1
|
Yang X, Li Q, Wang Y, Wang J, Hu J, Ji Z, Chao T. Research Progress on Genomic Regions and Candidate Genes Related to Milk Composition Traits of Dairy Goats Based on Functional Genomics: A Narrative Review. Genes (Basel) 2024; 15:1341. [PMID: 39457465 PMCID: PMC11507656 DOI: 10.3390/genes15101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Goat milk has gained global attention for its unique nutritional properties and potential health benefits. Advancements in functional genomic technologies have significantly progressed genetic research on milk composition traits in dairy goats. RESULTS This review summarizes various research methodologies applied in this field. Genome-wide association studies (GWAS) have identified genomic regions associated with major milk components, with the diacylglycerol acyltransferase 1 (DGAT1) gene and casein gene cluster consistently linked to milk composition traits. Transcriptomics has revealed gene expression patterns in mammary tissue across lactation stages, while the role of non-coding RNAs (such as miRNAs and circRNAs) in regulating milk composition has been confirmed. Proteomic and metabolomic studies have not only helped us gain a more comprehensive understanding of goat milk composition characteristics but have also provided crucial support for the functional validation of genes related to milk components. The integration of multi-omics data has emerged as an effective strategy for elucidating complex regulatory networks from a systems biology perspective. CONCLUSIONS Despite progress, challenges remain, including refining reference genomes, collecting large-scale phenotypic data, and conducting functional validations. Future research should focus on improving reference genomes, expanding study populations, investigating functional milk components, exploring epigenetic regulation and non-coding RNAs, and studying microbiome-host genome interactions. These efforts will inform more precise genomic and marker-assisted selection strategies, advancing genetic improvements in milk composition traits in dairy goats.
Collapse
Affiliation(s)
- Xu Yang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Qing Li
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Yanyan Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Jianmin Wang
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Jiaqing Hu
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Zhibin Ji
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| | - Tianle Chao
- Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China; (X.Y.); (Q.L.); (Y.W.); (J.W.); (J.H.); (Z.J.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271014, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, Tai’an 271014, China
| |
Collapse
|
2
|
Benítez-Burraco A, Uriagereka J, Nataf S. The genomic landscape of mammal domestication might be orchestrated by selected transcription factors regulating brain and craniofacial development. Dev Genes Evol 2023; 233:123-135. [PMID: 37552321 PMCID: PMC10746608 DOI: 10.1007/s00427-023-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
Domestication transforms once wild animals into tamed animals that can be then exploited by humans. The process entails modifications in the body, cognition, and behavior that are essentially driven by differences in gene expression patterns. Although genetic and epigenetic mechanisms were shown to underlie such differences, less is known about the role exerted by trans-regulatory molecules, notably transcription factors (TFs) in domestication. In this paper, we conducted extensive in silico analyses aimed to clarify the TF landscape of mammal domestication. We first searched the literature, so as to establish a large list of genes selected with domestication in mammals. From this list, we selected genes experimentally demonstrated to exhibit TF functions. We also considered TFs displaying a statistically significant number of targets among the entire list of (domestication) selected genes. This workflow allowed us to identify 5 candidate TFs (SOX2, KLF4, MITF, NR3C1, NR3C2) that were further assessed in terms of biochemical and functional properties. We found that such TFs-of-interest related to mammal domestication are all significantly involved in the development of the brain and the craniofacial region, as well as the immune response and lipid metabolism. A ranking strategy, essentially based on a survey of protein-protein interactions datasets, allowed us to identify SOX2 as the main candidate TF involved in domestication-associated evolutionary changes. These findings should help to clarify the molecular mechanics of domestication and are of interest for future studies aimed to understand the behavioral and cognitive changes associated to domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain.
- Área de Lingüística General, Departamento de Lengua Española, Lingüística y Teoría de la Literatura, Facultad de Filología, Universidad de Sevilla, C/ Palos de la Frontera s/n., 41007-, Sevilla, España.
| | - Juan Uriagereka
- Department of Linguistics and School of Languages, Literatures & Cultures, University of Maryland, College Park, MD, USA
| | - Serge Nataf
- Stem-cell and Brain Research Institute, 18 avenue de Doyen Lépine, F-69500, Bron, France
- University of Lyon 1, 43 Bd du 11 Novembre 1918, F-69100, Villeurbanne, France
- Bank of Tissues and Cells, Hospices Civils de Lyon, Hôpital Edouard Herriot, Place d'Arsonval, F-69003, Lyon, France
| |
Collapse
|
3
|
Koller D, Benítez-Burraco A, Polimanti R. Enrichment of self-domestication and neural crest function loci in the heritability of neurodevelopmental disorders. Hum Genet 2023; 142:1271-1279. [PMID: 36930228 PMCID: PMC10472204 DOI: 10.1007/s00439-023-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Self-domestication could contribute to shaping the biology of human brain and consequently the predisposition to neurodevelopmental disorders. Leveraging genome-wide data from the Psychiatric Genomics Consortium, we tested the enrichment of self-domestication and neural crest function loci with respect to the heritability of autism spectrum disorder, schizophrenia (SCZ in East Asian and European ancestries, EAS and EUR, respectively), attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome (TS). Considering only self-domestication and neural-crest-function annotations in the linkage disequilibrium score regression (LDSC) model, our partitioned heritability analysis revealed statistically significant enrichments across all disorders investigated. The estimates of the heritability enrichments for self-domestication loci were similar across neurodevelopmental disorders, ranging from 0.902 (EAS SCZ, p = 4.55 × 10-20) to 1.577 (TS, p = 5.85 × 10-5). Conversely, a wider spectrum of heritability enrichment estimates was present for neural crest function with the highest enrichment observed for TS (enrichment = 3.453, p = 2.88 × 10-3) and the lowest for EAS SCZ (enrichment = 1.971, p = 3.81 × 10-3). Although these estimates appear to be strong, the enrichments for self-domestication and neural crest function were null once we included additional annotations related to different genomic features. This indicates that the effect of self-domestication on the polygenic architecture of neurodevelopmental disorders is not independent of other functions of human genome.
Collapse
Affiliation(s)
- Dora Koller
- Department of Psychiatry, Yale School of Medicine, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, 06516, USA
- VA CT Healthcare Center, West Haven, CT, 06516, USA
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, 08028, Barcelona, Catalonia, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, 41004, Seville, Spain
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, VA CT 116A2, 950 Campbell Avenue, West Haven, CT, 06516, USA.
- VA CT Healthcare Center, West Haven, CT, 06516, USA.
| |
Collapse
|
4
|
Melzer N, Qanbari S, Ding X, Wittenburg D. CLARITY: a Shiny app for interactive visualisation of the bovine physical-genetic map. Front Genet 2023; 14:1082782. [PMID: 37323679 PMCID: PMC10267868 DOI: 10.3389/fgene.2023.1082782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
The arrangement of markers on the genome can be defined in either physical or linkage terms. While a physical map represents the inter-marker distances in base pairs, a genetic (or linkage) map pictures the recombination rate between pairs of markers. High-resolution genetic maps are key elements for genomic research, such as fine-mapping of quantitative trait loci, but they are also needed for creating and updating chromosome-level assemblies of whole-genome sequences. Based on published results on a large pedigree of German Holstein cattle and newly obtained results with German/Austrian Fleckvieh cattle, we aim at providing a platform that allows users to interactively explore the bovine genetic and physical map. We developed the R Shiny app CLARITY available online at https://nmelzer.shinyapps.io/clarity and as R package at https://github.com/nmelzer/CLARITY that provides access to the genetic maps built on the Illumina Bovine SNP50 genotyping array with markers ordered according to the physical coordinates of the most recent bovine genome assembly ARS-UCD1.2. The user is able to interconnect the physical and genetic map for a whole chromosome or a specific chromosomal region and can inspect a landscape of recombination hotspots. Moreover, the user can investigate which of the frequently used genetic-map functions locally fits best. We further provide auxiliary information about markers being putatively misplaced in the ARS-UCD1.2 release. The corresponding output tables and figures can be downloaded in various formats. By ongoing data integration from different breeds, the app also facilitates comparison of different genome features, providing a valuable tool for education and research purposes.
