1
|
An Expanded Interplay Network between NF-κB p65 (RelA) and E2F1 Transcription Factors: Roles in Physiology and Pathology. Cancers (Basel) 2022; 14:cancers14205047. [PMID: 36291831 PMCID: PMC9600032 DOI: 10.3390/cancers14205047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription Factors (TFs) are the main regulators of gene expression, controlling among others cell homeostasis, identity, and fate. TFs may either act synergistically or antagonistically on nearby regulatory elements and their interplay may activate or repress gene expression. The family of NF-κB TFs is among the most important TFs in the regulation of inflammation, immunity, and stress-like responses, while they also control cell growth and survival, and are involved in inflammatory diseases and cancer. The family of E2F TFs are major regulators of cell cycle progression in most cell types. Several studies have suggested the interplay between these two TFs in the regulation of numerous genes controlling several biological processes. In the present study, we compared the genomic binding landscape of NF-κB RelA/p65 subunit and E2F1 TFs, based on high throughput ChIP-seq and RNA-seq data in different cell types. We confirmed that RelA/p65 has a binding profile with a high preference for distal enhancers bearing active chromatin marks which is distinct to that of E2F1, which mostly generates promoter-specific binding. Moreover, the RelA/p65 subunit and E2F1 cistromes have limited overlap and tend to bind chromatin that is in an active state even prior to immunogenic stimulation. Finally, we found that a fraction of the E2F1 cistrome is recruited by NF-κΒ near pro-inflammatory genes following LPS stimulation in immune cell types.
Collapse
|
2
|
White JR, Thompson DT, Koch KE, Kiriazov BS, Beck AC, van der Heide DM, Grimm BG, Kulak MV, Weigel RJ. AP-2α-Mediated Activation of E2F and EZH2 Drives Melanoma Metastasis. Cancer Res 2021; 81:4455-4470. [PMID: 34210752 DOI: 10.1158/0008-5472.can-21-0772] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
In melanoma metastasis, the role of the AP-2α transcription factor, which is encoded by TFAP2A, is controversial as some findings have suggested tumor suppressor activity while other studies have shown high TFAP2A expression in node-positive melanoma associated with poor prognosis. Here we demonstrate that AP-2α facilitates melanoma metastasis through transcriptional activation of genes within the E2F pathway including EZH2. A BioID screen found that AP-2α interacts with members of the nucleosome remodeling and deacetylase (NuRD) complex. Loss of AP-2α removed activating chromatin marks in the promoters of EZH2 and other E2F target genes through activation of the NuRD repression complex. In melanoma cells, treatment with tazemetostat, an FDA-approved and highly specific EZH2 inhibitor, substantially reduced anchorage-independent colony formation and demonstrated heritable antimetastatic effects, which were dependent on AP-2α. Single-cell RNA sequencing analysis of a metastatic melanoma mouse model revealed hyperexpansion of Tfap2a High/E2F-activated cell populations in transformed melanoma relative to progenitor melanocyte stem cells. These findings demonstrate that melanoma metastasis is driven by the AP-2α/EZH2 pathway and suggest that AP-2α expression can be used as a biomarker to predict responsiveness to EZH2 inhibitors for the treatment of advanced melanomas. SIGNIFICANCE: AP-2α drives melanoma metastasis by upregulating E2F pathway genes including EZH2 through inhibition of the NuRD repression complex, serving as a biomarker to predict responsiveness to EZH2 inhibitors.
Collapse
Affiliation(s)
| | | | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, Iowa
| | | | | | | | | |
Collapse
|
3
|
Abstract
Chromatin immunoprecipitation, commonly referred to as ChIP, is a powerful technique for the evaluation of in vivo interactions of proteins with specific regions of genomic DNA. Formaldehyde is used in this technique to cross-link proteins to DNA in vivo, followed by the extraction of chromatin from cross-linked cells and tissues. Harvested chromatin is sheared and subsequently used in an immunoprecipitation incorporating antibodies specific to protein(s) of interest and thus coprecipitating and enriching the cross-linked, protein-associated DNA. The cross-linking process can be reversed, and protein-bound DNA fragments of optimal length ranging from 200 to 1000 base pairs (bp) can subsequently be purified and measured or sequenced by numerous analytical methods. In this protocol, two different fixation methods are described in detail. The first involves the standard fixation of cells and tissue by formaldehyde if the target antigen is highly abundant. The dual cross-linking procedure presented at the end includes an additional preformaldehyde cross-linking step and can be especially useful when the target protein is in low abundance or if it is indirectly associated with chromatin DNA through another protein.
