lack of histone modification spread. We further determined that O. sativa Homeobox 1 (OSH1) bound two regions of RS2-9, as well as over 50 000 additional sites in the rice genome, the majority of which resided in intergenic regions. Mutation of one of the two OSH1-binding sites in RS2-9 impaired insulation activity by up to 60%, whereas the mutation of both binding sites virtually abolished insulator function. We also demonstrated that OSH1 binding sites were associated with 72% of the boundaries of topologically associated domains (TADs) identified in the rice genome, which is comparable to the 77% of TAD boundaries bound by the insulator CCCTC-binding factor (CTCF) in mammals. Taken together, our findings indicate that OSH1-RS2-9 acts as a true insulator in plants, and highlight a potential role for OSH1 in gene insulation and topological organization in plant genomes.
Collapse
Affiliation(s)
- Huawei Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Li Jiang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhifeng Wen
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- College of HorticultureFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Yingjun Yang
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
- Forestry CollegeHenan University of Science and TechnologyLuoyang471023China
| | - Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeAlbertaT1J 4B1Canada
| | - Dennis Bennett
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| | - Wenying Xu
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and BiochemistryCollege of Biological SciencesChina Agricultural UniversityBeijing100193China
| | - Zhifang Yu
- College of Food Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jonathan Cohn
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Hyunsook Chae
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Qiudeng Que
- Syngenta Crop ProtectionLLCResearch Triangle ParkNorth Carolina27709USA
| | - Yue Liu
- College of HorticultureQingdao Agricultural UniversityQingdao266109China
| | - Chang Liu
- Department of EpigeneticsUniversity of HohenheimStuttgart70599Germany
| | - Zongrang Liu
- USDA‐ARS, Appalachian Fruit Research StationKearneysvilleWest Virginia25430USA
| |
Collapse
|
3
|
Dolui AK, Vijayaraj P. Functional Omics Identifies Serine Hydrolases That Mobilize Storage Lipids during Rice Seed Germination. PLANT PHYSIOLOGY 2020; 184:693-708. [PMID: 32817194 PMCID: PMC7536657 DOI: 10.1104/pp.20.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/04/2020] [Indexed: 05/10/2023]
Abstract
Elucidating proteolipidome dynamics is crucial for understanding the roles of these molecules in plant physiology and disease. Sequence-based functional annotation of the protein is inadequate, since protein activities depend on posttranslational modification. In this study, we applied a gel-free activity-based protein profiling approach to unravel the active lipases, including other Serine hydrolases (SHs), expressed during seed germination in rice (Oryza sativa). We successfully mapped the active sites of 43 active SHs encompassing lipases/esterases, GDSL lipases, proteases, Ser carboxypeptidases, ABHD protein, pectin acetylesterase, and other SHs. The mRNA expression levels of those genes encoding the identified SHs were monitored using microarray analysis. The lipidome analysis revealed distinct patterns of molecular species distribution in individual lipid classes and displayed the metabolic connections between lipid mobilization and rice seedling growth. Changes in the mobilization of storage lipids and their molecular species remodeling were correlated with the expression of the identified lipases and their lipase activity in a time-dependent manner. The physiological significance of the identified SHs was explored during biotic stress with Fusarium verticillioides infection. The fungal infection significantly reduced lipase activity and lipid mobilization, thus impairing the rice seedling. Collectively, our data demonstrate application of the functional proteome strategy along with the shotgun lipidome approach for the identification of active SHs, and thus for deciphering the role of lipid homeostasis during rice seed germination.
Collapse
Affiliation(s)
- Achintya Kumar Dolui
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| | - Panneerselvam Vijayaraj
- Lipid and Nutrition Laboratory, Department of Lipid Science, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore, Karnataka, 570020, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Abstract
Cryptochromes are blue-light receptors that mediate photoresponses in plants. The genomes of most land plants encode two clades of cryptochromes, CRY1 and CRY2, which mediate distinct and overlapping photoresponses within the same species and between different plant species. Photoresponsive protein-protein interaction is the primary mode of signal transduction of cryptochromes. Cryptochromes exist as physiologically inactive monomers in the dark; the absorption of photons leads to conformational change and cryptochrome homooligomerization, which alters the affinity of cryptochromes interacting with cryptochrome-interacting proteins to form various cryptochrome complexes. These cryptochrome complexes, collectively referred to as the cryptochrome complexome, regulate transcription or stability of photoresponsive proteins to modulate plant growth and development. The activity of cryptochromes is regulated by photooligomerization; dark monomerization; cryptochrome regulatory proteins; and cryptochrome phosphorylation, ubiquitination, and degradation. Most of the more than 30 presently known cryptochrome-interacting proteins are either regulated by other photoreceptors or physically interactingwith the protein complexes of other photoreceptors. Some cryptochrome-interacting proteins are also hormonal signaling or regulatory proteins. These two mechanisms enable cryptochromes to integrate blue-light signals with other internal and external signals to optimize plant growth and development.
Collapse
Affiliation(s)
- Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chentao Lin
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California 90095, USA;
| |
Collapse
|
5
|
Sekhon RS, Saski C, Kumar R, Flinn BS, Luo F, Beissinger TM, Ackerman AJ, Breitzman MW, Bridges WC, de Leon N, Kaeppler SM. Integrated Genome-Scale Analysis Identifies Novel Genes and Networks Underlying Senescence in Maize. THE PLANT CELL 2019; 31:1968-1989. [PMID: 31239390 PMCID: PMC6751112 DOI: 10.1105/tpc.18.00930] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/22/2019] [Accepted: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Premature senescence in annual crops reduces yield, while delayed senescence, termed stay-green, imposes positive and negative impacts on yield and nutrition quality. Despite its importance, scant information is available on the genetic architecture of senescence in maize (Zea mays) and other cereals. We combined a systematic characterization of natural diversity for senescence in maize and coexpression networks derived from transcriptome analysis of normally senescing and stay-green lines. Sixty-four candidate genes were identified by genome-wide association study (GWAS), and 14 of these genes are supported by additional evidence for involvement in senescence-related processes including proteolysis, sugar transport and signaling, and sink activity. Eight of the GWAS candidates, independently supported by a coexpression network underlying stay-green, include a trehalose-6-phosphate synthase, a NAC transcription factor, and two xylan biosynthetic enzymes. Source-sink communication and the activity of cell walls as a secondary sink emerge as key determinants of stay-green. Mutant analysis supports the role of a candidate encoding Cys protease in stay-green in Arabidopsis (Arabidopsis thaliana), and analysis of natural alleles suggests a similar role in maize. This study provides a foundation for enhanced understanding and manipulation of senescence for increasing carbon yield, nutritional quality, and stress tolerance of maize and other cereals.
Collapse
Affiliation(s)
- Rajandeep S Sekhon
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, 306B Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Rohit Kumar
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Barry S Flinn
- Department of Plant and Environmental Sciences, Clemson University, 306B Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Feng Luo
- School of Computing, Clemson University, 210 McAdams Hall, Clemson, South Carolina 29634
| | - Timothy M Beissinger
- Center for Integrated Breeding Research, University of Göttingen, D-37075 Göttingen, Germany
| | - Arlyn J Ackerman
- Department of Genetics and Biochemistry, Clemson University, 314 Biosystems Research Complex, 105 Collings Street, Clemson, South Carolina 29634
| | - Matthew W Breitzman
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, O-117 Martin Hall, Clemson, South Carolina 29634
| | - Natalia de Leon
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| | - Shawn M Kaeppler
- Department of Agronomy, University of Wisconsin, 1575 Linden Drive, Madison, Wisconsin 53706
| |
Collapse
|
6
|
Gupta P, Singh SK. Gene Regulatory Networks: Current Updates and Applications in Plant Biology. ENERGY, ENVIRONMENT, AND SUSTAINABILITY 2019. [DOI: 10.1007/978-981-15-0690-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Shariatipour N, Heidari B. Investigation of Drought and Salinity Tolerance Related Genes and their Regulatory Mechanisms in Arabidopsis (Arabidopsis thaliana). ACTA ACUST UNITED AC 2018. [DOI: 10.2174/1875036201811010012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:The development of genome microarrays of the model plant;Arabidopsis thaliana, with increasing repositories of publicly available data and high-throughput data analysis tools, has opened new avenues to genome-wide systemic analysis of plant responses to environmental stresses.Objective:To identify differentially expressed genes and their regulatory networks inArabidopsis thalianaunder harsh environmental condition.Methods:Two replications of eight microarray data sets were derived from two different tissues (root and shoot) and two different time courses (control and 24 hours after the beginning of stress occurrence) for comparative data analysis through various bioinformatics tools.Results:Under drought stress, 2558 gene accessions in root and 3691 in shoot tissues had significantly differential expression with respect to control condition. Likewise, under salinity stress 9078 gene accessions in root and 5785 in shoot tissues were discriminated between stressed and non-stressed conditions. Furthermore, the transcription regulatory activity of differentially expressed genes was mainly due to hormone, light, circadian and stress responsivecis-acting regulatory elements among which ABRE, ERE, P-box, TATC-box, CGTCA-motif, GARE-motif, TGACG-motif, GAG-motif, GA-motif, GATA- motif, TCT-motif, GT1-motif, Box 4, G-Box, I-box, LAMP-element, Sp1, MBS, TC-rich repeats, TCA-element and HSE were the most important elements in the identified up-regulated genes.Conclusion:The results of the high-throughput comparative analyses in this study provide more options for plant breeders and give an insight into genes andcis-acting regulatory elements involved in plant response to drought and salinity stresses in strategic crops such as cereals.