Collapse
|
5
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
6
|
Qanbari S, Schnabel RD, Wittenburg D. Evidence of rare misassemblies in the bovine reference genome revealed by population genetic metrics. Anim Genet 2022; 53:498-505. [DOI: 10.1111/age.13205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Saber Qanbari
- Research Institute for Farm Animal Biology (FBN) Institute of Genetics and Biometry Dummerstorf Germany
| | - Robert D. Schnabel
- Division of Animal Sciences Institute for Data Science and Informatics 162 Animal Science Research Center University of Missouri Columbia Missouri USA
| | - Dörte Wittenburg
- Research Institute for Farm Animal Biology (FBN) Institute of Genetics and Biometry Dummerstorf Germany
| |
Collapse
|
7
|
Niego A, Benítez-Burraco A. Are feralization and domestication truly mirror processes? ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1975314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Amy Niego
- PhD Program, Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain
| | - Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, C/Palos de la Frontera s/n, 41004 Sevilla, Spain (E-mail: )
| |
Collapse
|
8
|
Benítez-Burraco A, Chekalin E, Bruskin S, Tatarinova T, Morozova I. Recent selection of candidate genes for mammal domestication in Europeans and language change in Europe: a hypothesis. Ann Hum Biol 2021; 48:313-320. [PMID: 34241552 DOI: 10.1080/03014460.2021.1936634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND AND AIM Human evolution resulted from changes in our biology, behaviour, and culture. One source of these changes has been hypothesised to be our self-domestication (that is, the development in humans of features commonly found in domesticated strains of mammals, seemingly as a result of selection for reduced aggression). Signals of domestication, notably brain size reduction, have increased in recent times. METHODS In this paper, we compare whole-genome data between the Late Neolithic/Bronze Age individuals and modern Europeans. RESULTS We show that genes associated with mammal domestication and with neural crest development and function are significantly differently enriched in nonsynonymous single nucleotide polymorphisms between these two groups. CONCLUSION We hypothesise that these changes might account for the increased features of self-domestication in modern humans and, ultimately, for subtle recent changes in human cognition and behaviour, including language.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature, Faculty of Philology, University of Seville, Seville, Spain
| | - Evgeny Chekalin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Sergey Bruskin
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Tatarinova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Department of Biology, University of La Verne, La Verne, CA, USA.,A. A. Kharkevich Institute for Information Transmission Problems, Moscow, Russia.,Department of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk, Russia
| | - Irina Morozova
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
El-Khishin DA, Ageez A, Saad ME, Ibrahim A, Shokrof M, Hassan LR, Abouelhoda MI. Sequencing and assembly of the Egyptian buffalo genome. PLoS One 2020; 15:e0237087. [PMID: 32813723 PMCID: PMC7437910 DOI: 10.1371/journal.pone.0237087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 07/20/2020] [Indexed: 01/09/2023] Open
Abstract
Water buffalo (Bubalus bubalis) is an important source of meat and milk in countries with relatively warm weather. Compared to the cattle genome, a little has been done to reveal its genome structure and genomic traits. This is due to the complications stemming from the large genome size, the complexity of the genome, and the high repetitive content. In this paper, we introduce a high-quality draft assembly of the Egyptian water buffalo genome. The Egyptian breed is used as a dual purpose animal (milk/meat). It is distinguished by its adaptability to the local environment, quality of feed changes, as well as its high resistance to diseases. The genome assembly of the Egyptian water buffalo has been achieved using a reference-based assembly workflow. Our workflow significantly reduced the computational complexity of the assembly process, and improved the assembly quality by integrating different public resources. We also compared our assembly to the currently available draft assemblies of water buffalo breeds. A total of 21,128 genes were identified in the produced assembly. A list of milk virgin-related genes; milk pregnancy-related genes; milk lactation-related genes; milk involution-related genes; and milk mastitis-related genes were identified in the assembly. Our results will significantly contribute to a better understanding of the genetics of the Egyptian water buffalo which will eventually support the ongoing breeding efforts and facilitate the future discovery of genes responsible for complex processes of dairy, meat production and disease resistance among other significant traits.
Collapse
Affiliation(s)
- Dina A. El-Khishin
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- * E-mail:
| | - Amr Ageez
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Faculty of Biotechnology, MSA University, October City, Egypt
| | - Mohamed E. Saad
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
- Department of Biology, Taibah University, Almadinah Almonawarah, KSA
| | - Amr Ibrahim
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Moustafa Shokrof
- Centre for Informatics Sciences, Nile University Giza, October city, Egypt
- Department of Computer Science, University of California at Davis, Davis, CA, United States of America
| | - Laila R. Hassan
- Animal Production Research Institute, Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Mohamed I. Abouelhoda
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
11
|
Bickhart DM, McClure JC, Schnabel RD, Rosen BD, Medrano JF, Smith TPL. Symposium review: Advances in sequencing technology herald a new frontier in cattle genomics and genome-enabled selection. J Dairy Sci 2020; 103:5278-5290. [PMID: 32331872 DOI: 10.3168/jds.2019-17693] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/03/2019] [Indexed: 11/19/2022]
Abstract
The cattle reference genome assembly has underpinned major innovations in beef and dairy genetics through genome-enabled selection, including removal of deleterious recessive variants and selection for favorable alleles affecting quantitative production traits. The initial reference assemblies, up to and including UMD3.1 and Btau4.1, were based on a combination of clone-by-clone sequencing of bacterial artificial chromosome clones generated from blood DNA of a Hereford bull and whole-genome shotgun sequencing of blood DNA from his inbred daughter/granddaughter named L1 Dominette 01449 (Dominette). The approach introduced assembly gaps, misassemblies, and errors, and it limited the ability to assemble regions that undergo rearrangement in blood cells, such as immune gene clusters. Nonetheless, the reference supported the creation of genotyping tools and provided a basis for many studies of gene expression. Recently, long-read sequencing technologies have emerged that facilitated a re-assembly of the reference genome, using lung tissue from Dominette to resolve many of the problems and providing a bridge to place historical studies in common context. The new reference, ARS-UCD1.2, successfully assembled germline immune gene clusters and improved overall continuity (i.e., reduction of gaps and inversions) by over 250-fold. This reference properly places nearly all of the legacy genetic markers used for over a decade in the industry. In this review, we discuss the improvements made to the cattle reference; remaining issues present in the assembly; tools developed to support genome-based studies in beef and dairy cattle; and the emergence of newer genome assembly methods that are producing even higher-quality assemblies for other breeds of cattle at a fraction of the cost. The new frontier for cattle genomics research will likely include a transition from the individual Hereford reference genome, to a "pan-genome" reference, representing all the DNA segments existing in commonly used cattle breeds, bringing the cattle reference into line with the current direction of human genome research.
Collapse
Affiliation(s)
- D M Bickhart
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705.