Collapse
|
4
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
5
|
Li Z, Wang Y, Kong L, Yue Z, Ma Y, Chen X. Expression of ADAM12 is regulated by E2F1 in small cell lung cancer. Oncol Rep 2016; 34:3231-7. [PMID: 26503019 DOI: 10.3892/or.2015.4317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 09/04/2015] [Indexed: 11/06/2022] Open
Abstract
Our previous study reported that ADAM12 was highly expressed in small cell lung cancer (SCLC) and could be an effective marker for diagnosis and prognosis. Yet, the reason for the high expression of ADAM12 in SCLC requires further elucidation. Transcription factor E2F1 has been receiving increasing attention due to the complexity and diversity of its function in cancer. In the present study, the expression of ADAM12 was significantly decreased following silencing of E2F1 expression by siRNA, thus indicating that E2F1 may regulate the expression of ADAM12 at the level of transcription. Chromatin immunoprecipitation-to-sequence analysis identified three binding sites for E2F1 in the locus for ADAM12. They were Chr10: 128010444-128011026, located in the intron of ADAM12, named seq0; Chr10: 128076927‑128078127, located in the promoter of ADAM12, named seq1; and Chr10: 128086195‑128086876, located in the upstream 20 kb from the transcription start site of ADAM12, named: seq2. Dual‑luciferase reporter experiments revealed that seq1 not seq0 and seq2 was able to promote the expression of luciferase. Notably, co-transfection of E2F1 significantly increased the activity of seq1 not seq0 and seq2, but quantitative polymerase chain reaction results showed that seq0, seq1 and seq2 could recruit E2F1, indicating that the influence of E2F1 in regulating the expression of ADAM12 was complex. Sequence analysis clarified that seq1 was a part of the ADAM12 promoter, yet the functions of seq0 and seq2 were unknown. Fusion fragments containing seq0-seq1 or seq2-seq1 were analyzed in luciferase constructs. Compared with seq1 alone, the activities of these fusion fragments were non-significantly reduced. The activities of fusion fragments were significantly decreased following co-transfection with E2F1. Thus, the present findings support the conclusion that the E2F1 transcription factor regulates the expression of ADAM12 by binding differential cis-acting elements.
Collapse
|
6
|
Wang Y, Wang R, Jin VX. Inference of hierarchical regulatory network of TCF7L2 binding sites in MCF7 cell line. ACTA ACUST UNITED AC 2016; 9:25-53. [PMID: 28066512 DOI: 10.1504/ijcbdd.2016.074990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The TCF7L2 transcription factor (TF) is a member of Wnt signalling pathway, and may influence transcription of several genes by binding to distinct regulatory regions. Genome-wide studies have identified thousands of TCF7L2 binding sites and have revealed some associated TF partners. However, there is still a large uncharted region in the hierarchical regulatory network for TCF7L2 and the partner TFs in MCF7 cells. We analysed ChIP-seq data by searching for motifs in the enriched peak region based on TF-specific position weight matrix (PWM). We found association of FOXO1 and CAD with up-regulated genes, AP2α, PBF and AP1 with down-regulated genes. TCF7L2 and GATA3 were found to be associated with both up and down-regulated genes. Our study uncovers new TCF7L2 associated regulatory networks by mining ChIP-seq data in MCF7 cell, which may contribute to further study of the mechanisms related to Wnt pathway in breast cancer or other diseases.
Collapse
Affiliation(s)
- Yao Wang
- Departments of Molecular Medicine and Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,
| | - Rui Wang
- School of Chemical and Environment Science, Shaanxi University of Technology, Hanzhong, Shaanxi 723000, China,
| | - Victor X Jin
- Departments of Molecular Medicine and Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA,
| |
Collapse
|
7
|
Vange P, Bruland T, Beisvag V, Erlandsen SE, Flatberg A, Doseth B, Sandvik AK, Bakke I. Genome-wide analysis of the oxyntic proliferative isthmus zone reveals ASPM as a possible gastric stem/progenitor cell marker over-expressed in cancer. J Pathol 2015; 237:447-59. [PMID: 26178168 PMCID: PMC5049620 DOI: 10.1002/path.4591] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/22/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022]
Abstract
The oxyntic proliferative isthmus zone contains the main stem/progenitor cells that provide for physiological renewal of the distinct mature cell lineages in the oxyntic epithelium of the stomach. These cells are also proposed to be the potential cells-of-origin of gastric cancer, although little is known about their molecular characteristics and specific biological markers are lacking. In this study, we developed a method for serial section-navigated laser microdissection to isolate cells from the proliferative isthmus zone of rat gastric oxyntic mucosa for genome-wide microarray gene expression analysis. Enrichment analysis showed a distinct gene expression profile for the isthmus zone, with genes regulating intracellular processes such as the cell cycle and ribosomal activity. The profile was also related to stem cell transcriptional networks and stomach neoplasia. Genes expressed uniquely in the isthmus zone were associated with E2F transcription factor 1 (E2F1), which participates in the self-renewal of stem cells and in gastric carcinogenesis. One of the unique genes was Aspm [Asp (abnormal spindle) homologue, microcephaly-associated (Drosophila)]. Here we show ASPM in single scattered epithelial cells located in the proliferative isthmus zone of rat, mouse and human oxyntic mucosa, which do not seem to be actively dividing. The ASPM-expressing cells are mainly mature cell marker-deficient, except for a limited overlap with cells with neuroendocrine and tuft cell features. Further, both ASPM and E2F1 were expressed in human gastric cancer cell lines and increased and correlated in human gastric adenocarcinomas compared to non-tumour mucosa, as shown by expression profile analyses and immunohistochemistry. The association between ASPM and the transcription factor E2F1 in gastric tissue is relevant, due to their common involvement in crucial cell fate-regulatory mechanisms. Our results thus introduce ASPM as a novel possible oxyntic stem/progenitor cell marker that may be involved in both normal gastric physiology and gastric carcinogenesis.