Collapse
|
8
|
Chae S, Kim JS, Jun KM, Lee SB, Kim MS, Nahm BH, Kim YK. Analysis of Genes with Alternatively Spliced Transcripts in the Leaf, Root, Panicle and Seed of Rice Using a Long Oligomer Microarray and RNA-Seq. Mol Cells 2017; 40:714-730. [PMID: 29047256 PMCID: PMC5682249 DOI: 10.14348/molcells.2017.2297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 11/30/2022] Open
Abstract
Pre-mRNA splicing further increases protein diversity acquired through evolution. The underlying driving forces for this phenomenon are unknown, especially in terms of gene expression. A rice alternatively spliced transcript detection microarray (ASDM) and RNA sequencing (RNA-Seq) were applied to differentiate the transcriptome of 4 representative organs of Oryza sativa L. cv. Ilmi: leaves, roots, 1-cm-stage panicles and young seeds at 21 days after pollination. Comparison of data obtained by microarray and RNA-Seq showed a bell-shaped distribution and a co-lineation for highly expressed genes. Transcripts were classified according to the degree of organ enrichment using a coefficient value (CV, the ratio of the standard deviation to the mean values): highly variable (CVI), variable (CVII), and constitutive (CVIII) groups. A higher index of the portion of loci with alternatively spliced transcripts in a group (IAST) value was observed for the constitutive group. Genes of the highly variable group showed the characteristics of the examined organs, and alternatively spliced transcripts tended to exhibit the same organ specificity or less organ preferences, with avoidance of 'organ distinctness'. In addition, within a locus, a tendency of higher expression was found for transcripts with a longer coding sequence (CDS), and a spliced intron was the most commonly found type of alternative splicing for an extended CDS. Thus, pre-mRNA splicing might have evolved to retain maximum functionality in terms of organ preference and multiplicity.
Collapse
Affiliation(s)
- Songhwa Chae
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Joung Sug Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| | - Kyong Mi Jun
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Sang-Bok Lee
- Central Area Crop Breeding Research Division, National Institute of Crop Science, Chuncheon 24219,
Korea
| | | | - Baek Hie Nahm
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
- GreenGene Biotech Inc., 116, Yongin 17058,
Korea
| | - Yeon-Ki Kim
- Division of Bioscience and Bioinformatics, Myongji University, Yongin 17058,
Korea
| |
Collapse
|
9
|
Sandhu M, Sureshkumar V, Prakash C, Dixit R, Solanke AU, Sharma TR, Mohapatra T, S V AM. RiceMetaSys for salt and drought stress responsive genes in rice: a web interface for crop improvement. BMC Bioinformatics 2017; 18:432. [PMID: 28964253 PMCID: PMC5622590 DOI: 10.1186/s12859-017-1846-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Background Genome-wide microarray has enabled development of robust databases for functional genomics studies in rice. However, such databases do not directly cater to the needs of breeders. Here, we have attempted to develop a web interface which combines the information from functional genomic studies across different genetic backgrounds with DNA markers so that they can be readily deployed in crop improvement. In the current version of the database, we have included drought and salinity stress studies since these two are the major abiotic stresses in rice. Results RiceMetaSys, a user-friendly and freely available web interface provides comprehensive information on salt responsive genes (SRGs) and drought responsive genes (DRGs) across genotypes, crop development stages and tissues, identified from multiple microarray datasets. ‘Physical position search’ is an attractive tool for those using QTL based approach for dissecting tolerance to salt and drought stress since it can provide the list of SRGs and DRGs in any physical interval. To identify robust candidate genes for use in crop improvement, the ‘common genes across varieties’ search tool is useful. Graphical visualization of expression profiles across genes and rice genotypes has been enabled to facilitate the user and to make the comparisons more impactful. Simple Sequence Repeat (SSR) search in the SRGs and DRGs is a valuable tool for fine mapping and marker assisted selection since it provides primers for survey of polymorphism. An external link to intron specific markers is also provided for this purpose. Bulk retrieval of data without any limit has been enabled in case of locus and SSR search. Conclusions The aim of this database is to facilitate users with a simple and straight-forward search options for identification of robust candidate genes from among thousands of SRGs and DRGs so as to facilitate linking variation in expression profiles to variation in phenotype. Database URL: http://14.139.229.201 Electronic supplementary material The online version of this article (10.1186/s12859-017-1846-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maninder Sandhu
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.,Shobhit University, Modipuram, Meerut, 250110, Uttar Pradesh, India
| | - V Sureshkumar
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.,Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Chandra Prakash
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Rekha Dixit
- Shobhit University, Modipuram, Meerut, 250110, Uttar Pradesh, India.,Current address: Department of biotechnology, Keralverma faculty of science, Swami Vivekanand Subharti University, Meerut, 250005, Uttar Pradesh, India
| | - Amolkumar U Solanke
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Trilochan Mohapatra
- Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, 110001, India
| | - Amitha Mithra S V
- ICAR-National Research Centre on Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
10
|
Abstract
Bioinformatics tools can be employed to identify conserved cis-sequences in sets of coregulated plant genes because more and more gene expression and genomic sequence data become available. Knowledge on the specific cis-sequences, their enrichment and arrangement within promoters, facilitates the design of functional synthetic plant promoters that are responsive to specific stresses. The present chapter illustrates an example for the bioinformatic identification of conserved Arabidopsis thaliana cis-sequences enriched in drought stress-responsive genes. This workflow can be applied for the identification of cis-sequences in any sets of coregulated genes. The workflow includes detailed protocols to determine sets of coregulated genes, to extract the corresponding promoter sequences, and how to install and run a software package to identify overrepresented motifs. Further bioinformatic analyses that can be performed with the results are discussed.
Collapse
Affiliation(s)
- Lorenz Bülow
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Agricultural Crops, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany.
| | - Reinhard Hehl
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| |
Collapse
|
11
|
Pingault L, Choulet F, Alberti A, Glover N, Wincker P, Feuillet C, Paux E. Deep transcriptome sequencing provides new insights into the structural and functional organization of the wheat genome. Genome Biol 2015; 16:29. [PMID: 25853487 PMCID: PMC4355351 DOI: 10.1186/s13059-015-0601-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 12/19/2022] Open
Abstract
Background Because of its size, allohexaploid nature, and high repeat content, the bread wheat genome is a good model to study the impact of the genome structure on gene organization, function, and regulation. However, because of the lack of a reference genome sequence, such studies have long been hampered and our knowledge of the wheat gene space is still limited. The access to the reference sequence of the wheat chromosome 3B provided us with an opportunity to study the wheat transcriptome and its relationships to genome and gene structure at a level that has never been reached before. Results By combining this sequence with RNA-seq data, we construct a fine transcriptome map of the chromosome 3B. More than 8,800 transcription sites are identified, that are distributed throughout the entire chromosome. Expression level, expression breadth, alternative splicing as well as several structural features of genes, including transcript length, number of exons, and cumulative intron length are investigated. Our analysis reveals a non-monotonic relationship between gene expression and structure and leads to the hypothesis that gene structure is determined by its function, whereas gene expression is subject to energetic cost. Moreover, we observe a recombination-based partitioning at the gene structure and function level. Conclusions Our analysis provides new insights into the relationships between gene and genome structure and function. It reveals mechanisms conserved with other plant species as well as superimposed evolutionary forces that shaped the wheat gene space, likely participating in wheat adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0601-9) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Yeaman S, Hodgins KA, Suren H, Nurkowski KA, Rieseberg LH, Holliday JA, Aitken SN. Conservation and divergence of gene expression plasticity following c. 140 million years of evolution in lodgepole pine (Pinus contorta) and interior spruce (Picea glauca×Picea engelmannii). THE NEW PHYTOLOGIST 2014; 203:578-591. [PMID: 24750196 DOI: 10.1111/nph.12819] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 06/03/2023]
Abstract
Species respond to environmental stress through a combination of genetic adaptation and phenotypic plasticity, both of which may be important for survival in the face of climatic change. By characterizing the molecular basis of plastic responses and comparing patterns among species, it is possible to identify how such traits evolve. Here, we used de novo transcriptome assembly and RNAseq to explore how patterns of gene expression differ in response to temperature, moisture, and light regime treatments in lodgepole pine (Pinus contorta) and interior spruce (a natural hybrid population of Picea glauca and Picea engelmannii). We found wide evidence for an effect of treatment on expression within each species, with 6413 and 11,658 differentially expressed genes identified in spruce and pine, respectively. Comparing patterns of expression among these species, we found that 74% of all orthologs with differential expression had a pattern that was conserved in both species, despite 140 million yr of evolution. We also found that the specific treatments driving expression patterns differed between genes with conserved versus diverged patterns of expression. We conclude that natural selection has probably played a role in shaping plastic responses to environment in these species.