| | - J C McClure
- US Dairy Forage Research Center, Agricultural Research Service, USDA, Madison, WI 53705
| | - R D Schnabel
- Division of Animal Sciences, University of Missouri, Columbia, 65211; MU Institute for Data Science and Informatics, University of Missouri, Columbia, 65211
| | - B D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service, USDA, Beltsville, MD 20705
| | - J F Medrano
- Department of Animal Science, University of California Davis, 95616
| | - T P L Smith
- Meat Animal Research Center, Agricultural Research Service, USDA, Clay Center, NE 68933
| |
Collapse
|
12
|
Whole genome detection of sequence and structural polymorphism in six diverse horses. PLoS One 2020; 15:e0230899. [PMID: 32271776 PMCID: PMC7144971 DOI: 10.1371/journal.pone.0230899] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/12/2020] [Indexed: 12/30/2022] Open
Abstract
The domesticated horse has played a unique role in human history, serving not just as a source of animal protein, but also as a catalyst for long-distance migration and military conquest. As a result, the horse developed unique physiological adaptations to meet the demands of both their climatic environment and their relationship with man. Completed in 2009, the first domesticated horse reference genome assembly (EquCab 2.0) produced most of the publicly available genetic variations annotations in this species. Yet, there are around 400 geographically and physiologically diverse breeds of horse. To enrich the current collection of genetic variants in the horse, we sequenced whole genomes from six horses of six different breeds: an American Miniature, a Percheron, an Arabian, a Mangalarga Marchador, a Native Mongolian Chakouyi, and a Tennessee Walking Horse, and mapped them to EquCab3.0 genome. Aside from extreme contrasts in body size, these breeds originate from diverse global locations and each possess unique adaptive physiology. A total of 1.3 billion reads were generated for the six horses with coverage between 15x to 24x per horse. After applying rigorous filtration, we identified and functionally annotated 17,514,723 Single Nucleotide Polymorphisms (SNPs), and 1,923,693 Insertions/Deletions (INDELs), as well as an average of 1,540 Copy Number Variations (CNVs) and 3,321 Structural Variations (SVs) per horse. Our results revealed putative functional variants including genes associated with size variation like LCORL gene (found in all horses), ZFAT in the Arabian, American Miniature and Percheron horses and ANKRD1 in the Native Mongolian Chakouyi horse. We detected a copy number variation in the Latherin gene that may be the result of evolutionary selection impacting thermoregulation by sweating, an important component of athleticism and heat tolerance. The newly discovered variants were formatted into user-friendly browser tracks and will provide a foundational database for future studies of the genetic underpinnings of diverse phenotypes within the horse. The domesticated horse played a unique role in human history, serving not just as a source of dietary animal protein, but also as a catalyst for long-distance migration and military conquest. As a result, the horse developed unique physiological adaptations to meet the demands of both their climatic environment and their relationship with man. Although the completion of the horse reference genome allowed for the discovery of many genetic variants, the remarkable diversity across breeds of horse calls for additional effort to quantify the complete span of genetic polymorphism within this unique species. In this work, we present genome re-sequencing and variant detection analysis for six horses belonging to six different breeds representing different morphology, origins and vary in their physiological demands and response. We identified and annotated not just single nucleotide polymorphisms (SNPs), but also insertions and deletions (INDELs), copy number variations (CNVs) and structural variations (SVs). Our results illustrate novel sources of polymorphism and highlight potentially impactful variations for phenotypes of body size and conformation. We also detected a copy number loss in the Latherin gene that could be the result of an evolutionary selection affecting thermoregulation through sweating. Our newly discovered variants were formatted into easy-to-use tracks that can be easily accessed by researchers around the globe.
Collapse
|
13
|
Benítez-Burraco A. Genes Positively Selected in Domesticated Mammals Are Significantly Dysregulated in the Blood of Individuals with Autism Spectrum Disorders. Mol Syndromol 2020; 10:306-312. [PMID: 32021604 PMCID: PMC6995977 DOI: 10.1159/000505116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/27/2022] Open
Abstract
Human self-domestication (i.e., the presence of traits in our species that are commonly found in domesticated animals) has been hypothesized to have contributed to the emergence of many human-specific features, including aspects of our cognition and behavior. Signs of self-domestication have been claimed to be attenuated in individuals with autism spectrum disorders (ASD), this conceivably accounting for facets of their distinctive cognitive and behavioral profile, although this possibility needs to be properly tested. In this study, we have found that candidate genes for mammal domestication, but not for neural crest development and function, are significantly dysregulated in the blood of subjects with ASD. The set of differentially expressed genes (DEGs) is enriched in biological and molecular processes, as well as in pathological phenotypes, of relevance for the etiology of ASD, like lipid metabolism, cell apoptosis, the activity of the insulin-like growth factor, gene expression regulation, skin/hair anomalies, musculoskeletal abnormalities, and hearing impairment. Moreover, among the DEGs, there are known candidates for ASD and/or genes involved in biological processes known to be affected in ASD. Our findings give support to the view that one important aspect of the etiopathogenesis of ASD is the abnormal manifestation of features of human self-domestication.
Collapse
Affiliation(s)
- Antonio Benítez-Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of Philology, University of Seville, Seville, Spain
| |
Collapse
|
14
|
Zhang X, Nie Y, Cai S, Ding S, Fu B, Wei H, Chen L, Liu X, Liu M, Yuan R, Qiu B, He Z, Cong P, Chen Y, Mo D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs. FASEB J 2019; 33:9638-9655. [PMID: 31145867 DOI: 10.1096/fj.201900388r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs. Furthermore, by analyzing the methylation pattern of the myogenic differentiation 1(MyoD) promoter and distal enhancer, we found that earlier demethylation of the MyoD distal enhancer in WZSs contributes to its earlier expression. Moreover, DNA demethylase Tet1 was found to be involved in the demethylation of the myogenin promoter and promoted immortalized mouse myoblast cell line (C2C12) and porcine embryonic myogenic cell differentiation. This study reveals that earlier demethylation of myogenic genes contributes to precocious terminal differentiation of myoblasts in miniature pigs.-Zhang, X., Nie, Y., Cai, S., Ding, S., Fu, B., Wei, H., Chen, L., Liu, X., Liu, M., Yuan, R., Qiu, B., He, Z., Cong, P., Chen, Y., Mo, D. Earlier demethylation of myogenic genes contributes to embryonic precocious terminal differentiation of myoblasts in miniature pigs.
Collapse
Affiliation(s)
- Xumeng Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Yaping Nie
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shufang Cai
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Suying Ding
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bingqiang Fu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hong Wei
- Shenzhen Kingsino Technology Company Limited, Shenzhen, China
| | - Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Minggui Liu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Boqin Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peiqing Cong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Moore RE, Kirwan J, Doherty MK, Whitfield PD. Biomarker Discovery in Animal Health and Disease: The Application of Post-Genomic Technologies. Biomark Insights 2017. [DOI: 10.1177/117727190700200040] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The causes of many important diseases in animals are complex and multifactorial, which present unique challenges. Biomarkers indicate the presence or extent of a biological process, which is directly linked to the clinical manifestations and outcome of a particular disease. Identifying biomarkers or biomarker profiles will be an important step towards disease characterization and management of disease in animals. The emergence of post-genomic technologies has led to the development of strategies aimed at identifying specific and sensitive biomarkers from the thousands of molecules present in a tissue or biological fluid. This review will summarize the current developments in biomarker discovery and will focus on the role of transcriptomics, proteomics and metabolomics in biomarker discovery for animal health and disease.
Collapse
Affiliation(s)
- Rowan E. Moore
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer Kirwan
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Mary K. Doherty
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Phillip D. Whitfield
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Galla SJ, Buckley TR, Elshire R, Hale ML, Knapp M, McCallum J, Moraga R, Santure AW, Wilcox P, Steeves TE. Building strong relationships between conservation genetics and primary industry leads to mutually beneficial genomic advances. Mol Ecol 2016; 25:5267-5281. [PMID: 27641156 DOI: 10.1111/mec.13837] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/23/2016] [Accepted: 08/24/2016] [Indexed: 02/06/2023]
Abstract
Several reviews in the past decade have heralded the benefits of embracing high-throughput sequencing technologies to inform conservation policy and the management of threatened species, but few have offered practical advice on how to expedite the transition from conservation genetics to conservation genomics. Here, we argue that an effective and efficient way to navigate this transition is to capitalize on emerging synergies between conservation genetics and primary industry (e.g., agriculture, fisheries, forestry and horticulture). Here, we demonstrate how building strong relationships between conservation geneticists and primary industry scientists is leading to mutually-beneficial outcomes for both disciplines. Based on our collective experience as collaborative New Zealand-based scientists, we also provide insight for forging these cross-sector relationships.