Collapse
Affiliation(s)
- Pål Vange
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Torunn Bruland
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Vidar Beisvag
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Sten Even Erlandsen
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arnar Flatberg
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Berit Doseth
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| | - Arne K Sandvik
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway.,Department of Gastroenterology and Hepatology, St. Olav's University Hospital, Trondheim, Norway.,Centre of Molecular Inflammation Research (CEMIR), NTNU, Trondheim, Norway
| | - Ingunn Bakke
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,Central Norway Regional Health Authority (RHA), Stjørdal, Norway
| |
Collapse
|
8
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2015; 1288:429-46. [PMID: 25827895 DOI: 10.1007/978-1-4939-2474-5_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene, or a variety of genes at the same time. Availability of high quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | | | |
Collapse
|
9
|
Pillai S, Chellappan SP. ChIP on chip and ChIP-Seq assays: genome-wide analysis of transcription factor binding and histone modifications. Methods Mol Biol 2015; 1288:447-72. [PMID: 25827896 DOI: 10.1007/978-1-4939-2474-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, or sequencing of DNA associated with the factors (ChIP-Seq) allow us to determine the entire spectrum of in vivo DNA binding sites for a given protein. This has been of immense value because ChIP on chip assays and ChIP-Seq experiments can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This chapter outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols; these can be easily modified to a ChIP-Seq analysis.
Collapse
Affiliation(s)
- Smitha Pillai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL, 33612, USA
| | | |
Collapse
|
10
|
Yoshimaru T, Komatsu M, Matsuo T, Chen YA, Murakami Y, Mizuguchi K, Mizohata E, Inoue T, Akiyama M, Yamaguchi R, Imoto S, Miyano S, Miyoshi Y, Sasa M, Nakamura Y, Katagiri T. Targeting BIG3-PHB2 interaction to overcome tamoxifen resistance in breast cancer cells. Nat Commun 2014; 4:2443. [PMID: 24051437 PMCID: PMC3791465 DOI: 10.1038/ncomms3443] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Accepted: 08/15/2013] [Indexed: 12/21/2022] Open
Abstract
The acquisition of endocrine resistance is a common obstacle in endocrine therapy of patients with oestrogen receptor-α (ERα)-positive breast tumours. We previously demonstrated that the BIG3–PHB2 complex has a crucial role in the modulation of oestrogen/ERα signalling in breast cancer cells. Here we report a cell-permeable peptide inhibitor, called ERAP, that regulates multiple ERα-signalling pathways associated with tamoxifen resistance in breast cancer cells by inhibiting the interaction between BIG3 and PHB2. Intrinsic PHB2 released from BIG3 by ERAP directly binds to both nuclear- and membrane-associated ERα, which leads to the inhibition of multiple ERα-signalling pathways, including genomic and non-genomic ERα activation and ERα phosphorylation, and the growth of ERα-positive breast cancer cells both in vitro and in vivo. More importantly, ERAP treatment suppresses tamoxifen resistance and enhances tamoxifen responsiveness in ERα-positive breast cancer cells. These findings suggest inhibiting the interaction between BIG3 and PHB2 may be a new therapeutic strategy for the treatment of luminal-type breast cancer. Oestrogen receptor-α (ERα) signalling has a role in breast cancer drug resistance. Here, the authors report a synthetic peptide that disrupts the interaction between the signalling molecules BIG3 and PHB2, and thereby suppresses tamoxifen resistance.
Collapse
Affiliation(s)
- Tetsuro Yoshimaru
- Division of Genome Medicine, Institute for Genome Research, The University of Tokushima, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen CC, Xiao S, Xie D, Cao X, Song CX, Wang T, He C, Zhong S. Understanding variation in transcription factor binding by modeling transcription factor genome-epigenome interactions. PLoS Comput Biol 2013; 9:e1003367. [PMID: 24339764 PMCID: PMC3854512 DOI: 10.1371/journal.pcbi.1003367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/15/2013] [Indexed: 12/20/2022] Open
Abstract
Despite explosive growth in genomic datasets, the methods for studying epigenomic mechanisms of gene regulation remain primitive. Here we present a model-based approach to systematically analyze the epigenomic functions in modulating transcription factor-DNA binding. Based on the first principles of statistical mechanics, this model considers the interactions between epigenomic modifications and a cis-regulatory module, which contains multiple binding sites arranged in any configurations. We compiled a comprehensive epigenomic dataset in mouse embryonic stem (mES) cells, including DNA methylation (MeDIP-seq and MRE-seq), DNA hydroxymethylation (5-hmC-seq), and histone modifications (ChIP-seq). We discovered correlations of transcription factors (TFs) for specific combinations of epigenomic modifications, which we term epigenomic motifs. Epigenomic motifs explained why some TFs appeared to have different DNA binding motifs derived from in vivo (ChIP-seq) and in vitro experiments. Theoretical analyses suggested that the epigenome can modulate transcriptional noise and boost the cooperativity of weak TF binding sites. ChIP-seq data suggested that epigenomic boost of binding affinities in weak TF binding sites can function in mES cells. We showed in theory that the epigenome should suppress the TF binding differences on SNP-containing binding sites in two people. Using personal data, we identified strong associations between H3K4me2/H3K9ac and the degree of personal differences in NFκB binding in SNP-containing binding sites, which may explain why some SNPs introduce much smaller personal variations on TF binding than other SNPs. In summary, this model presents a powerful approach to analyze the functions of epigenomic modifications. This model was implemented into an open source program APEG (Affinity Prediction by Epigenome and Genome, http://systemsbio.ucsd.edu/apeg).