Collapse
Affiliation(s)
- Sam Yeaman
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Kathryn A Hodgins
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- School of Biological Sciences, Monash University, Building 18, Melbourne, Vic., 3800, Australia
| | - Haktan Suren
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Kristin A Nurkowski
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Loren H Rieseberg
- Department of Botany, 6270 University Blvd, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jason A Holliday
- Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, 304 Cheatham Hall, Blacksburg, VA, 24061, USA
| | - Sally N Aitken
- Department of Forest and Conservation Sciences, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
13
|
Peng Y, Wei G, Zhang L, Liu G, Wei X, Zhu Z. Comparative transcriptional profiling of three super-hybrid rice combinations. Int J Mol Sci 2014; 15:3799-815. [PMID: 24595241 PMCID: PMC3975368 DOI: 10.3390/ijms15033799] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/15/2022] Open
Abstract
Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs), accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926), respectively, after using the z-test (p < 0.01). Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01) for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs) of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.
Collapse
Affiliation(s)
- Yonggang Peng
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Gang Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lei Zhang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guozhen Liu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China.
| | - Xiaoli Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zhen Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
14
|
Roh KH, Park JS, Kim JB, Kim HU, Lee KR, Kim SH. Gene Expression Profiling of Oilseed Rape Embryos Using Microarray Analysis. ACTA ACUST UNITED AC 2012. [DOI: 10.3839/jabc.2012.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Abstract
Transcriptome analysis using oligonucleotide microarrays is a powerful tool for detecting changes in genome-wide transcripts under a given biological condition. Although the rice genome sequence is available, the number of functionally characterized genes in rice is still very limited. Genome-wide transcriptome analysis is a useful tool for elucidating the functions of rice genes that have not yet been determined. Currently, more than 3,000 arrays are publicly available. Here, we introduce methods for genome-wide transcriptome analysis in rice.
Collapse
|
16
|
Movahedi S, Van Bel M, Heyndrickx KS, Vandepoele K. Comparative co-expression analysis in plant biology. PLANT, CELL & ENVIRONMENT 2012; 35:1787-98. [PMID: 22489681 DOI: 10.1111/j.1365-3040.2012.02517.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The analysis of gene expression data generated by high-throughput microarray transcript profiling experiments has shown that transcriptionally coordinated genes are often functionally related. Based on large-scale expression compendia grouping multiple experiments, this guilt-by-association principle has been applied to study modular gene programmes, identify cis-regulatory elements or predict functions for unknown genes in different model plants. Recently, several studies have demonstrated how, through the integration of gene homology and expression information, correlated gene expression patterns can be compared between species. The incorporation of detailed functional annotations as well as experimental data describing protein-protein interactions, phenotypes or tissue specific expression, provides an invaluable source of information to identify conserved gene modules and translate biological knowledge from model organisms to crops. In this review, we describe the different steps required to systematically compare expression data across species. Apart from the technical challenges to compute and display expression networks from multiple species, some future applications of plant comparative transcriptomics are highlighted.
Collapse
Affiliation(s)
- Sara Movahedi
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
17
|
Identification of potential antisense transcripts in rice using conventional microarray. Mol Biotechnol 2012; 51:37-43. [PMID: 21769472 DOI: 10.1007/s12033-011-9438-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural antisense transcripts (NATs) are endogenous transcripts that contain reverse complementary sequences to other RNAs (usually called sense transcripts). NATs regulate the expression of sense transcripts in a wide range of species. The identification and analysis of NATs are the prerequisite to elucidate their functions. Microarray is a genome-wide method to detect gene expression. However, conventional microarrays do not contain the specific probes of NATs; thus, they cannot be utilized to detect NATs. In this article, we developed a novel method to identify potential NATs with the conventional microarrays. In this method of our study, we labeled the first strand cDNA from one sample with Cy5 and labeled the second strand cDNA from another sample with Cy3, and then hybridized these labeled samples with oligonucleotide microarray. Using this method, we identified 920 potential NATs in rice variety Nipponbare. Among these potential NATs, 88 of them were confirmed by either full-length cDNA or orientated ESTs (expressed sequence tags). This is the first time that a conventional oligonucleotide microarray was employed to identify NATs in rice.
Collapse
|
18
|
Müller M, Patrignani A, Rehrauer H, Gruissem W, Hennig L. Evaluation of alternative RNA labeling protocols for transcript profiling with Arabidopsis AGRONOMICS1 tiling arrays. PLANT METHODS 2012; 8:18. [PMID: 22694760 PMCID: PMC3418198 DOI: 10.1186/1746-4811-8-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 06/13/2012] [Indexed: 05/29/2023]
Abstract
Microarrays are routine tools for transcript profiling, and genomic tiling arrays such as the Arabidopsis AGRONOMICS1 arrays have been found to be highly suitable for such experiments because changes in genome annotation can be easily integrated at the data analysis level. In a transcript profiling experiment, RNA labeling is a critical step, most often initiated by oligo-dT-primed reverse transcription. Although this has been found to be a robust and reliable method, very long transcripts or non-polyadenylated transcripts might be labeled inefficiently. In this study, we first provide data handling methods to analyze AGRONOMICS1 tiling microarrays based on the TAIR10 genome annotation. Second, we describe methods to easily quantify antisense transcripts on such tiling arrays. Third, we test a random-primed RNA labeling method, and find that on AGRONOMICS1 arrays this method has similar general performance as the conventional oligo-dT-primed method. In contrast to the latter, however, the former works considerably better for long transcripts and for non-polyadenylated transcripts such as found in mitochondria and plastids. We propose that researchers interested in organelle function use the random-primed method to unleash the full potential of genomic tiling arrays.
Collapse
Affiliation(s)
- Marlen Müller
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland
| | - Andrea Patrignani
- Functional Genomics Center Zurich, ETH and University of Zurich, CH-8057, Zurich, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich, ETH and University of Zurich, CH-8057, Zurich, Switzerland
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, ETH and University of Zurich, CH-8057, Zurich, Switzerland
| | - Lars Hennig
- Department of Biology, Plant Biotechnology, ETH Zurich, Zurich, Switzerland
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, PO-Box 7080, SE-75007, Uppsala, Sweden
| |
Collapse
|
19
|
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G. Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues. PLANT, CELL & ENVIRONMENT 2012; 35:994-1012. [PMID: 22082487 DOI: 10.1111/j.1365-3040.2011.02467.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
In order to sense and respond to the fluctuating light conditions, higher plants possess several families of photoreceptors, such as phytochromes (PHYs), cryptochromes (CRYs) and phototropins. CRYs are responsible for photomorphogenesis and play a role in circadian, developmental and adaptive growth regulation of plants. In tomato (Solanum lycopersicum), CRY2 controls vegetative development, flowering time, fruit antioxidant content as well as the diurnal transcription of several other photoreceptor genes. We applied large-scale molecular approaches to identify altered transcripts and proteins in tomato wild-type (WT) versus a CRY2 overexpressing transgenic genotype, under a diurnal rhythm. Our results showed that tomato CRY2 profoundly affects both gene and protein expression in response to daily light cycle. Particularly altered molecular pathways are related to biotic/abiotic stress, photosynthesis, including components of the light and dark reactions and of starch and sucrose biosynthesis, as well as to secondary metabolism, such as phenylpropanoid, phenolic and flavonoid/anthocyanin biosynthesis pathways. One of the most interesting results is the coordinated up-regulation, in the transgenic genotype, of a consistent number of transcripts and proteins involved in photorespiration and photosynthesis. It is conceivable that light modulates the energetic metabolism of tomato through a fine CRY2-mediated transcriptional control.
Collapse
Affiliation(s)
- Loredana Lopez
- ENEA, Trisaia Research Center, Rotondella (MT), Italy ENEA, Casaccia Research Center, Rome, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012. [PMID: 22466020 DOI: 10.1007/s10142‐012‐0274‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sharma R, Agarwal P, Ray S, Deveshwar P, Sharma P, Sharma N, Nijhawan A, Jain M, Singh AK, Singh VP, Khurana JP, Tyagi AK, Kapoor S. Expression dynamics of metabolic and regulatory components across stages of panicle and seed development in indica rice. Funct Integr Genomics 2012; 12:229-48. [PMID: 22466020 DOI: 10.1007/s10142-012-0274-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 12/20/2022]
Abstract
Carefully analyzed expression profiles can serve as a valuable reference for deciphering gene functions. We exploited the potential of whole genome microarrays to measure the spatial and temporal expression profiles of rice genes in 19 stages of vegetative and reproductive development. We could verify expression of 22,980 genes in at least one of the tissues. Differential expression analysis with respect to five vegetative tissues and preceding stages of development revealed reproductive stage-preferential/-specific genes. By using subtractive logic, we identified 354 and 456 genes expressing specifically during panicle and seed development, respectively. The metabolic/hormonal pathways and transcription factor families playing key role in reproductive development were elucidated after overlaying the expression data on the public databases and manually curated list of transcription factors, respectively. During floral meristem differentiation (P1) and male meiosis (P3), the genes involved in jasmonic acid and phenylpropanoid biosynthesis were significantly upregulated. P6 stage of panicle, containing mature gametophytes, exhibited enrichment of transcripts involved in homogalacturonon degradation. Genes regulating auxin biosynthesis were induced during early seed development. We validated the stage-specificity of regulatory regions of three panicle-specific genes, OsAGO3, OsSub42, and RTS, and an early seed-specific gene, XYH, in transgenic rice. The data generated here provides a snapshot of the underlying complexity of the gene networks regulating rice reproductive development.