Collapse
Affiliation(s)
- Stephanie J Galla
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand.
| | - Thomas R Buckley
- Landcare Research, Private Bag 92170, Auckland Mail Centre, Auckland, 1142, New Zealand.,School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Rob Elshire
- The Elshire Group, Ltd., 52 Victoria Avenue, Palmerston North, 4410, New Zealand
| | - Marie L Hale
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Michael Knapp
- Department of Anatomy, University of Otago, P.O. Box 913, Dunedin, 9054, New Zealand
| | - John McCallum
- Breeding and Genomics, New Zealand Institute for Plant and Food Research, Private Bag 4704, Christchurch, 8140, New Zealand
| | - Roger Moraga
- AgResearch, Ruakura Research Centre, Bisley Road, Private Bag 3115, Hamilton, 3240, New Zealand
| | - Anna W Santure
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Phillip Wilcox
- Department of Mathematics and Statistics, University of Otago, P.O. Box 56, 710 Cumberland Street, Dunedin, 9054, New Zealand
| | - Tammy E Steeves
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
17
|
Yang Y, Zhou R, Mu Y, Hou X, Tang Z, Li K. Genome-wide analysis of DNA methylation in obese, lean, and miniature pig breeds. Sci Rep 2016; 6:30160. [PMID: 27444743 PMCID: PMC4957084 DOI: 10.1038/srep30160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 06/28/2016] [Indexed: 12/20/2022] Open
Abstract
DNA methylation is a crucial epigenetic modification involved in diverse biological processes. There is significant phenotypic variance between Chinese indigenous and western pig breeds. Here, we surveyed the genome-wide DNA methylation profiles of blood leukocytes from three pig breeds (Tongcheng, Landrace, and Wuzhishan) by methylated DNA immunoprecipitation sequencing. The results showed that DNA methylation was enriched in gene body regions and repetitive sequences. LINE/L1 and SINE/tRNA-Glu were the predominant methylated repeats in pigs. The methylation level in the gene body regions was higher than in the 5' and 3' flanking regions of genes. About 15% of CpG islands were methylated in the pig genomes. Additionally, 2,807, 2,969, and 5,547 differentially methylated genes (DMGs) were identified in the Tongcheng vs. Landrace, Tongcheng vs. Wuzhishan, and Landrace vs. Wuzhishan comparisons, respectively. A total of 868 DMGs were shared by the three contrasts. The DMGs were significantly enriched in development- and metabolism-related biological processes and pathways. Finally, we identified 32 candidate DMGs associated with phenotype variance in pigs. Our research provides a DNA methylome resource for pigs and furthers understanding of epigenetically regulated phenotype variance in mammals.
Collapse
Affiliation(s)
- Yalan Yang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yulian Mu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xinhua Hou
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhonglin Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Kui Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
18
|
Tang Z, Yang Y, Wang Z, Zhao S, Mu Y, Li K. Integrated analysis of miRNA and mRNA paired expression profiling of prenatal skeletal muscle development in three genotype pigs. Sci Rep 2015; 5:15544. [PMID: 26496978 PMCID: PMC4620456 DOI: 10.1038/srep15544] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 09/28/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in muscle development by binding to messenger RNAs (mRNAs). Based on prenatal skeletal muscle at 33, 65 and 90 days post-coitus (dpc) from Landrace, Tongcheng and Wuzhishan pigs, we carried out integrated analysis of miRNA and mRNA expression profiling. We identified 33, 18 and 67 differentially expressed miRNAs and 290, 91 and 502 mRNA targets in Landrace, Tongcheng and Wuzhishan pigs, respectively. Subsequently, 12 mRNAs and 3 miRNAs differentially expressed were validated using quantitative real-time PCR (qPCR), and 5 predicted miRNA targets were confirmed via dual luciferase reporter or western blot assays. We identified a set of miRNAs and mRNA genes differentially expressed in muscle development. Gene ontology (GO) enrichment analysis suggests that the miRNA targets are primarily involved in muscle contraction, muscle development and negative regulation of cell proliferation. Our data indicated that more mRNAs are regulated by miRNAs at earlier stages than at later stages of muscle development. Landrace and Tongcheng pigs also had longer phases of myoblast proliferation than Wuzhishan pigs. This study will be helpful to further explore miRNA-mRNA interactions in myogenesis and aid to uncover the molecular mechanisms of muscle development and phenotype variance in pigs.
Collapse
Affiliation(s)
- Zhonglin Tang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Yalan Yang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Zishuai Wang
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuanping Zhao
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Institute of Animal Science, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. China
| | - Yulian Mu
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kui Li
- The State Key Laboratory for Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| |
Collapse
|
19
|
Paredes-Sánchez FA, Sifuentes-Rincón AM, Segura Cabrera A, García Pérez CA, Parra Bracamonte GM, Ambriz Morales P. Associations of SNPs located at candidate genes to bovine growth traits, prioritized with an interaction networks construction approach. BMC Genet 2015. [PMID: 26198337 PMCID: PMC4511253 DOI: 10.1186/s12863-015-0247-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background For most domestic animal species, including bovines, it is difficult to identify causative genetic variants involved in economically relevant traits. The candidate gene approach is efficient because it investigates genes that are expected to be associated with the expression of a trait and defines whether the genetic variation present in a population is associated with phenotypic diversity. A potential limitation of this approach is the identification of candidates. This study used a bioinformatics approach to identify candidate genes via a search guided by a functional interaction network. Results A functional interaction network tool, BosNet, was constructed for Bos taurus. Predictions for candidate genes were performed using the guilt-by-association principle in BosNet. Association analyses identified five novel markers within BosNet-prioritized genes that had significant effects on different growth traits in Charolais and Brahman cattle. Conclusions BosNet is an excellent tool for the identification of single nucleotide polymorphisms that are potentially associated with complex traits.
Collapse
Affiliation(s)
- Francisco Alejandro Paredes-Sánchez
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica. IPN, Boulevard del Maestro esq. Elías Piña, Col. Narciso Mendoza, Cd. Reynosa, Tam, C.P. 88710, Mexico.
| | - Ana María Sifuentes-Rincón
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica. IPN, Boulevard del Maestro esq. Elías Piña, Col. Narciso Mendoza, Cd. Reynosa, Tam, C.P. 88710, Mexico.
| | - Aldo Segura Cabrera
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, A.C., Xalapa, Mexico.
| | - Carlos Armando García Pérez
- Laboratorio de Bioinformática, Centro de Biotecnología Genómica. IPN, Boulevard del Maestro esq. Elías Piña, Col. Narciso Mendoza, Cd. Reynosa, Tam, C.P. 88710, Mexico.
| | - Gaspar Manuel Parra Bracamonte
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica. IPN, Boulevard del Maestro esq. Elías Piña, Col. Narciso Mendoza, Cd. Reynosa, Tam, C.P. 88710, Mexico.
| | - Pascuala Ambriz Morales
- Laboratorio de Biotecnología Animal, Centro de Biotecnología Genómica. IPN, Boulevard del Maestro esq. Elías Piña, Col. Narciso Mendoza, Cd. Reynosa, Tam, C.P. 88710, Mexico.
| |
Collapse
|
20
|
Upadhyay MR, Patel AB, Subramanian RB, Shah TM, Jakhesara SJ, Bhatt VD, Koringa PG, Rank DN, Joshi CG. Single nucleotide variant detection in Jaffrabadi buffalo (Bubalus bubalis) using high-throughput targeted sequencing. FRONTIERS IN LIFE SCIENCE 2015. [DOI: 10.1080/21553769.2015.1031915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Miao X, Qin QLX. Genome-wide transcriptome analysis of mRNAs and microRNAs in Dorset and Small Tail Han sheep to explore the regulation of fecundity. Mol Cell Endocrinol 2015; 402:32-42. [PMID: 25573241 DOI: 10.1016/j.mce.2014.12.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 01/07/2023]
Abstract
A variety of sheep species with diverse fecundities are kept as livestock and make up the global agricultural economy. A mutation in the FecB gene has been implicated to be essential and additive for ovulation rate. To uncover potential regulators of fecundity, we performed a genome-wide analysis of mRNAs and miRNAs from Dorset sheep (Dorset), Small Tail Han sheep FecB(B)FecB(B) genotype (Han BB) and Small Tail Han sheep FecB(+)FecB(+) genotype (Han ++). Here we present detailed analyses at both the mRNA and miRNA levels to aid in the identification of candidate genes that might regulate fecundity. We found differentially expressed genes between each of the groups, which are involved in various cellular activities, such as metabolic cascades, catalytic function and signal transduction. Moreover, the miRNA profiling identified specific miRNAs unique to each group of sheep, which may play a role in the controlling fecundity differences. By exploring the miRNA-regulated gene expression network in the different sheep species we can create a stronger profile for regulation of fecundity. Furthermore, quantitative real-time PCR verified the reliability of the RNA-Seq data. To our knowledge, this is the first analysis of intravariety and intervariety in any species in this area. Taken together, this genome-wide analysis of mRNAs and miRNAs in sheep will aid in the ability to identify fecundity regulators between different sheep species.