Collapse
Affiliation(s)
- Chieh-Chun Chen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Shu Xiao
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Dan Xie
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaoyi Cao
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Chun-Xiao Song
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Chuan He
- Department of Chemistry, University of Chicago, Chicago, Illinois, United States of America
| | - Sheng Zhong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Laresgoiti U, Apraiz A, Olea M, Mitxelena J, Osinalde N, Rodriguez JA, Fullaondo A, Zubiaga AM. E2F2 and CREB cooperatively regulate transcriptional activity of cell cycle genes. Nucleic Acids Res 2013; 41:10185-98. [PMID: 24038359 PMCID: PMC3905855 DOI: 10.1093/nar/gkt821] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
E2F2 is essential for the maintenance of T lymphocyte quiescence. To identify the full set of E2F2 target genes, and to gain further understanding of the role of E2F2 in transcriptional regulation, we have performed ChIP-chip analyses across the genome of lymph node–derived T lymphocytes. Here we show that during quiescence, E2F2 binds the promoters of a large number of genes involved in DNA metabolism and cell cycle regulation, concomitant with their transcriptional silencing. A comparison of ChIP-chip data with expression profiling data on resting E2f2−/− T lymphocytes identified a subset of 51 E2F2-specific target genes, most of which are upregulated on E2F2 loss. Luciferase reporter assays showed a retinoblastoma-independent role for E2F2 in the negative regulation of these target genes. Importantly, we show that the DNA binding activity of the transcription factor CREB contributes to E2F2-mediated repression of Mcm5 and Chk1 promoters. siRNA-mediated CREB knockdown, expression of a dominant negative KCREB mutant or disruption of CREB binding by mutating a CRE motif on Mcm5 promoter, relieved E2F2-mediated transcriptional repression. Taken together, our data uncover a new regulatory mechanism for E2F-mediated transcriptional control, whereby E2F2 and CREB cooperate in the transcriptional repression of a subset of E2F2 target genes.
Collapse
Affiliation(s)
- Usua Laresgoiti
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, UPV/EHU, Bilbao 48940, Spain and Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, Bilbao 48940, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Azmi AS, Bao GW, Gao J, Mohammad RM, Sarkar FH. Network insights into the genes regulated by hepatocyte nuclear factor 4 in response to drug induced perturbations: a review. Curr Drug Discov Technol 2013; 10:147-154. [PMID: 23237677 PMCID: PMC3820112 DOI: 10.2174/1570163811310020007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/30/2012] [Accepted: 12/12/2012] [Indexed: 06/01/2023]
Abstract
Transcription factors (TFs) play central role in normal cellular physiology and their aberrant expression is linked to different diseases. Hepatocyte Nuclear Factors (HNFs) are TFs that have been recognized to play multiple roles in liver physiology. Emerging research has highlighted their function in the sustenance of solid tumors, indicating that HNFs could serve as possible therapeutic targets in cancer. Although, there have been many attempts to develop HNF targeted drugs, the myriad downstream targets associated with these transcription factors, some of which are critical for normal cell homeostasis, led to the realization that HNFs are not easily druggable. Therefore, identifying and optimizing drugs that can selectively inactivate HNFs is a challenge to the pharmaceutical industry. To achieve this, a more in-depth understanding is required of the HNFs binding partners, the protein interaction networks it regulates and the resulting phenotype. This calls for network analysis of the pathways regulated by HNFs and how chemical perturbations can selectively activate or suppress their functions. Network biology is an emerging field of research that is finding applications in cancer drug discovery. Specifically, network pharmacology is cementing its position in cancer research and has various applications such as biomarker identification, in determining synergistic drug pairs and in drug repurposing. Developing a network understanding of HNFs, the target it hits and responses thereof can enhance our ability to design drugs against these TFs. This article reviews how network pharmacology can help in the identification of druggable avenues in TFs and also allow the selection of drugs and their synergistic pairs against HNFs for cancer therapy.