Collapse
Affiliation(s)
- Rita Sharma
- Interdisciplinary Centre for Plant Genomics and Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kyndt T, Denil S, Haegeman A, Trooskens G, De Meyer T, Van Criekinge W, Gheysen G. Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2141-57. [PMID: 22213813 DOI: 10.1093/jxb/err435] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the major physiological dissimilarities between mature root regions and their tips, differences in their gene expression profiles remain largely unexplored. In this research, the transcriptome of rice (Oryza sativa L. subsp. japonica) mature root tissue and root tips was monitored using mRNA-Seq at two time points. Almost 50 million 76 bp reads were mapped onto the rice genome sequence, expression patterns for different tissues and time points were investigated, and at least 1106 novel transcriptionally active regions (nTARs) expressed in rice root tissue were detected. More than 30 000 genes were found to be expressed in rice roots, among which were 1761 root-enriched and 306 tip-enriched transcripts. Mature root tissue appears to respond more strongly to external stimuli than tips, showing a higher expression of, for instance, auxin-responsive and abscisic acid-responsive genes, as well as the phenylpropanoid pathway and photosynthesis upon light. The root tip-enriched transcripts are mainly involved in mitochondrial electron transport, organelle development, secondary metabolism, DNA replication and metabolism, translation, and cellular component organization. During root maturation, genes involved in cell wall biosynthesis and modification, response to oxidative stress, and secondary metabolism were activated. For some nTARs, a potential role in root development can be put forward based on homology to genes involved in CLAVATA signalling, cell cycle regulators, and hormone signalling. A subset of differentially expressed genes and novel transcripts was confirmed using (quantitative) reverse transcription-PCR. These results uncover previously unrecognized tissue-specific expression profiles and provide an interesting starting point to study the different regulation of transcribed regions of these tissues.
Collapse
Affiliation(s)
- Tina Kyndt
- Department of Molecular Biotechnology, Ghent University, Coupure Links 653, Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
23
|
Jiang Y, Cai Z, Xie W, Long T, Yu H, Zhang Q. Rice functional genomics research: progress and implications for crop genetic improvement. Biotechnol Adv 2011; 30:1059-70. [PMID: 21888963 DOI: 10.1016/j.biotechadv.2011.08.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/08/2011] [Accepted: 08/16/2011] [Indexed: 10/17/2022]
Abstract
Rice is a staple food crop and has become a reference of monocot plant for functional genomic research. With the availability of high quality rice genome sequence, there has been rapid accumulation of functional genomic resources, including: large mutant libraries by T-DNA insertion, transposon tagging, and chemical mutagenesis; global expression profiles of the genes in the entire life cycle of rice growth and development; full-length cDNAs for both indica and japonica rice; sequences from resequencing large numbers of diverse germplasm accessions. Such resource development has greatly accelerated gene cloning. By the end of 2010, over 600 genes had been cloned using various methods. Many of the genes control agriculturally useful traits such as yield, grain quality, resistances to biotic and abiotic stresses, and nutrient-use efficiency, thus have potential utility in crop genetic improvement. This review was aimed to provide a comprehensive summary of such progress. We also presented our perspective for future studies.
Collapse
Affiliation(s)
- Yunhe Jiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China.
| | | | | | | | | | | |
Collapse
|
24
|
Movahedi S, Van de Peer Y, Vandepoele K. Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. PLANT PHYSIOLOGY 2011; 156:1316-30. [PMID: 21571672 PMCID: PMC3135928 DOI: 10.1104/pp.111.177865] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Microarray experiments have yielded massive amounts of expression information measured under various conditions for the model species Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa). Expression compendia grouping multiple experiments make it possible to define correlated gene expression patterns within one species and to study how expression has evolved between species. We developed a robust framework to measure expression context conservation (ECC) and found, by analyzing 4,630 pairs of orthologous Arabidopsis and rice genes, that 77% showed conserved coexpression. Examples of nonconserved ECC categories suggested a link between regulatory evolution and environmental adaptations and included genes involved in signal transduction, response to different abiotic stresses, and hormone stimuli. To identify genomic features that influence expression evolution, we analyzed the relationship between ECC, tissue specificity, and protein evolution. Tissue-specific genes showed higher expression conservation compared with broadly expressed genes but were fast evolving at the protein level. No significant correlation was found between protein and expression evolution, implying that both modes of gene evolution are not strongly coupled in plants. By integration of cis-regulatory elements, many ECC conserved genes were significantly enriched for shared DNA motifs, hinting at the conservation of ancestral regulatory interactions in both model species. Surprisingly, for several tissue-specific genes, patterns of concerted network evolution were observed, unveiling conserved coexpression in the absence of conservation of tissue specificity. These findings demonstrate that orthologs inferred through sequence similarity in many cases do not share similar biological functions and highlight the importance of incorporating expression information when comparing genes across species.
Collapse
|
25
|
Abstract
In the canonical version of evolution by gene duplication, one copy is kept unaltered while the other is free to evolve. This process of evolutionary experimentation can persist for millions of years. Since it is so short lived in comparison to the lifetime of the core genes that make up the majority of most genomes, a substantial fraction of the genome and the transcriptome may—in principle—be attributable to what we will refer to as “evolutionary transients”, referring here to both the process and the genes that have gone or are undergoing this process. Using the rice gene set as a test case, we argue that this phenomenon goes a long way towards explaining why there are so many more rice genes than Arabidopsis genes, and why most excess rice genes show low similarity to eudicots.
Collapse
|
26
|
Gan Q, Bai H, Zhao X, Tao Y, Zeng H, Han Y, Song W, Zhu L, Liu G. Transcriptional characteristics of Xa21-mediated defense responses in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:300-311. [PMID: 21324061 DOI: 10.1111/j.1744-7909.2011.01032.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), is the most destructive bacterial disease of rice. The cloned rice gene Xa21 confers resistance to a broad spectrum of Xoo races. To identify genes involved in Xa21-mediated immunity, a whole-genome oligonucleotide microarray of rice was used to profile the expression of rice genes between incompatible interactions and mock treatments at 0, 4, 8, 24, 72 and 120 h post inoculation (hpi) or between incompatible and compatible interactions at 4 hpi, respectively. A total of 441 differentially expressed genes, designated as XDGs (Xa21 mediated differentially expressed genes), were identified. Based on their functional annotations, the XDGs were assigned to 14 categories, including defense-related, signaling, transcriptional regulators. Most of the defense-related genes belonged to the pathogenesis-related gene family, which was induced dramatically at 72 and 120 hpi. Interestingly, most signaling and transcriptional regulator genes were downregulated at 4 and 8 hpi, suggesting that negative regulation of cellular signaling may play a role in the Xa21-mediated defense response. Comparison of expression profiles between Xa21- and other R gene-mediated defense systems revealed interesting common responses. Representative XDGs with supporting evidences were also discussed.
Collapse
Affiliation(s)
- Qiang Gan
- Institute of Genetics and Developmental Biology, the Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu F, Wang D, Zhao X, Zhang T, Sun H, Zhu L, Zhang F, Li L, Li Q, Tao D, Fu B, Li Z. Identification of rhizome-specific genes by genome-wide differential expression analysis in Oryza longistaminata. BMC PLANT BIOLOGY 2011; 11:18. [PMID: 21261937 PMCID: PMC3036607 DOI: 10.1186/1471-2229-11-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 01/24/2011] [Indexed: 05/04/2023]
Abstract
BACKGROUND Rhizomatousness is a key component of perenniality of many grasses that contribute to competitiveness and invasiveness of many noxious grass weeds, but can potentially be used to develop perennial cereal crops for sustainable farmers in hilly areas of tropical Asia. Oryza longistaminata, a perennial wild rice with strong rhizomes, has been used as the model species for genetic and molecular dissection of rhizome development and in breeding efforts to transfer rhizome-related traits into annual rice species. In this study, an effort was taken to get insights into the genes and molecular mechanisms underlying the rhizomatous trait in O. longistaminata by comparative analysis of the genome-wide tissue-specific gene expression patterns of five different tissues of O. longistaminata using the Affymetrix GeneChip Rice Genome Array. RESULTS A total of 2,566 tissue-specific genes were identified in five different tissues of O. longistaminata, including 58 and 61 unique genes that were specifically expressed in the rhizome tips (RT) and internodes (RI), respectively. In addition, 162 genes were up-regulated and 261 genes were down-regulated in RT compared to the shoot tips. Six distinct cis-regulatory elements (CGACG, GCCGCC, GAGAC, AACGG, CATGCA, and TAAAG) were found to be significantly more abundant in the promoter regions of genes differentially expressed in RT than in the promoter regions of genes uniformly expressed in all other tissues. Many of the RT and/or RI specifically or differentially expressed genes were located in the QTL regions associated with rhizome expression, rhizome abundance and rhizome growth-related traits in O. longistaminata and thus are good candidate genes for these QTLs. CONCLUSION The initiation and development of the rhizomatous trait in O. longistaminata are controlled by very complex gene networks involving several plant hormones and regulatory genes, different members of gene families showing tissue specificity and their regulated pathways. Auxin/IAA appears to act as a negative regulator in rhizome development, while GA acts as the activator in rhizome development. Co-localization of the genes specifically expressed in rhizome tips and rhizome internodes with the QTLs for rhizome traits identified a large set of candidate genes for rhizome initiation and development in rice for further confirmation.