Collapse
Affiliation(s)
- Xiangyang Miao
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Qingmiao Luo Xiaoyu Qin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
22
|
Bassols A, Costa C, Eckersall PD, Osada J, Sabrià J, Tibau J. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl 2014; 8:715-31. [DOI: 10.1002/prca.201300099] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular; Facultat de Veterinària; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Cristina Costa
- New Therapies of Genes and Transplants Group; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); L'Hospitalet de Llobregat; Barcelona Spain
| | - P. David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad de Zaragoza; CIBEROBN; Zaragoza Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Institut de Neurociències (INc); Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Joan Tibau
- IRTA - Food Technology; Animal Genetics Program; Finca Camps i Armet; Monells Spain
| |
Collapse
|
23
|
Xu L, Zhao F, Ren H, Li L, Lu J, Liu J, Zhang S, Liu GE, Song J, Zhang L, Wei C, Du L. Co-expression analysis of fetal weight-related genes in ovine skeletal muscle during mid and late fetal development stages. Int J Biol Sci 2014; 10:1039-50. [PMID: 25285036 PMCID: PMC4183924 DOI: 10.7150/ijbs.9737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 08/16/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Muscle development and lipid metabolism play important roles during fetal development stages. The commercial Texel sheep are more muscular than the indigenous Ujumqin sheep. RESULTS We performed serial transcriptomics assays and systems biology analyses to investigate the dynamics of gene expression changes associated with fetal longissimus muscles during different fetal stages in two sheep breeds. Totally, we identified 1472 differentially expressed genes during various fetal stages using time-series expression analysis. A systems biology approach, weighted gene co-expression network analysis (WGCNA), was used to detect modules of correlated genes among these 1472 genes. Dramatically different gene modules were identified in four merged datasets, corresponding to the mid fetal stage in Texel and Ujumqin sheep, the late fetal stage in Texel and Ujumqin sheep, respectively. We further detected gene modules significantly correlated with fetal weight, and constructed networks and pathways using genes with high significances. In these gene modules, we identified genes like TADA3, LMNB1, TGF-β3, EEF1A2, FGFR1, MYOZ1, and FBP2 correlated with fetal weight. CONCLUSION Our study revealed the complex network characteristics involved in muscle development and lipid metabolism during fetal development stages. Diverse patterns of the network connections observed between breeds and fetal stages could involve some hub genes, which play central roles in fetal development, correlating with fetal weight. Our findings could provide potential valuable biomarkers for selection of body weight-related traits in sheep and other livestock.
Collapse
Affiliation(s)
- Lingyang Xu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA; ; 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Fuping Zhao
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hangxing Ren
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 2. Chongqing Academy of Animal Sciences, Chongqing, 402460, China
| | - Li Li
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; ; 3. College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China
| | - Jian Lu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jiasen Liu
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shifang Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - George E Liu
- 4. Animal Genomics and Improvement Laboratory, U.S. Department of Agriculture-Agricultural Research Services, Beltsville, Maryland 20705, USA
| | - Jiuzhou Song
- 5. Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Li Zhang
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Caihong Wei
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lixin Du
- 1. National Center for Molecular Genetics and Breeding of Animal, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
24
|
McTavish EJ, Hillis DM. A Genomic Approach for Distinguishing between Recent and Ancient Admixture as Applied to Cattle. ACTA ACUST UNITED AC 2014; 105:445-456. [PMID: 24510946 PMCID: PMC4048551 DOI: 10.1093/jhered/esu001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 12/19/2013] [Indexed: 12/27/2022]
Abstract
Genomic data facilitate opportunities to track complex population histories of divergence and gene flow. We developed a metric, scaled block size (SBS), which uses the nonrecombined block size of introgressed regions of chromosomes to differentiate between recent and ancient types of admixture, and applied it to the reconstruction of admixture in cattle. Cattle are descendants of 2 independently domesticated lineages, taurine and indicine, which diverged more than 200 000 years ago. Several breeds have hybrid ancestry between these divergent lineages. Using 47 506 single-nucleotide polymorphisms, we analyzed the genomic architecture of the ancestry of 1369 individuals. We focused on 4 groups with admixed ancestry, including 2 anciently admixed African breeds (n = 58; n = 43), New World cattle of Spanish origin (n = 51), and known recent hybrids (n = 46). We estimated the ancestry of chromosomal regions for each individual and used the SBS metric to differentiate the timing of admixture among groups and among individuals within groups. By comparing SBS values of test individuals with standards with known recent hybrid ancestry, we were able to differentiate individuals of recent hybrid origin from other admixed cattle. We also estimated ancestry at the chromosomal scale. The X chromosome exhibits reduced indicine ancestry in recent hybrid, New World, and western African cattle, with virtually no evidence of indicine ancestry in New World cattle.
Collapse
Affiliation(s)
- Emily Jane McTavish
- From the Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 (McTavish and Hillis); and the Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 (McTavish).
| | - David M Hillis
- From the Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712 (McTavish and Hillis); and the Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045 (McTavish)
| |
Collapse
|
25
|
Incorporation of genetic technologies associated with applied reproductive technologies to enhance world food production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 752:77-96. [PMID: 24170355 DOI: 10.1007/978-1-4614-8887-3_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Animal breeding and reproductive physiology have been closely related throughout the history of animal production science. Artificial insemination provides the best method of increasing the influence of sires with superior genetics to improve production traits. Multiple ovulation embryo transfer (MOET) provides some ability to increase the genetic influence of the maternal line as well. The addition of genetic technologies to this paradigm allows for improved methods of selecting sires and dams carrying the best genes for production and yield of edible products and resistance to diseases and parasites. However, decreasing the number of influential parents within a population also increases the risk of propagating a recessive gene that could negatively impact the species (Reprod Domest Anim 44:792-796, 2009; BMC Genomics 11:337, 2010). Furthermore, antagonistic genotypic relationships between production traits and fertility (Anim Prod Sci 49:399-412, 2009; Anim Genet 43:442-446, 2012) suggest that care must be taken to ensure that increasing the frequency of genes with a positive influence on production does not negatively impact the fertility of the replacement females entering the herd.
Collapse
|
26
|
In silico mining of putative microsatellite markers from whole genome sequence of water buffalo (Bubalus bubalis) and development of first BuffSatDB. BMC Genomics 2013; 14:43. [PMID: 23336431 PMCID: PMC3563513 DOI: 10.1186/1471-2164-14-43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 01/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Though India has sequenced water buffalo genome but its draft assembly is based on cattle genome BTau 4.0, thus de novo chromosome wise assembly is a major pending issue for global community. The existing radiation hybrid of buffalo and these reported STR can be used further in final gap plugging and "finishing" expected in de novo genome assembly. QTL and gene mapping needs mining of putative STR from buffalo genome at equal interval on each and every chromosome. Such markers have potential role in improvement of desirable characteristics, such as high milk yields, resistance to diseases, high growth rate. The STR mining from whole genome and development of user friendly database is yet to be done to reap the benefit of whole genome sequence. DESCRIPTION By in silico microsatellite mining of whole genome, we have developed first STR database of water buffalo, BuffSatDb (Buffalo MicroSatellite Database (http://cabindb.iasri.res.in/buffsatdb/) which is a web based relational database of 910529 microsatellite markers, developed using PHP and MySQL database. Microsatellite markers have been generated using MIcroSAtellite tool. It is simple and systematic web based search for customised retrieval of chromosome wise and genome-wide microsatellites. Search has been enabled based on chromosomes, motif type (mono-hexa), repeat motif and repeat kind (simple and composite). The search may be customised by limiting location of STR on chromosome as well as number of markers in that range. This is a novel approach and not been implemented in any of the existing marker database. This database has been further appended with Primer3 for primer designing of the selected markers enabling researcher to select markers of choice at desired interval over the chromosome. The unique add-on of degenerate bases further helps in resolving presence of degenerate bases in current buffalo assembly. CONCLUSION Being first buffalo STR database in the world , this would not only pave the way in resolving current assembly problem but shall be of immense use for global community in QTL/gene mapping critically required to increase knowledge in the endeavour to increase buffalo productivity, especially for third world country where rural economy is significantly dependent on buffalo productivity.