Collapse
Affiliation(s)
- Asfar S Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
14
|
Wang Z, Inuzuka H, Zhong J, Fukushima H, Wan L, Liu P, Wei W. DNA damage-induced activation of ATM promotes β-TRCP-mediated Mdm2 ubiquitination and destruction. Oncotarget 2013; 3:1026-35. [PMID: 22976441 PMCID: PMC3660052 DOI: 10.18632/oncotarget.640] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Mdm2 oncoprotein promotes p53 ubiquitination and destruction. Yet, exact molecular mechanisms of Mdm2 destruction itself, under DNA damaging conditions, remain unclear. Recently, we identified SCFβ-TRCP as a novel E3 ligase that targets Mdm2 for ubiquitination and destruction in a Casein Kinase Iδ (CKIδ)-dependent manner. However, it remains elusive how the β-TRCP/CKIδ/Mdm2 signaling axis is regulated by DNA damage signals to govern p53 activity. Consistent with previous studies, we found that inactivation of the Ataxia Telangiectasia Mutated (ATM) kinase, in turn, impaired DNA damage-induced Mdm2 destruction. Although phosphorylation of Mdm2 at Ser395 (an ATM phosphorylation site) facilitated Mdm2 interaction with β-TRCP, Ser395A-Mdm2 was degraded non-distinguishably from WT-Mdm2 by SCFβ-TRCP upon DNA damaging treatments. This indicates that in addition to phosphorylating Mdm2 at Ser395, ATM may govern Mdm2 stability through other unknown mechanisms. We further demonstrated that DNA damage-induced activation of ATM directly phosphorylated CKIδ at two well-conserved S/TQ sites, which promotes CKIδ nuclear localization to increase CKIδ-mediated phosphorylation of Mdm2, thereby facilitating subsequent Mdm2 ubiquitination by SCFβ-TRCP. Our studies provide a molecular mechanism of how ATM could govern DNA damage-induced destruction of Mdm2 in part by phosphorylating both Mdm2 and CKIδ to modulate SCFβ-TRCP–mediated Mdm2 ubiquitination. Given the pivotal role of Mdm2 in the negative regulation of p53, this work will also provide a rationale for developing CKIδ or ATM agonists as anti-cancer agents.
Collapse
Affiliation(s)
- Zhiwei Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hierarchical modularity in ERα transcriptional network is associated with distinct functions and implicates clinical outcomes. Sci Rep 2012; 2:875. [PMID: 23166858 PMCID: PMC3500769 DOI: 10.1038/srep00875] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/30/2012] [Indexed: 12/18/2022] Open
Abstract
Recent genome-wide profiling reveals highly complex regulation networks among ERα and its targets. We integrated estrogen (E2)-stimulated time-series ERα ChIP-seq and gene expression data to identify the ERα-centered transcription factor (TF) hubs and their target genes, and inferred the time-variant hierarchical network structures using a Bayesian multivariate modeling approach. With its recurrent motif patterns, we determined three embedded regulatory modules from the ERα core transcriptional network. The GO analyses revealed the distinct biological function associated with each of three embedded modules. The survival analysis showed the genes in each module were able to render a significant survival correlation in breast cancer patient cohorts. In summary, our Bayesian statistical modeling and modularity analysis not only reveals the dynamic properties of the ERα-centered regulatory network and associated distinct biological functions, but also provides a reliable and effective genomic analytical approach for the analysis of dynamic regulatory network for any given TF.
Collapse
|
16
|
Evidence for autoregulation and cell signaling pathway regulation from genome-wide binding of the Drosophila retinoblastoma protein. G3-GENES GENOMES GENETICS 2012; 2:1459-72. [PMID: 23173097 PMCID: PMC3484676 DOI: 10.1534/g3.112.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 09/20/2012] [Indexed: 12/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor protein is a transcriptional cofactor with essential roles in cell cycle and development. Physical and functional targets of RB and its paralogs p107/p130 have been studied largely in cultured cells, but the full biological context of this family of proteins' activities will likely be revealed only in whole organismal studies. To identify direct targets of the major Drosophila RB counterpart in a developmental context, we carried out ChIP-Seq analysis of Rbf1 in the embryo. The association of the protein with promoters is developmentally controlled; early promoter access is globally inhibited, whereas later in development Rbf1 is found to associate with promoter-proximal regions of approximately 2000 genes. In addition to conserved cell-cycle-related genes, a wholly unexpected finding was that Rbf1 targets many components of the insulin, Hippo, JAK/STAT, Notch, and other conserved signaling pathways. Rbf1 may thus directly affect output of these essential growth-control and differentiation pathways by regulation of expression of receptors, kinases and downstream effectors. Rbf1 was also found to target multiple levels of its own regulatory hierarchy. Bioinformatic analysis indicates that different classes of genes exhibit distinct constellations of motifs associated with the Rbf1-bound regions, suggesting that the context of Rbf1 recruitment may vary within the Rbf1 regulon. Many of these targeted genes are bound by Rbf1 homologs in human cells, indicating that a conserved role of RB proteins may be to adjust the set point of interlinked signaling networks essential for growth and development.
Collapse
|
17
|
Lan X, Farnham PJ, Jin VX. Uncovering transcription factor modules using one- and three-dimensional analyses. J Biol Chem 2012; 287:30914-21. [PMID: 22952238 DOI: 10.1074/jbc.r111.309229] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Transcriptional regulation is a critical mediator of many normal cellular processes, as well as disease progression. Transcription factors (TFs) often co-localize at cis-regulatory elements on the DNA, form protein complexes, and collaboratively regulate gene expression. Machine learning and Bayesian approaches have been used to identify TF modules in a one-dimensional context. However, recent studies using high throughput technologies have shown that TF interactions should also be considered in three-dimensional nuclear space. Here, we describe methods for identifying TF modules and discuss how moving from a one-dimensional to a three-dimensional paradigm, along with integrated experimental and computational approaches, can lead to a better understanding of TF association networks.