Collapse
Affiliation(s)
- Fengyi Hu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Di Wang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Xiuqin Zhao
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Ting Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- College of Life Sciences, Wuhan University, 430072, China
| | - Haixi Sun
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Linghua Zhu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Lijuan Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qiong Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Binying Fu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
| | - Zhikang Li
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan-Cun St., Beijing 100081, China
- International Rice Research Institute, DAPO Box 7777, Metro Manila, the Philippines
| |
Collapse
|
28
|
Narsai R, Castleden I, Whelan J. Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:262. [PMID: 21106056 PMCID: PMC3095337 DOI: 10.1186/1471-2229-10-262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/24/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Arabidopsis thaliana is clearly established as the model plant species. Given the ever-growing demand for food, there is a need to translate the knowledge learned in Arabidopsis to agronomically important species, such as rice (Oryza sativa). To gain a comparative insight into the similarities and differences into how organs are built and how plants respond to stress, the transcriptomes of Arabidopsis and rice were compared at the level of gene orthology and functional categorisation. RESULTS Organ specific transcripts in rice and Arabidopsis display less overlap in terms of gene orthology compared to the orthology observed between both genomes. Although greater overlap in terms of functional classification was observed between root specific transcripts in rice and Arabidopsis, this did not extend to flower, leaf or seed specific transcripts. In contrast, the overall abiotic stress response transcriptome displayed a significantly greater overlap in terms of gene orthology compared to the orthology observed between both genomes. However, ~50% or less of these orthologues responded in a similar manner in both species. In fact, under cold and heat treatments as many or more orthologous genes responded in an opposite manner or were unchanged in one species compared to the other. Examples of transcripts that responded oppositely include several genes encoding proteins involved in stress and redox responses and non-symbiotic hemoglobins that play central roles in stress signalling pathways. The differences observed in the abiotic transcriptomes were mirrored in the presence of cis-acting regulatory elements in the promoter regions of stress responsive genes and the transcription factors that potentially bind these regulatory elements. Thus, both the abiotic transcriptome and its regulation differ between rice and Arabidopsis. CONCLUSIONS These results reveal significant divergence between Arabidopsis and rice, in terms of the abiotic stress response and its regulation. Both plants are shown to employ unique combinations of genes to achieve growth and stress responses. Comparison of these networks provides a more rational approach to translational studies that is based on the response observed in these two diverse plant models.
Collapse
Affiliation(s)
- Reena Narsai
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, MCS Building M316 University of Western Australia
- Centre for Computational Systems Biology, 35 Stirling Highway, Crawley 6009, Western Australia, Australia
| |
Collapse
|
29
|
Sato Y, Antonio BA, Namiki N, Takehisa H, Minami H, Kamatsuki K, Sugimoto K, Shimizu Y, Hirochika H, Nagamura Y. RiceXPro: a platform for monitoring gene expression in japonica rice grown under natural field conditions. Nucleic Acids Res 2010; 39:D1141-8. [PMID: 21045061 PMCID: PMC3013682 DOI: 10.1093/nar/gkq1085] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Elucidating the function of all predicted genes in rice remains as the ultimate goal in cereal genomics in order to ensure the development of improved varieties that will sustain an expanding world population. We constructed a gene expression database (RiceXPro, URL: http://ricexpro.dna.affrc.go.jp/) to provide an overview of the transcriptional changes throughout the growth of the rice plant in the field. RiceXPro contains two data sets corresponding to spatiotemporal gene expression profiles of various organs and tissues, and continuous gene expression profiles of leaf from transplanting to harvesting. A user-friendly web interface enables the extraction of specific gene expression profiles by keyword and chromosome search, and basic data analysis, thereby providing useful information as to the organ/tissue and developmental stage specificity of expression of a particular gene. Analysis tools such as t-test, calculation of fold change and degree of correlation facilitate the comparison of expression profiles between two random samples and the prediction of function of uncharacterized genes. As a repository of expression data encompassing growth in the field, this database can provide baseline information of genes that underlie various agronomically important traits in rice.
Collapse
Affiliation(s)
- Yutaka Sato
- Genome Resource Center, National Institute of Agrobiological Sciences, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W, Huang X, Han B. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res 2010; 20:1238-49. [PMID: 20627892 DOI: 10.1101/gr.106120.110] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The functional complexity of the rice transcriptome is not yet fully elucidated, despite many studies having reported the use of DNA microarrays. Next-generation DNA sequencing technologies provide a powerful approach for mapping and quantifying the transcriptome, termed RNA sequencing (RNA-seq). In this study, we applied RNA-seq to globally sample transcripts of the cultivated rice Oryza sativa indica and japonica subspecies for resolving the whole-genome transcription profiles. We identified 15,708 novel transcriptional active regions (nTARs), of which 51.7% have no homolog to public protein data and >63% are putative single-exon transcripts, which are highly different from protein-coding genes (<20%). We found that approximately 48% of rice genes show alternative splicing patterns, a percentage considerably higher than previous estimations. On the basis of the available rice gene models, 83.1% (46,472 genes) of the current rice gene models were validated by RNA-seq, and 6228 genes were identified to be extended at the 5' and/or 3' ends by at least 50 bp. Comparative transcriptome analysis demonstrated that 3464 genes exhibited differential expression patterns. The ratio of SNPs with nonsynonymous/synonymous mutations was nearly 1:1.06. In total, we interrogated and compared transcriptomes of the two rice subspecies to reveal the overall transcriptional landscape at maximal resolution.
Collapse
Affiliation(s)
- Tingting Lu
- National Center for Gene Research & Institute of Plant Physiology and Ecology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200233, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wei LQ, Xu WY, Deng ZY, Su Z, Xue Y, Wang T. Genome-scale analysis and comparison of gene expression profiles in developing and germinated pollen in Oryza sativa. BMC Genomics 2010; 11:338. [PMID: 20507633 PMCID: PMC2895629 DOI: 10.1186/1471-2164-11-338] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 05/28/2010] [Indexed: 11/24/2022] Open
Abstract
Background Pollen development from the microspore involves a series of coordinated cellular events, and the resulting mature pollen has a specialized function to quickly germinate, produce a polar-growth pollen tube derived from the vegetative cell, and deliver two sperm cells into the embryo sac for double fertilization. The gene expression profiles of developing and germinated pollen have been characterised by use of the eudicot model plant Arabidopsis. Rice, one of the most important cereal crops, has been used as an excellent monocot model. A comprehensive analysis of transcriptome profiles of developing and germinated pollen in rice is important to understand the conserved and diverse mechanism underlying pollen development and germination in eudicots and monocots. Results We used Affymetrix GeneChip® Rice Genome Array to comprehensively analyzed the dynamic changes in the transcriptomes of rice pollen at five sequential developmental stages from microspores to germinated pollen. Among the 51,279 transcripts on the array, we found 25,062 pollen-preferential transcripts, among which 2,203 were development stage-enriched. The diversity of transcripts decreased greatly from microspores to mature and germinated pollen, whereas the number of stage-enriched transcripts displayed a "U-type" change, with the lowest at the bicellular pollen stage; and a transition of overrepresented stage-enriched transcript groups associated with different functional categories, which indicates a shift in gene expression program at the bicellular pollen stage. About 54% of the now-annotated rice F-box protein genes were expressed preferentially in pollen. The transcriptome profile of germinated pollen was significantly and positively correlated with that of mature pollen. Analysis of expression profiles and coexpressed features of the pollen-preferential transcripts related to cell cycle, transcription, the ubiquitin/26S proteasome system, phytohormone signalling, the kinase system and defense/stress response revealed five expression patterns, which are compatible with changes in major cellular events during pollen development and germination. A comparison of pollen transcriptomes between rice and Arabidopsis revealed that 56.6% of the rice pollen preferential genes had homologs in Arabidopsis genome, but 63.4% of these homologs were expressed, with a small proportion being expressed preferentially, in Arabidopsis pollen. Rice and Arabidopsis pollen had non-conservative transcription factors each. Conclusions Our results demonstrated that rice pollen expressed a set of reduced but specific transcripts in comparison with vegetative tissues, and the number of stage-enriched transcripts displayed a "U-type" change during pollen development, with the lowest at the bicellular pollen stage. These features are conserved in rice and Arabidopsis. The shift in gene expression program at the bicellular pollen stage may be important to the transition from earlier cell division to later pollen maturity. Pollen at maturity pre-synthesized transcripts needed for germination and early pollen tube growth. The transcription regulation associated with pollen development would have divergence between the two species. Our results also provide novel insights into the molecular program and key components of the regulatory network regulating pollen development and germination.