Collapse
|
27
|
K. Verma A, Singh V, Vikas P. Application of Nanotechnology as a Tool in Animal Products Processing and Marketing: An Overview. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajft.2012.445.451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Rosa GJM. Grand challenge in livestock genomics: for food, for medicine, for the environment, for knowledge. Front Genet 2012; 2:34. [PMID: 22303330 PMCID: PMC3268588 DOI: 10.3389/fgene.2011.00034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/03/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Guilherme J M Rosa
- Department of Animal Sciences, University of Wisconsin - Madison Madison, WI, USA
| |
Collapse
|
29
|
Uddin MJ, Cinar MU, Große-Brinkhaus C, Tesfaye D, Tholen E, Juengst H, Looft C, Wimmers K, Phatsara C, Schellander K. Mapping quantitative trait loci for innate immune response in the pig. Int J Immunogenet 2011; 38:121-31. [DOI: 10.1111/j.1744-313x.2010.00985.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Piedrafita D, Raadsma HW, Gonzalez J, Meeusen E. Increased production through parasite control: can ancient breeds of sheep teach us new lessons? Trends Parasitol 2010; 26:568-73. [DOI: 10.1016/j.pt.2010.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/27/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
31
|
Abstract
Chickens, as well as other animals, have the ability to change their behavior (behavioral plasticity) and physiology (physiological plasticity) based on the costs and benefits to fit their environment (adaptation). Through natural selection, the population preserves and accumulates traits that are beneficial and rejects those that are detrimental in their prevailing environments. The surviving populations are able to contribute more genes associated with beneficial traits for increased fitness to subsequent generations. Natural selection is slow but constant; working over multiple generations, the changes to the population often appear silent or undetectable at a given point in history. Chickens were domesticated from the wild red jungle fowl. The principle of domestication of chickens, as well as other farm animals, by humans is similar to that of natural selection: selecting the best animals with the highest survivability and reproducibility (artificial selection). Compared with natural selection, the process of artificial selection is motivated by human needs and acts more rapidly with more visible results over a short time period. This process has been further accelerated following the development of current breeding programs and the emergence of specialized breeding companies. A laying hen, for example, produces more than 300 hundred eggs a year, whereas a jungle fowl lays 4 to 6 eggs in a year. During the domestication process, chickens retained their capability to adapt to their housing environments, which is usually achieved by genetic changes occurring with each subsequent generation. Genes control the behavioral, physiological, immunological, and psychological responses of animals to stressors, including environmental stimulations. With advances in understanding of genetic mediation of animal physiology and behavior and the discovery of the genome sequences of many species, animal production breeding programs can be improved in both speed and efficiency. Modern chicken breeding programs have the potential to be operated successfully in the breeding of tomorrow's chickens with high production efficiency and optimal welfare, resulting from resistance to stress, disease, or both.
Collapse
Affiliation(s)
- H-W Cheng
- Livestock Behavior Research Unit, USDA-Agricultural Research Service, West Lafayette, IN 47907, USA.
| |
Collapse
|
32
|
Eberlein A, Kalbe C, Goldammer T, Brunner RM, Kuehn C, Weikard R. Analysis of structure and gene expression of bovine CCDC3 gene indicates a function in fat metabolism. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:19-25. [PMID: 20132904 DOI: 10.1016/j.cbpb.2010.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 01/19/2023]
Abstract
Our study reports the molecular analysis of the bovine gene encoding the coiled-coil domain-containing protein 3 (CCDC3). Based on comparative sequence analysis and in silico sequence merging of predicted gene models, a new full-length gene model for the bovine CCDC3 gene was predicted and confirmed experimentally. The CCDC3 gene was assigned to bovine chromosome 13. It consists of three exons comprising 2599bp encoding for a respective protein of 274 amino acids. The strong CCDC3 sequence homology on amino acid level between species suggests a conserved universal function of this protein. In mice, the CCDC3 gene had been found to be highly expressed in adipocytes and regulated by hormonal-nutritional alternations and in obesity. The tissue expression pattern of bovine CCDC3 mRNA indicates a ubiquitous physiological function of the gene. Significant differences in CCDC3 mRNA expression in skeletal muscle between individuals characterized by divergent intramuscular fat deposition support the potential function of the gene in fat or energy metabolism, which possibly could also be inferred for other mammalian species. This first report of structural analysis and molecular characterization of the CCDC3 gene in cattle will contribute to a better understanding of the yet unknown physiological role of the respective protein in mammals.
Collapse
Affiliation(s)
- Annett Eberlein
- Research Institute for the Biology of Farm Animals, Dummerstorf, Germany.
| | | | | | | | | | | |
Collapse
|
33
|
Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats. Vet Immunol Immunopathol 2009; 135:208-17. [PMID: 20060596 DOI: 10.1016/j.vetimm.2009.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/20/2009] [Accepted: 11/30/2009] [Indexed: 11/22/2022]
Abstract
To study gene expression within the mammary glands of dairy goats with mastitis, mRNA was collected from milk somatic cells (MSCs) of left udder halves challenged with Staphylococcus aureus and right udder halves infused with PBS, as control, at different time points (0, 12, 24 and 48h post-infection). Transcriptional profiles were investigated using bovine cDNA microarrays; of the total 288 differentially expressed genes identified with ANOVA analysis (False Discovery Rate=0.05, 1.5-fold change), 26, 36 and 16 genes were down-regulated at 12, 24 and 48h post-infection, respectively, while 60, 141 and 9 genes were up-regulated at the same corresponding time points. The expression profiles clearly changed at 24h post-infection with 177 genes significantly altered, corresponding to a 10-fold increase of S. aureus bacterial count in milk from infected udders. Differential expression of selected genes (CD2BP2, BCAP31, MHCII, FOSL2, MAPK13, ILT5 and JUNB) was also confirmed by real-time PCR at the different time points considered, showing high correlation with the microarray measurements and high reliability of the microarray analyses. The most readily inducible classes of genes in caprine MSCs infected with S. aureus were pro-inflammatory cytokines, chemokines and their receptors; IL-1alpha, lymphotoxin alpha, granulocyte chemotactic protein (CXCL6), and IL-2 receptor gamma were all up-regulated in infected udders versus healthy controls. This study identified a number of differentially expressed genes induced by S. aureus intramammary infection and demonstrates the intricacy of the patterns of gene expression that influence host response to a complex pathogen of significant relevance to both human and veterinary medicine.
Collapse
|
34
|
Sarantseva SV, Schwarzman AL. Modern genetic approaches to searching for targets for medicinal preparations. RUSS J GENET+ 2009. [DOI: 10.1134/s1022795409070011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Arias JA, Keehan M, Fisher P, Coppieters W, Spelman R. A high density linkage map of the bovine genome. BMC Genet 2009; 10:18. [PMID: 19393043 PMCID: PMC2680908 DOI: 10.1186/1471-2156-10-18] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Accepted: 04/24/2009] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Recent technological advances have made it possible to efficiently genotype large numbers of single nucleotide polymorphisms (SNPs) in livestock species, allowing the production of high-density linkage maps. Such maps can be used for quality control of other SNPs and for fine mapping of quantitative trait loci (QTL) via linkage disequilibrium (LD). RESULTS A high-density bovine linkage map was constructed using three types of markers. The genotypic information was obtained from 294 microsatellites, three milk protein haplotypes and 6769 SNPs. The map was constructed by combining genetic (linkage) and physical information in an iterative mapping process. Markers were mapped to 3,155 unique positions; the 6,924 autosomal markers were mapped to 3,078 unique positions and the 123 non-pseudoautosomal and 19 pseudoautosomal sex chromosome markers were mapped to 62 and 15 unique positions, respectively. The linkage map had a total length of 3,249 cM. For the autosomes the average genetic distance between adjacent markers was 0.449 cM, the genetic distance between unique map positions was 1.01 cM and the average genetic distance (cM) per Mb was 1.25. CONCLUSION There is a high concordance between the order of the SNPs in our linkage map and their physical positions on the most recent bovine genome sequence assembly (Btau 4.0). The linkage maps provide support for fine mapping projects and LD studies in bovine populations. Additionally, the linkage map may help to resolve positions of unassigned portions of the bovine genome.
Collapse
Affiliation(s)
- Juan A Arias
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | - Mike Keehan
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | - Paul Fisher
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| | | | - Richard Spelman
- Livestock Improvement Corporation, Private Bag 3016, Hamilton 3240, New Zealand
| |
Collapse
|
36
|
Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M. Reproductive biotechniques in buffaloes (Bubalus bubalis): status, prospects and challenges. Reprod Fertil Dev 2009; 21:499-510. [DOI: 10.1071/rd08172] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/24/2008] [Indexed: 11/23/2022] Open
Abstract
The swamp buffalo holds tremendous potential in the livestock sector in Asian and Mediterranean countries. Current needs are the faster multiplication of superior genotypes and the conservation of endangered buffalo breeds. Recent advances in assisted reproductive technologies, including in vitro embryo production methodologies, offer enormous opportunities to not only improve productivity, but also to use buffaloes to produce novel products for applications to human health and nutrition. The use of molecular genomics will undoubtedly advance these technologies for their large-scale application and resolve the key problems currently associated with advanced reproductive techniques, such as animal cloning, stem cell technology and transgenesis. Preliminary success in the application of modern reproductive technologies warrants further research at the cellular and molecular levels before their commercial exploitation in buffalo breeding programmes.