Collapse
Affiliation(s)
- Xun Lan
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
18
|
Johnson JL, Pillai S, Pernazza D, Sebti SM, Lawrence NJ, Chellappan SP. Regulation of matrix metalloproteinase genes by E2F transcription factors: Rb-Raf-1 interaction as a novel target for metastatic disease. Cancer Res 2011; 72:516-26. [PMID: 22086850 DOI: 10.1158/0008-5472.can-11-2647] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The retinoblastoma (Rb)-E2F transcriptional regulatory pathway plays a major role in cell-cycle regulation, but its role in invasion and metastasis is less well understood. We find that many genes involved in the invasion of cancer cells, such as matrix metalloproteinases (MMP), have potential E2F-binding sites in their promoters. E2F-binding sites were predicted on all 23 human MMP gene promoters, many of which harbored multiple E2F-binding sites. Studies presented here show that MMP genes such as MMP9, MMP14, and MMP15 which are overexpressed in non-small cell lung cancer, have multiple E2F-binding sites and are regulated by the Rb-E2F pathway. Chromatin immunoprecipitation assays showed the association of E2F1 with the MMP9, MMP14, and MMP15 promoters, and transient transfection experiments showed that these promoters are E2F responsive. Correspondingly, depletion of E2F family members by RNA interference techniques reduced the expression of these genes with a corresponding reduction in collagen degradation activity. Furthermore, activating Rb by inhibiting the interaction of Raf-1 with Rb by using the Rb-Raf-1 disruptor RRD-251 was sufficient to inhibit MMP transcription. This led to reduced invasion and migration of cancer cells in vitro and metastatic foci development in a tail vein lung metastasis model in mice. These results suggest that E2F transcription factors may play a role in promoting metastasis through regulation of MMP genes and that targeting the Rb-Raf-1 interaction is a promising approach for the treatment of metastatic disease.
Collapse
Affiliation(s)
- Jackie L Johnson
- Department of Tumor Biology, University of South Florida, Tampa, Florida, USA
| | | | | | | | | | | |
Collapse
|
19
|
Kennedy BA, Deatherage DE, Gu F, Tang B, Chan MWY, Nephew KP, Huang THM, Jin VX. ChIP-seq defined genome-wide map of TGFβ/SMAD4 targets: implications with clinical outcome of ovarian cancer. PLoS One 2011; 6:e22606. [PMID: 21799915 PMCID: PMC3143154 DOI: 10.1371/journal.pone.0022606] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 06/26/2011] [Indexed: 12/11/2022] Open
Abstract
Deregulation of the transforming growth factor-β (TGFβ) signaling pathway in epithelial ovarian cancer has been reported, but the precise mechanism underlying disrupted TGFβ signaling in the disease remains unclear. We performed chromatin immunoprecipitation followed by sequencing (ChIP-seq) to investigate genome-wide screening of TGFβ-induced SMAD4 binding in epithelial ovarian cancer. Following TGFβ stimulation of the A2780 epithelial ovarian cancer cell line, we identified 2,362 SMAD4 binding loci and 318 differentially expressed SMAD4 target genes. Comprehensive examination of SMAD4-bound loci, revealed four distinct binding patterns: 1) Basal; 2) Shift; 3) Stimulated Only; 4) Unstimulated Only. TGFβ stimulated SMAD4-bound loci were primarily classified as either Stimulated only (74%) or Shift (25%), indicating that TGFβ-stimulation alters SMAD4 binding patterns in epithelial ovarian cancer cells. Furthermore, based on gene regulatory network analysis, we determined that the TGFβ-induced, SMAD4-dependent regulatory network was strikingly different in ovarian cancer compared to normal cells. Importantly, the TGFβ/SMAD4 target genes identified in the A2780 epithelial ovarian cancer cell line were predictive of patient survival, based on in silico mining of publically available patient data bases. In conclusion, our data highlight the utility of next generation sequencing technology to identify genome-wide SMAD4 target genes in epithelial ovarian cancer and link aberrant TGFβ/SMAD signaling to ovarian tumorigenesis. Furthermore, the identified SMAD4 binding loci, combined with gene expression profiling and in silico data mining of patient cohorts, may provide a powerful approach to determine potential gene signatures with biological and future translational research in ovarian and other cancers.