Collapse
Affiliation(s)
- Li Q Wei
- Research Center of Molecular and Developmental Biology, Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
32
|
Galbraith DW, Edwards J. Applications of Microarrays for Crop Improvement: Here, There, and Everywhere. Bioscience 2010. [DOI: 10.1525/bio.2010.60.5.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
33
|
Li L, Liu C, Lian X. Gene expression profiles in rice roots under low phosphorus stress. PLANT MOLECULAR BIOLOGY 2010; 72:423-32. [PMID: 19936943 DOI: 10.1007/s11103-009-9580-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 11/16/2009] [Indexed: 05/18/2023]
Abstract
Phosphorus (P), an important plant macronutrient, is a component of key molecules such as nucleic acids, phospholipids and ATP. P is often the limiting nutrient for crop yield potential because of the low concentration of soluble P that can be absorbed directly by plant. Plants have evolved a series of molecular and morphological adaptations to cope with P limitation. However, the molecular bases of these responses to P deficiency have not been thoroughly elucidated. In this report, the gene expression profiles of low-P-tolerant rice Zhongzao 18 (Oryza sativa ssp. Indica) and not-low-P-tolerant rice Lagrue (Oryza sativa ssp. Indica) roots at 6 h, 24 h and 72 h under low P stress were investigated and compared with a control (normal P conditions) profile, using a DNA chip of 60,000 oligos (70 mer) that represented all putative genes of the rice genome. A total of 1,518 and 2,358 genes exhibited alterations in expression in response to low P stress in at least one of the three time points in rice Zhongzao 18 and rice Lagrue, respectively. The differentially expressed genes included those involved in phosphate (Pi) transportation, transportations except for Pi transportation, phosphatase, enzymes other than phosphatase, primary metabolism, secondary metabolism and so on. Several genes involved in glycolysis and TCA cycle were up-regulated during the early stages of low P treatment in rice Zhongzao 18 roots, but not in rice Lagrue roots. The results may provide useful information to further studies of the molecular mechanism of plant adaptation to low P and thus facilitate research in improving P utilization in crop species.
Collapse
Affiliation(s)
- Lihua Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, 430070 Wuhan, China.
| | | | | |
Collapse
|
34
|
Wang L, Xie W, Chen Y, Tang W, Yang J, Ye R, Liu L, Lin Y, Xu C, Xiao J, Zhang Q. A dynamic gene expression atlas covering the entire life cycle of rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:752-66. [PMID: 20003165 DOI: 10.1111/j.1365-313x.2009.04100.x] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth and development of a plant are controlled by programmed expression of suits of genes at the appropriate time, tissue and abundance. Although genomic resources have been developed rapidly in recent years in rice, a model plant for cereal genome research, data of gene expression profiling are still insufficient to relate the developmental processes to transcriptomes, leaving a large gap between the genome sequence and phenotype. In this study, we generated genome-wide expression data by hybridizing 190 Affymetrix GeneChip Rice Genome Arrays with RNA from 39 tissues collected throughout the life cycle of the rice plant from two varieties, Zhenshan 97 and Minghui 63. Analyses of the global transcriptomes revealed many interesting features of dynamic patterns of gene expression across the tissues and stages. In total, 38 793 probe sets were detected as expressed and 69% of the expressed transcripts showed significantly variable expression levels among tissues/organs. We found that similarity of transcriptomes among organs corresponded well to their developmental relatedness. About 5.2% of the expressed transcripts showed tissue-specific expression in one or both varieties and 22.7% of the transcripts exhibited constitutive expression including 19 genes with high and stable expression in all the tissues. This dataset provided a versatile resource for plant genomic research, which can be used for associating the transcriptomes to the developmental processes, understanding the regulatory network of these processes, tracing the expression profile of individual genes and identifying reference genes for quantitative expression analyses.
Collapse
Affiliation(s)
- Lei Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rehrauer H, Aquino C, Gruissem W, Henz SR, Hilson P, Laubinger S, Naouar N, Patrignani A, Rombauts S, Shu H, Van de Peer Y, Vuylsteke M, Weigel D, Zeller G, Hennig L. AGRONOMICS1: a new resource for Arabidopsis transcriptome profiling. PLANT PHYSIOLOGY 2010; 152:487-99. [PMID: 20032078 PMCID: PMC2815891 DOI: 10.1104/pp.109.150185] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 12/17/2009] [Indexed: 05/20/2023]
Abstract
Transcriptome profiling has become a routine tool in biology. For Arabidopsis (Arabidopsis thaliana), the Affymetrix ATH1 expression array is most commonly used, but it lacks about one-third of all annotated genes present in the reference strain. An alternative are tiling arrays, but previous designs have not allowed the simultaneous analysis of both strands on a single array. We introduce AGRONOMICS1, a new Affymetrix Arabidopsis microarray that contains the complete paths of both genome strands, with on average one 25mer probe per 35-bp genome sequence window. In addition, the new AGRONOMICS1 array contains all perfect match probes from the original ATH1 array, allowing for seamless integration of the very large existing ATH1 knowledge base. The AGRONOMICS1 array can be used for diverse functional genomics applications such as reliable expression profiling of more than 30,000 genes, detection of alternative splicing, and chromatin immunoprecipitation coupled to microarrays (ChIP-chip). Here, we describe the design of the array and compare its performance with that of the ATH1 array. We find results from both microarrays to be of similar quality, but AGRONOMICS1 arrays yield robust expression information for many more genes, as expected. Analysis of the ATH1 probes on AGRONOMICS1 arrays produces results that closely mirror those of ATH1 arrays. Finally, the AGRONOMICS1 array is shown to be useful for ChIP-chip experiments. We show that heterochromatic H3K9me2 is strongly confined to the gene body of target genes in euchromatic chromosome regions, suggesting that spreading of heterochromatin is limited outside of pericentromeric regions.
Collapse
|
36
|
Albinsky D, Kusano M, Higuchi M, Hayashi N, Kobayashi M, Fukushima A, Mori M, Ichikawa T, Matsui K, Kuroda H, Horii Y, Tsumoto Y, Sakakibara H, Hirochika H, Matsui M, Saito K. Metabolomic screening applied to rice FOX Arabidopsis lines leads to the identification of a gene-changing nitrogen metabolism. MOLECULAR PLANT 2010; 3:125-42. [PMID: 20085895 DOI: 10.1093/mp/ssp069] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant metabolomics developed as a powerful tool to examine gene functions and to gain deeper insight into the physiology of the plant cell. In this study, we screened Arabidopsis lines overexpressing rice full-length (FL) cDNAs (rice FOX Arabidopsis lines) using a gas chromatography-time-of-flight mass spectrometry (GC-TOF/MS)-based technique to identify rice genes that caused metabolic changes. This screening system allows fast and reliable identification of candidate lines showing altered metabolite profiles. We performed metabolomic and transcriptomic analysis of a rice FOX Arabidopsis line that harbored the FL cDNA of the rice ortholog of the Lateral Organ Boundaries (LOB) Domain (LBD)/Asymmetric Leaves2-like (ASL) gene of Arabidopsis, At-LBD37/ASL39. The investigated rice FOX Arabidopsis line showed prominent changes in the levels of metabolites related to nitrogen metabolism. The transcriptomic data as well as the results from the metabolite analysis of the Arabidopsis At-LBD37/ASL39-overexpressor plants were consistent with these findings. Furthermore, the metabolomic and transcriptomic analysis of the Os-LBD37/ASL39-overexpressing rice plants indicated that Os-LBD37/ASL39 is associated with processes related to nitrogen metabolism in rice. Thus, the combination of a metabolomics-based screening method and a gain-of-function approach is useful for rapid characterization of novel genes in both Arabidopsis and rice.
Collapse
|
37
|
Takano M, Inagaki N, Xie X, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci U S A 2009; 106:14705-10. [PMID: 19706555 PMCID: PMC2732857 DOI: 10.1073/pnas.0907378106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice.
Collapse
Affiliation(s)
- Makoto Takano
- Department of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
38
|
Walia H, Wilson C, Ismail AM, Close TJ, Cui X. Comparing genomic expression patterns across plant species reveals highly diverged transcriptional dynamics in response to salt stress. BMC Genomics 2009; 10:398. [PMID: 19706179 PMCID: PMC2739230 DOI: 10.1186/1471-2164-10-398] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 08/25/2009] [Indexed: 12/02/2022] Open
Abstract
Background Rice and barley are both members of Poaceae (grass family) but have a marked difference in salt tolerance. The molecular mechanism underlying this difference was previously unexplored. This study employs a comparative genomics approach to identify analogous and contrasting gene expression patterns between rice and barley. Results A hierarchical clustering approach identified several interesting expression trajectories among rice and barley genotypes. There were no major conserved expression patterns between the two species in response to salt stress. A wheat salt-stress dataset was queried for comparison with rice and barley. Roughly one-third of the salt-stress responses of barley were conserved with wheat while overlap between wheat and rice was minimal. These results demonstrate that, at transcriptome level, rice is strikingly different compared to the more closely related barley and wheat. This apparent lack of analogous transcriptional programs in response to salt stress is further highlighted through close examination of genes associated with root growth and development. Conclusion The analysis provides support for the hypothesis that conservation of transcriptional signatures in response to environmental cues depends on the genetic similarity among the genotypes within a species, and on the phylogenetic distance between the species.