Collapse
|
37
|
Lim D, Cho YM, Lee KT, Kang Y, Sung S, Nam J, Park EW, Oh SJ, Im SK, Kim H. The Pig Genome Database (PiGenome): an integrated database for pig genome research. Mamm Genome 2008; 20:60-6. [DOI: 10.1007/s00335-008-9156-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Accepted: 10/28/2008] [Indexed: 11/28/2022]
|
38
|
Robert C. Challenges of functional genomics applied to farm animal gametes and pre-hatching embryos. Theriogenology 2008; 70:1277-87. [PMID: 18653224 DOI: 10.1016/j.theriogenology.2008.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The genomes of many commercially important farm animals have already been or are in the process of being decrypted. The genomic era is generating an important wave of downstream developments and derived disciplines are also progressing at a very fast pace. The post-genomic era is already ongoing as exemplified by the introduction of new concepts such as phenomics and functional genomics. These new fields are complementary but do not necessarily target similar applications even though they are often used to refer to one another. In an attempt to categorize the fields according to their respective potential applications, a brief comparative description of phenomics and functional genomics has been put together. However, the focus of this paper is mainly directed toward the introduction of functional genomics specifically applied to the study of the molecular mechanisms underlying gamete and early mammalian developments. Many aspects of the peculiar nature of these cells are introducing numerous methodological challenges to the applicability of functional genomics to unravel their molecular physiology. This is particularly true for transcriptomic studies and it is currently of high relevance for the field of reproductive biology to take into consideration these technical hurdles before tackling the implementation of this technology on a large scale. Nonetheless, functional genomics should prove to be up to the expectations in providing sound information to better understand the fascinating window spanning gamete development that leads to the first weeks of life.
Collapse
Affiliation(s)
- C Robert
- Département des Sciences Animales, Université Laval, Québec, Canada G1K 7P4.
| |
Collapse
|
39
|
Chi XF, Lou XY, Shu QY. Progressive fine mapping in experimental populations: an improved strategy toward positional cloning. J Theor Biol 2008; 253:817-23. [PMID: 18533192 DOI: 10.1016/j.jtbi.2008.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 03/18/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Genetic mapping is one of the key steps in positional cloning. The traditional mapping strategies typically require to genotype a set of markers that are nearly evenly or randomly distributed across the genome or a region of interest. Such "grid" strategies work with low efficiency. We propose an improved mapping strategy by integrating the principle of one-dimensional optimization and information on physical map into the standard mapping procedure used in experimental populations. Computer simulations based on a set of empirical data suggest that our new procedure can reduce the number of markers required for genotyping to less than one-fourth of that of the standard procedure. An illustrative application also demonstrates a pronounced reduction of the burden in genotyping. The proposed strategy offers a quick and cost-effective access to the target gene for positional cloning without any extra expense except for making use of genomic sequence data. A Microsoft Excel spreadsheet, for performing easy calculations described in this article, is available on request from the authors.
Collapse
Affiliation(s)
- Xiao-Fei Chi
- IAEA-Zhejiang University Collaborating Center and National Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou, PR China
| | | | | |
Collapse
|
40
|
Basrur PK, Stranzinger G. Veterinary cytogenetics: past and perspective. Cytogenet Genome Res 2008; 120:11-25. [PMID: 18467822 DOI: 10.1159/000118737] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2008] [Indexed: 11/19/2022] Open
Abstract
Cytogenetics was conceived in the late 1800s and nurtured through the early 1900s by discoveries pointing to the chromosomal basis of inheritance. The relevance of chromosomes to human health and disease was realized more than half a century later when improvements in techniques facilitated unequivocal chromosome delineation. Veterinary cytogenetics has benefited from the information generated in human cytogenetics which, in turn, owes its theoretical and technical advancement to data gathered from plants, insects and laboratory mammals. The scope of this science has moved from the structure and number of chromosomes to molecular cytogenetics for use in research or for diagnostic and prognostic purposes including comparative genomic hybridization arrays, single nucleotide polymorphism array-based karyotyping and automated systems for counting the results of standard FISH preparations. Even though the counterparts to a variety of human diseases and disorders are seen in domestic animals, clinical applications of veterinary cytogenetics will be less well exploited mainly because of the cost-driven nature of demand on diagnosis and treatment which often out-weigh emotional and sentimental attachments. An area where the potential of veterinary cytogenetics will be fully exploited is reproduction since an inherited aberration that impacts on reproductive efficiency can compromise the success achieved over the years in animal breeding. It is gratifying to note that such aberrations can now be tracked and tackled using sophisticated cytogenetic tools already commercially available for RNA expression analysis, chromatin immunoprecipitation, or comparative genomic hybridization using custom-made microarray platforms that allow the construction of microarrays that match veterinary cytogenetic needs, be it for research or for clinical applications. Judging from the technical refinements already accomplished in veterinary cytogenetics since the 1960s, it is clear that the importance of the achievements to date are bound to be matched or out-weighed by what awaits to be accomplished in the not-too-far future.
Collapse
Affiliation(s)
- P K Basrur
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | | |
Collapse
|
41
|
Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A, Barris W, Zhao S, Shetty J, Maddox JF, O'Grady M, Nicholas F, Crawford AM, Smith T, de Jong PJ, McEwan J, Oddy VH, Cockett NE. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol 2008; 8:R152. [PMID: 17663790 PMCID: PMC2323240 DOI: 10.1186/gb-2007-8-7-r152] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 07/05/2007] [Accepted: 07/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? RESULTS A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. CONCLUSION We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited.
Collapse
Affiliation(s)
- Brian P Dalrymple
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Ewen F Kirkness
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Mikhail Nefedov
- BACPAC Resources, Children's Hospital Oakland Research Institute (CHORI), Oakland, California 94609, USA
| | - Sean McWilliam
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Abhirami Ratnakumar
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Wes Barris
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Shaying Zhao
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jyoti Shetty
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jillian F Maddox
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Margaret O'Grady
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Frank Nicholas
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - Allan M Crawford
- AgResearch, Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Tim Smith
- US Department of Agriculture, Agricultural Research Service, Northern Plains Area, Roman L Hruska US Meat Animal Research, P.O. Box 166, Clay Center, Nebraska 68933, USA
| | - Pieter J de Jong
- BACPAC Resources, Children's Hospital Oakland Research Institute (CHORI), Oakland, California 94609, USA
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel 9053, New Zealand
| | - V Hutton Oddy
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Meat and Livestock Australia, 165 Walker Street, North Sydney, New South Wales 2059, Australia
- University of New England, Armidale, New South Wales 2351, Australia
| | | | | |
Collapse
|
42
|
Tang Z, Li Y, Wan P, Li X, Zhao S, Liu B, Fan B, Zhu M, Yu M, Li K. LongSAGE analysis of skeletal muscle at three prenatal stages in Tongcheng and Landrace pigs. Genome Biol 2008; 8:R115. [PMID: 17573972 PMCID: PMC2394763 DOI: 10.1186/gb-2007-8-6-r115] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 01/30/2007] [Accepted: 06/16/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obese and lean pig breeds show obvious differences in muscle growth; however, the molecular mechanism underlying phenotype variation remains unknown. Prenatal muscle development programs postnatal performance. Here, we describe a genome-wide analysis of differences in prenatal skeletal muscle between Tongcheng (a typical indigenous Chinese breed) and Landrace (a leaner Western breed) pigs. RESULTS We generated transcriptome profiles of skeletal muscle from Tongcheng and Landrace pigs at 33, 65 and 90 days post coitus (dpc), using long serial analysis of gene expression (LongSAGE). We sequenced 317,115 LongSAGE tags and identified 1,400 and 1,201 differentially expressed transcripts during myogenesis in Tongcheng and Landrace pigs, respectively. From these, the Gene Ontology processes and expression patterns of these differentially expressed genes were constructed. Most of the genes showed different expression patterns in the two breeds. We also identified 532, 653 and 459 transcripts at 33, 65 and 90 dpc, respectively, that were differentially expressed between the two breeds. Growth factors, anti-apoptotic factors and genes involved in the regulation of protein synthesis were up-regulated in Landrace pigs. Finally, 12 differentially expressed genes were validated by quantitative PCR. CONCLUSION Our data show that gene expression phenotypes differ significantly between the two breeds. In particular, a slower muscle growth rate and more complicated molecular changes were found in Tongcheng pigs, while genes responsible for increased cellular growth and myoblast survival were up-regulated in Landrace pigs. Our analyses will assist in the identification of candidate genes for meat production traits and elucidation of the development of prenatal skeletal muscle in mammals.