Collapse
Affiliation(s)
- Brian A. Kennedy
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Daniel E. Deatherage
- Human Cancer Genetics Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Fei Gu
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Binhua Tang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael W. Y. Chan
- Department of Life Science, National Chung Cheng University, Min-Hsiung, Chia-Yi, Taiwan, Republic of China
| | - Kenneth P. Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Tim H-M. Huang
- Human Cancer Genetics Program, The Ohio State University, Columbus, Ohio, United States of America
| | - Victor X. Jin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Shen C, Huang Y, Liu Y, Wang G, Zhao Y, Wang Z, Teng M, Wang Y, Flockhart DA, Skaar TC, Yan P, Nephew KP, Huang THM, Li L. A modulated empirical Bayes model for identifying topological and temporal estrogen receptor α regulatory networks in breast cancer. BMC SYSTEMS BIOLOGY 2011; 5:67. [PMID: 21554733 PMCID: PMC3117732 DOI: 10.1186/1752-0509-5-67] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 05/09/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Estrogens regulate diverse physiological processes in various tissues through genomic and non-genomic mechanisms that result in activation or repression of gene expression. Transcription regulation upon estrogen stimulation is a critical biological process underlying the onset and progress of the majority of breast cancer. Dynamic gene expression changes have been shown to characterize the breast cancer cell response to estrogens, the every molecular mechanism of which is still not well understood. RESULTS We developed a modulated empirical Bayes model, and constructed a novel topological and temporal transcription factor (TF) regulatory network in MCF7 breast cancer cell line upon stimulation by 17β-estradiol stimulation. In the network, significant TF genomic hubs were identified including ER-alpha and AP-1; significant non-genomic hubs include ZFP161, TFDP1, NRF1, TFAP2A, EGR1, E2F1, and PITX2. Although the early and late networks were distinct (<5% overlap of ERα target genes between the 4 and 24 h time points), all nine hubs were significantly represented in both networks. In MCF7 cells with acquired resistance to tamoxifen, the ERα regulatory network was unresponsive to 17β-estradiol stimulation. The significant loss of hormone responsiveness was associated with marked epigenomic changes, including hyper- or hypo-methylation of promoter CpG islands and repressive histone methylations. CONCLUSIONS We identified a number of estrogen regulated target genes and established estrogen-regulated network that distinguishes the genomic and non-genomic actions of estrogen receptor. Many gene targets of this network were not active anymore in anti-estrogen resistant cell lines, possibly because their DNA methylation and histone acetylation patterns have changed.
Collapse
Affiliation(s)
- Changyu Shen
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yiwen Huang
- Division of Human Cancer Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Yunlong Liu
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Guohua Wang
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yuming Zhao
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Information and Computer Engineering College, Northeast Forestry University, Harbin, Heilongjiang, 150001, China
| | - Zhiping Wang
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Mingxiang Teng
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| | - David A Flockhart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Todd C Skaar
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pearlly Yan
- Division of Human Cancer Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Kenneth P Nephew
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Departments of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN, 47405, USA
| | - Tim HM Huang
- Division of Human Cancer Genetics, Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Virology, Immunology, and Medical Genetics, Ohio State University, Columbus, OH, 43210, USA
- Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Lang Li
- Center for Computational Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Indiana University Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
21
|
Gong T, Xuan J, Chen L, Riggins RB, Li H, Hoffman EP, Clarke R, Wang Y. Motif-guided sparse decomposition of gene expression data for regulatory module identification. BMC Bioinformatics 2011; 12:82. [PMID: 21426557 PMCID: PMC3072956 DOI: 10.1186/1471-2105-12-82] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 03/22/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genes work coordinately as gene modules or gene networks. Various computational approaches have been proposed to find gene modules based on gene expression data; for example, gene clustering is a popular method for grouping genes with similar gene expression patterns. However, traditional gene clustering often yields unsatisfactory results for regulatory module identification because the resulting gene clusters are co-expressed but not necessarily co-regulated. RESULTS We propose a novel approach, motif-guided sparse decomposition (mSD), to identify gene regulatory modules by integrating gene expression data and DNA sequence motif information. The mSD approach is implemented as a two-step algorithm comprising estimates of (1) transcription factor activity and (2) the strength of the predicted gene regulation event(s). Specifically, a motif-guided clustering method is first developed to estimate the transcription factor activity of a gene module; sparse component analysis is then applied to estimate the regulation strength, and so predict the target genes of the transcription factors. The mSD approach was first tested for its improved performance in finding regulatory modules using simulated and real yeast data, revealing functionally distinct gene modules enriched with biologically validated transcription factors. We then demonstrated the efficacy of the mSD approach on breast cancer cell line data and uncovered several important gene regulatory modules related to endocrine therapy of breast cancer. CONCLUSION We have developed a new integrated strategy, namely motif-guided sparse decomposition (mSD) of gene expression data, for regulatory module identification. The mSD method features a novel motif-guided clustering method for transcription factor activity estimation by finding a balance between co-regulation and co-expression. The mSD method further utilizes a sparse decomposition method for regulation strength estimation. The experimental results show that such a motif-guided strategy can provide context-specific regulatory modules in both yeast and breast cancer studies.