Collapse
Affiliation(s)
- Harkamal Walia
- Department of Plant Pathology, University of California, Davis, CA, USA.
| | | | | | | | | |
Collapse
|
39
|
Jiang SY, Christoffels A, Ramamoorthy R, Ramachandran S. Expansion mechanisms and functional annotations of hypothetical genes in the rice genome. PLANT PHYSIOLOGY 2009; 150:1997-2008. [PMID: 19535473 PMCID: PMC2719134 DOI: 10.1104/pp.109.139402] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/15/2009] [Indexed: 05/18/2023]
Abstract
In each completely sequenced genome, 30% to 50% of genes are annotated as uncharacterized hypothetical genes. In the rice (Oryza sativa) genome, 10,918 hypothetical genes were annotated in the latest version (release 6) of the Michigan State University rice genome annotation. We have implemented an integrative approach to analyze their duplication/expansion and function. The analyses show that tandem/segmental duplication and transposition/retrotransposition have significantly contributed to the expansion of hypothetical genes despite their different contribution rates. A total of 3,769 hypothetical genes have been detected from retrogene, tandem, segmental, Pack-MULE, or long terminated direct repeat-related duplication/expansion. The nonsynonymous substitutions per site and synonymous substitutions per site analyses showed that 21.65% of them were still functional, accounting for 7.47% of total hypothetical genes. Global expression analyses have identified 1,672 expressed hypothetical genes. Among them, 415 genes might function in a developmental stage-specific manner. Antisense strand expression and small RNA analyses have demonstrated that a high percentage of these hypothetical genes might play important roles in negatively regulating gene expression. Homologous searches against Arabidopsis (Arabidopsis thaliana), maize (Zea mays), sorghum (Sorghum bicolor), and indica rice genomes suggest that most of the hypothetical genes could be annotated from recently evolved genomic sequences. These data advance the understanding of rice hypothetical genes as being involved in lineage-specific expansion and that they function in a specific developmental stage. Our analyses also provide a valuable means to facilitate the characterization and functional annotation of hypothetical genes in other organisms.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Rice Functional Genomics Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | | | | | | |
Collapse
|
40
|
Schreiber AW, Sutton T, Caldo RA, Kalashyan E, Lovell B, Mayo G, Muehlbauer GJ, Druka A, Waugh R, Wise RP, Langridge P, Baumann U. Comparative transcriptomics in the Triticeae. BMC Genomics 2009; 10:285. [PMID: 19558723 PMCID: PMC2717122 DOI: 10.1186/1471-2164-10-285] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring). For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex) using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able to distinguish contributions from individual homoeologs. Furthermore, the comparison between the two species leads us to conclude that the conservation of both gene sequence as well as gene expression is positively correlated with absolute expression levels, presumably reflecting increased selection pressure on genes coding for proteins present at high levels. In addition, the results indicate the presence of a correlation between sequence and expression conservation within the Triticeae.
Collapse
Affiliation(s)
- Andreas W Schreiber
- Australian Centre for Plant Functional Genomics, Univ of Adelaide, PMB 1 Glen Osmond, SA 5064, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wang X, Haberer G, Mayer KFX. Discovery of cis-elements between sorghum and rice using co-expression and evolutionary conservation. BMC Genomics 2009; 10:284. [PMID: 19558665 PMCID: PMC2714861 DOI: 10.1186/1471-2164-10-284] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 06/26/2009] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND The spatiotemporal regulation of gene expression largely depends on the presence and absence of cis-regulatory sites in the promoter. In the economically highly important grass family, our knowledge of transcription factor binding sites and transcriptional networks is still very limited. With the completion of the sorghum genome and the available rice genome sequence, comparative promoter analyses now allow genome-scale detection of conserved cis-elements. RESULTS In this study, we identified thousands of phylogenetic footprints conserved between orthologous rice and sorghum upstream regions that are supported by co-expression information derived from three different rice expression data sets. In a complementary approach, cis-motifs were discovered by their highly conserved co-occurrence in syntenic promoter pairs. Sequence conservation and matches to known plant motifs support our findings. Expression similarities of gene pairs positively correlate with the number of motifs that are shared by gene pairs and corroborate the importance of similar promoter architectures for concerted regulation. This strongly suggests that these motifs function in the regulation of transcript levels in rice and, presumably also in sorghum. CONCLUSION Our work provides the first large-scale collection of cis-elements for rice and sorghum and can serve as a paradigm for cis-element analysis through comparative genomics in grasses in general.
Collapse
Affiliation(s)
- Xi Wang
- MIPS/IBIS Institute of Bioinformatics and System Biology, Helmholtz Center Munich, Neuherberg, Germany.
| | | | | |
Collapse
|
42
|
A transcriptomic analysis of superhybrid rice LYP9 and its parents. Proc Natl Acad Sci U S A 2009; 106:7695-701. [PMID: 19372371 DOI: 10.1073/pnas.0902340106] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
By using a whole-genome oligonucleotide microarray, designed based on known and predicted indica rice genes, we investigated transcriptome profiles in developing leaves and panicles of superhybrid rice LYP9 and its parental cultivars 93-11 and PA64s. We detected 22,266 expressed genes out of 36,926 total genes set collectively from 7 tissues, including leaves at seedling and tillering stages, flag leaves at booting, heading, flowering, and filling stages, and panicles at filling stage. Clustering results showed that the F1 hybrid's expression profiles resembled those of its parental lines more than that which lies between the 2 parental lines. Out of the total gene set, 7,078 genes are shared by all sampled tissues and 3,926 genes (10.6% of the total gene set) are differentially expressed genes (DG). As we divided DG into those between the parents (DG(PP)) and between the hybrid and its parents (DG(HP)), the comparative results showed that genes in the categories of energy metabolism and transport are enriched in DG(HP) rather than in DG(PP). In addition, we correlated the concurrence of DG and yield-related quantitative trait loci, providing a potential group of heterosis-related genes.
Collapse
|
43
|
Abstract
Despite recent elucidation of the three-dimensional structure of major photosynthetic complexes, our understanding of light energy conversion in plant chloroplasts and microalgae under physiological conditions requires exploring the dynamics of photosynthesis. The photosynthetic apparatus is a flexible molecular machine that can acclimate to metabolic and light fluctuations in a matter of seconds and minutes. On a longer time scale, changes in environmental cues trigger acclimation responses that elicit intracellular signaling between the nucleo-cytosol and chloroplast resulting in modification of the biogenesis of the photosynthetic machinery. Here we attempt to integrate well-established knowledge on the functional flexibility of light-harvesting and electron transfer processes, which has greatly benefited from genetic approaches, with data derived from the wealth of recent transcriptomic and proteomic studies of acclimation responses in photosynthetic eukaroytes.
Collapse
Affiliation(s)
- Stephan Eberhard
- Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, F-75005 Paris, France
| | | | | |
Collapse
|
44
|
A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 2009; 41:258-63. [PMID: 19122662 DOI: 10.1038/ng.282] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 10/17/2008] [Indexed: 11/09/2022]
Abstract
The functions of the plant body rely on interactions among distinct and nonequivalent cell types. The comparison of transcriptomes from different cell types should expose the transcriptional networks that underlie cellular attributes and contributions. Using laser microdissection and microarray profiling, we have produced a cell type transcriptome atlas that includes 40 cell types from rice (Oryza sativa) shoot, root and germinating seed at several developmental stages, providing patterns of cell specificity for individual genes and gene classes. Cell type comparisons uncovered previously unrecognized properties, including cell-specific promoter motifs and coexpressed cognate binding factor candidates, interaction partner candidates and hormone response centers. We inferred developmental regulatory hierarchies of gene expression in specific cell types by comparison of several stages within root, shoot and embryo.
Collapse
|
45
|
Berger J. [A place in tears]. ASSISTENZA INFERMIERISTICA E RICERCA : AIR 2009; 28:44-46. [PMID: 19462701 DOI: 10.1007/s12284-008-9020-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 11/04/2008] [Indexed: 05/27/2023]
Abstract
Abstract
Alternative splicing creates a diversity of gene products in higher eukaryotes. Twenty-five percent (1,583/6,371) of predicted alternatively spliced transcripts can be detected using the NSF45K rice whole-genome oligonucleotide array. We used the NSF45K array to assess differential expression patterns of 507 loci showing at least a twofold change in expression between light- and dark-grown seedlings. At least 42% of these loci show evidence of alternative splicing in aerial seedling tissue of Oryza sativa ssp. japonica cv. Nipponbare. Most alternative splice forms display the same pattern of regulation as the primary, or most highly expressed, transcript; however, splice forms for ten loci, represented by 35 oligos, display opposite expression patterns in the light vs. dark. We found similar evidence of alternative splicing events in Affymetrix microarray data for Nipponbare rice treated with the causative agent of fungal rice blast, Magnaporthe grisea. This strategy for analyzing alternative splicing in microarray data will enable delineation of the diversity of splicing in rice.