Collapse
Affiliation(s)
- Zhonglin Tang
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yong Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Ping Wan
- Shanghai Huaguan Biochip Co. Ltd, Shanghai, 201203, PR China
- Life and Environment Science College, Shanghai Normal University, Shanghai, 200234, PR China
| | - Xiaoping Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Bin Fan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mengjin Zhu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mei Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Kui Li
- Department of Gene and Cell Engineering, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Education of China, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
43
|
Rothschild MF, Plastow GS. Impact of genomics on animal agriculture and opportunities for animal health. Trends Biotechnol 2008; 26:21-5. [PMID: 18022262 PMCID: PMC7114270 DOI: 10.1016/j.tibtech.2007.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 10/09/2007] [Accepted: 10/10/2007] [Indexed: 11/24/2022]
Abstract
Livestock production is an important source of animal protein worldwide. In the developed world meat consumption will remain steady but demand is forecast to grow enormously in developing countries. The use of genomics will speed genetic improvement and increase levels of production quickly in the developed world but might face problems in the developing world, including scientific, economic and political challenges. Considerable increases in public and private research funding will be required to develop and utilize novel tools and collections of detailed trait information on appropriate animals. The development of policies protecting the environment and managing all genetic resources will also be needed. Advances in livestock genomics have major implications for increasing food output as well as improving human health.
Collapse
Affiliation(s)
- Max F Rothschild
- Department of Animal Science, Center for Integrated Animal Genomics, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
44
|
de Koning DJ, Archibald A, Haley CS. Livestock genomics: bridging the gap between mice and men. Trends Biotechnol 2007; 25:483-9. [PMID: 17945371 DOI: 10.1016/j.tibtech.2007.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
Dissecting the genetic control of variation in complex traits, such as disease resistance and agricultural-product quality, remains very challenging. Farm animals are now well placed to bridge the gap between human biology and traditional model species. Livestock species share with model species the benefits of controlled breeding, and their biology is often much closer to that of humans. Genetic research in model species focuses on differences between homogenous lines, whereas genetic research in humans focuses on genetic variation within populations. Livestock genetics has the strengths of both human and model-species genetics because researchers can exploit both the abundant genetic variation between divergent breeds and the variation that is segregating within breeds. Therefore, livestock genomics fills the void where the genetics of model species proves intractable or where model species are not a good proxy for human biology.
Collapse
Affiliation(s)
- Dirk-Jan de Koning
- Division of Genetics and Genomics, Roslin Institute, Roslin, Midlothian, EH25 9PS, UK.
| | | | | |
Collapse
|
45
|
Application of genomic technologies to the improvement of meat quality of farm animals. Meat Sci 2007; 77:36-45. [DOI: 10.1016/j.meatsci.2007.03.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Revised: 03/27/2007] [Accepted: 03/27/2007] [Indexed: 11/21/2022]
|
46
|
Jensen K, de Miranda Santos IKF, Glass EJ. Using genomic approaches to unravel livestock (host)-tick-pathogen interactions. Trends Parasitol 2007; 23:439-44. [PMID: 17656152 DOI: 10.1016/j.pt.2007.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 05/25/2007] [Accepted: 07/09/2007] [Indexed: 11/28/2022]
Abstract
Ticks and tick-borne diseases are a major constraint on livestock farming in many developing countries, which has a huge impact on their economies. Genomic information is becoming more abundant for many of the species involved, which if exploited successfully could be used to develop new control strategies. Here, we review the genomic resources that are now available and discuss how this information is currently being harnessed or can be used in the future to explore the complex interplay that occurs between livestock hosts, tick vectors and tick-borne pathogens.
Collapse
Affiliation(s)
- Kirsty Jensen
- Division of Genetics and Genomics, Roslin Institute, Roslin, Midlothian, Edinburgh, EH25 9PS, UK.
| | | | | |
Collapse
|
47
|
Stafuzza NB, Ianella P, Miziara MN, Agarwala R, Schäffer AA, Riggs PK, Womack JE, Amaral MEJ. Preliminary radiation hybrid map for river buffalo chromosome 6 and comparison to bovine chromosome 3. Anim Genet 2007; 38:406-9. [PMID: 17559550 DOI: 10.1111/j.1365-2052.2007.01612.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the first radiation hybrid (RH) map of river buffalo (Bubalus bubalis) chromosome 6 (BBU6) developed with a recently constructed river buffalo whole-genome RH panel (BBURH(5000)). The preliminary map contains 33 cattle-derived markers, including 12 microsatellites, 19 coding genes and two ESTs, distributed across two linkage groups. Retention frequencies for markers ranged from 14.4% to 40.0%. Most of the marker orders within the linkage groups on BBU6 were consistent with the cattle genome sequence and RH maps. This preliminary RH map is the starting point for comparing gene order between river buffalo and cattle, presenting an opportunity for the examination of micro-rearrangements of these chromosomes. Also, resources for positional candidate cloning in river buffalo are enhanced.
Collapse
Affiliation(s)
- N B Stafuzza
- Department of Biologia, UNESP - São Paulo State University, IBILCE, São Jose Rio Preto, SP 15054-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Ollier S, Robert-Granié C, Bernard L, Chilliard Y, Leroux C. Mammary transcriptome analysis of food-deprived lactating goats highlights genes involved in milk secretion and programmed cell death. J Nutr 2007; 137:560-7. [PMID: 17311940 DOI: 10.1093/jn/137.3.560] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Animal nutrition considerably affects milk composition that influences its nutritional quality. Milk component synthesis and secretion by the mammary gland involve expression of a large number of genes whose nutritional regulation remains poorly defined. In this study, we examined the effect of food deprivation (FD) on the expression of 8379 genes in caprine mammary gland using a bovine oligonucleotide microarray. Twelve lactating goats were assigned to 2 groups based on their feeding level (control diet ad libitum vs. 48-h FD). We identified 161 genes whose expression was altered by FD. Most of these genes (88%) were downregulated, suggesting a stress response by the mammary gland. In particular, the decrease in expression of genes involved in milk protein, lactose, and lipid metabolism could contribute together with the shortage of nutrients to the drop in milk protein, lactose, and fat secretion. In addition, this study highlights modification of the expression of at least 14 genes that could be responsible for a slowdown in mammary cell proliferation and differentiation and/or an increase in programmed cell death in response to 48-h FD in goats.
Collapse
Affiliation(s)
- Séverine Ollier
- Unité de Recherches sur les Herbivores, Institut National de la Recherche Agronomique, Theix, 63122 Saint Genès-Champanelle, France
| | | | | | | | | |
Collapse
|
50
|
Ryan MT, Sweeney T. Integrating molecular biology into the veterinary curriculum. JOURNAL OF VETERINARY MEDICAL EDUCATION 2007; 34:658-673. [PMID: 18326779 DOI: 10.3138/jvme.34.5.658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modern discipline of molecular biology is gaining increasing relevance in the field of veterinary medicine. This trend must be reflected in the curriculum if veterinarians are to capitalize on opportunities arising from this field and direct its development toward their own goals as a profession. This review outlines current applications of molecular-based technologies that are relevant to the veterinary profession. In addition, the current techniques and technologies employed within the field of molecular biology are discussed. Difficulties associated with teaching a subject such as molecular biology within a veterinary curriculum can be alleviated by effectively integrating molecular topics throughout the curriculum, pitching the subject at an appropriate depth, and employing varied teaching methods throughout.
Collapse
Affiliation(s)
- Marion T Ryan
- College of Life Sciences, School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Dublin, Ireland.
| | | |
Collapse
|