Collapse
|
46
|
Paterson AH, Bowers JE, Feltus FA, Tang H, Lin L, Wang X. Comparative genomics of grasses promises a bountiful harvest. PLANT PHYSIOLOGY 2009; 149:125-31. [PMID: 19126703 PMCID: PMC2613718 DOI: 10.1104/pp.108.129262] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 11/05/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Peng ZY, Zhang H, Liu T, Dzikiewicz KM, Li S, Wang X, Hu G, Zhu Z, Wei X, Zhu QH, Sun Z, Ge S, Ma L, Li L, Deng XW. Characterization of the genome expression trends in the heading-stage panicle of six rice lineages. Genomics 2008; 93:169-78. [PMID: 18996467 DOI: 10.1016/j.ygeno.2008.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/24/2008] [Accepted: 10/07/2008] [Indexed: 11/18/2022]
Abstract
To study how changes in gene regulation shape phenotypic variations in rice, we performed a comparative analysis of genome expression in the heading-stage panicle from six lineages of cultivated and wild rice, including Oryza sativa subsp. indica, japonica and javanica, O. nivara , O. rufipogon and O. glaberrima. While nearly three-quarters of the genes are expressed at a constant level in all six lineages, a large portion of the genome, ranging from 1767 to 4489 genes, exhibited differential expression between Asian domesticated and wild rice with repression or down-regulation of genome expression in Asian cultivated rice as the dominant trend. Importantly, we found this repression was achieved to a large extent by the differential expression of a single member of paralogous gene families. Functional analysis of the differentially expressed genes revealed that genes related to catabolism are repressed while genes related to anabolism up-regulated. Finally, we observed that distinct evolutionary forces may have acted on gene expression and the coding sequences in the examined rice lineages.
Collapse
Affiliation(s)
- Zhi-Yu Peng
- Peking-Yale Joint Center of Plant Molecular Genetics and Agrobiotechnology, College of Life Sciences, Peking University, Beijing 100871, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jung KH, Dardick C, Bartley LE, Cao P, Phetsom J, Canlas P, Seo YS, Shultz M, Ouyang S, Yuan Q, Frank BC, Ly E, Zheng L, Jia Y, Hsia AP, An K, Chou HH, Rocke D, Lee GC, Schnable PS, An G, Buell CR, Ronald PC. Refinement of light-responsive transcript lists using rice oligonucleotide arrays: evaluation of gene-redundancy. PLoS One 2008; 3:e3337. [PMID: 18836531 PMCID: PMC2556097 DOI: 10.1371/journal.pone.0003337] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 09/11/2008] [Indexed: 01/04/2023] Open
Abstract
Studies of gene function are often hampered by gene-redundancy, especially in organisms with large genomes such as rice (Oryza sativa). We present an approach for using transcriptomics data to focus functional studies and address redundancy. To this end, we have constructed and validated an inexpensive and publicly available rice oligonucleotide near-whole genome array, called the rice NSF45K array. We generated expression profiles for light- vs. dark-grown rice leaf tissue and validated the biological significance of the data by analyzing sources of variation and confirming expression trends with reverse transcription polymerase chain reaction. We examined trends in the data by evaluating enrichment of gene ontology terms at multiple false discovery rate thresholds. To compare data generated with the NSF45K array with published results, we developed publicly available, web-based tools (www.ricearray.org). The Oligo and EST Anatomy Viewer enables visualization of EST-based expression profiling data for all genes on the array. The Rice Multi-platform Microarray Search Tool facilitates comparison of gene expression profiles across multiple rice microarray platforms. Finally, we incorporated gene expression and biochemical pathway data to reduce the number of candidate gene products putatively participating in the eight steps of the photorespiration pathway from 52 to 10, based on expression levels of putatively functionally redundant genes. We confirmed the efficacy of this method to cope with redundancy by correctly predicting participation in photorespiration of a gene with five paralogs. Applying these methods will accelerate rice functional genomics.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Christopher Dardick
- Appalachian Fruit Research Station, USDA-ARS, Kearneysville, West Virginia, United States of America
| | - Laura E. Bartley
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Michael Shultz
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shu Ouyang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Qiaoping Yuan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bryan C. Frank
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Eugene Ly
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Li Zheng
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yi Jia
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - An-Ping Hsia
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Kyungsook An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hui-Hsien Chou
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - David Rocke
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Geun Cheol Lee
- College of Business Administration, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Patrick S. Schnable
- Center for Plant Genomics, Iowa State University, Ames, Iowa, United States of America
| | - Gynheung An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - C. Robin Buell
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
49
|
Zhang HY, He H, Chen LB, Li L, Liang MZ, Wang XF, Liu XG, He GM, Chen RS, Ma LG, Deng XW. A genome-wide transcription analysis reveals a close correlation of promoter INDEL polymorphism and heterotic gene expression in rice hybrids. MOLECULAR PLANT 2008; 1:720-31. [PMID: 19825576 DOI: 10.1093/mp/ssn022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heterosis, or hybrid vigor, refers to the phenomenon in which hybrid progeny of two inbred varieties exhibits enhanced growth or agronomic performance. Although a century-long history of research has generated several hypotheses regarding the genetic basis of heterosis, the molecular mechanisms underlying heterosis and heterotic gene expression remain elusive. Here, we report a genome-wide gene expression analysis of two heterotic crosses in rice, taking advantage of its fully sequenced genomes. Approximately 7-9% of the genes were differentially expressed in the seedling shoots from two sets of heterotic crosses, including many transcription factor genes, and exhibited multiple modes of gene action. Comparison of the putative promoter regions of the ortholog genes between inbred parents revealed extensive sequence variation, particularly small insertions/deletions (INDELs), many of which result in the formation/disruption of putative cis-regulatory elements. Together, these results suggest that a combinatorial interplay between expression of transcription factors and polymorphic promoter cis-regulatory elements in the hybrids is one plausible molecular mechanism underlying heterotic gene action and thus heterosis in rice.
Collapse
Affiliation(s)
- Hui-Yong Zhang
- National Institute of Biological Sciences, Zhongguancun Life Science Park, Beijing 102206, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Jung KH, Lee J, Dardick C, Seo YS, Cao P, Canlas P, Phetsom J, Xu X, Ouyang S, An K, Cho YJ, Lee GC, Lee Y, An G, Ronald PC. Identification and functional analysis of light-responsive unique genes and gene family members in rice. PLoS Genet 2008; 4:e1000164. [PMID: 18725934 PMCID: PMC2515340 DOI: 10.1371/journal.pgen.1000164] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 07/15/2008] [Indexed: 12/29/2022] Open
Abstract
Functional redundancy limits detailed analysis of genes in many organisms. Here, we report a method to efficiently overcome this obstacle by combining gene expression data with analysis of gene-indexed mutants. Using a rice NSF45K oligo-microarray to compare 2-week-old light- and dark-grown rice leaf tissue, we identified 365 genes that showed significant 8-fold or greater induction in the light relative to dark conditions. We then screened collections of rice T-DNA insertional mutants to identify rice lines with mutations in the strongly light-induced genes. From this analysis, we identified 74 different lines comprising two independent mutant lines for each of 37 light-induced genes. This list was further refined by mining gene expression data to exclude genes that had potential functional redundancy due to co-expressed family members (12 genes) and genes that had inconsistent light responses across other publicly available microarray datasets (five genes). We next characterized the phenotypes of rice lines carrying mutations in ten of the remaining candidate genes and then carried out co-expression analysis associated with these genes. This analysis effectively provided candidate functions for two genes of previously unknown function and for one gene not directly linked to the tested biochemical pathways. These data demonstrate the efficiency of combining gene family-based expression profiles with analyses of insertional mutants to identify novel genes and their functions, even among members of multi-gene families.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jinwon Lee
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chris Dardick
- The Appalachian Fruit Research Station, USDA-ARS, Kearneysville, West Virginia, United States of America
| | - Young-Su Seo
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Peijian Cao
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Patrick Canlas
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Jirapa Phetsom
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Xia Xu
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| | - Shu Ouyang
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kyungsook An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yun-Ja Cho
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Geun-Cheol Lee
- College of Business Administration, Konkuk University, Gwangjin-gu, Seoul, Republic of Korea
| | - Yoosook Lee
- School of Veterinary Medicine, Department of Pathology, Immunology and Microbiology, University of California Davis, Davis, California, United States of America
| | - Gynheung An
- Functional Genomic Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Pamela C. Ronald
- Department of Plant Pathology, University of California Davis, Davis, California, United States of America
| |
Collapse
|