Collapse
Affiliation(s)
- Ting Gong
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA
| | - Jianhua Xuan
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA
| | - Li Chen
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA
| | - Rebecca B Riggins
- Lombardi Comprehensive Cancer Center and Department of Oncology, Physiology and Biophysics, Georgetown University, Washington, DC 20057, USA
| | - Huai Li
- Bioinformatics Unit, RRB, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Eric P Hoffman
- Research Center for Genetic Medicine, Children's National Medical Center, Washington, DC 20010, USA
| | - Robert Clarke
- Lombardi Comprehensive Cancer Center and Department of Oncology, Physiology and Biophysics, Georgetown University, Washington, DC 20057, USA
| | - Yue Wang
- Bradley Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA 22203, USA
| |
Collapse
|
22
|
Lan X, Bonneville R, Apostolos J, Wu W, Jin VX. W-ChIPeaks: a comprehensive web application tool for processing ChIP-chip and ChIP-seq data. ACTA ACUST UNITED AC 2010; 27:428-30. [PMID: 21138948 PMCID: PMC3031039 DOI: 10.1093/bioinformatics/btq669] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Summary: ChIP-based technology is becoming the leading technology to globally profile thousands of transcription factors and elucidate the transcriptional regulation mechanisms in living cells. It has evolved rapidly in recent years, from hybridization with spotted or tiling microarray (ChIP-chip), to pair-end tag sequencing (ChIP-PET), to current massively parallel sequencing (ChIP-seq). Although there are many tools available for identifying binding sites (peaks) for ChIP-chip and ChIP-seq, few of them are available as easy-accessible online web tools for processing both ChIP-chip and ChIP-seq data for the ChIP-based user community. As such, we have developed a comprehensive web application tool for processing ChIP-chip and ChIP-seq data. Our web tool W-ChIPeaks employed a probe-based (or bin-based) enrichment threshold to define peaks and applied statistical methods to control false discovery rate for identified peaks. The web tool includes two different web interfaces: PELT for ChIP-chip, BELT for ChIP-seq, where both were tested on previously published experimental data. The novel features of our tool include a comprehensive output for identified peaks with GFF, BED, bedGraph and .wig formats, annotated genes to which these peaks are related, a graphical interpretation and visualization of the results via a user-friendly web interface. Availability:http://motif.bmi.ohio-state.edu/W-ChIPeaks/. Contact:victor.jin@osumc.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xun Lan
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43221, USA
| | | | | | | | | |
Collapse
|
23
|
O'Geen H, Lin YH, Xu X, Echipare L, Komashko VM, He D, Frietze S, Tanabe O, Shi L, Sartor MA, Engel JD, Farnham PJ. Genome-wide binding of the orphan nuclear receptor TR4 suggests its general role in fundamental biological processes. BMC Genomics 2010; 11:689. [PMID: 21126370 PMCID: PMC3019231 DOI: 10.1186/1471-2164-11-689] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Background The orphan nuclear receptor TR4 (human testicular receptor 4 or NR2C2) plays a pivotal role in a variety of biological and metabolic processes. With no known ligand and few known target genes, the mode of TR4 function was unclear. Results We report the first genome-wide identification and characterization of TR4 in vivo binding. Using chromatin immunoprecipitation followed by high throughput sequencing (ChIP-seq), we identified TR4 binding sites in 4 different human cell types and found that the majority of target genes were shared among different cells. TR4 target genes are involved in fundamental biological processes such as RNA metabolism and protein translation. In addition, we found that a subset of TR4 target genes exerts cell-type specific functions. Analysis of the TR4 binding sites revealed that less than 30% of the peaks from any of the cell types contained the DR1 motif previously derived from in vitro studies, suggesting that TR4 may be recruited to the genome via interaction with other proteins. A bioinformatics analysis of the TR4 binding sites predicted a cis regulatory module involving TR4 and ETS transcription factors. To test this prediction, we performed ChIP-seq for the ETS factor ELK4 and found that 30% of TR4 binding sites were also bound by ELK4. Motif analysis of the sites bound by both factors revealed a lack of the DR1 element, suggesting that TR4 binding at a subset of sites is facilitated through the ETS transcription factor ELK4. Further studies will be required to investigate the functional interdependence of these two factors. Conclusions Our data suggest that TR4 plays a pivotal role in fundamental biological processes across different cell types. In addition, the identification of cell type specific TR4 binding sites enables future studies of the pathways underlying TR4 action and its possible role in metabolic diseases.
Collapse
Affiliation(s)
- Henriette O'Geen
- Genome Center, University of California at Davis, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The Rb/E2F pathway has long been appreciated for its role in regulating cell cycle progression. Emerging evidence indicates that it also influences physiological events beyond regulation of the cell cycle. We have previously described a requirement for Rb/E2F mediating neuronal migration; however, the molecular mechanisms remain unknown, making this an ideal system to identify Rb/E2F-mediated atypical gene regulation in vivo. Here, we report that Rb regulates the expression of neogenin, a gene encoding a receptor involved in cell migration and axon guidance. Rb is capable of repressing E2F-mediated neogenin expression while E2F3 occupies a region containing E2F consensus sites on the neogenin promoter in native chromatin. Absence of Rb results in aberrant neuronal migration and adhesion in response to netrin-1, a known ligand for neogenin. Increased expression of neogenin through ex vivo electroporation results in impaired neuronal migration similar to that detected in forebrain-specific Rb deficiency. These findings show direct regulation of neogenin by the Rb/E2F pathway and demonstrate that regulation of neogenin expression is required for neural precursor migration. These studies identify a novel mechanism through which Rb regulates transcription of a gene beyond the classical E2F targets to regulate events distinct from cell cycle progression.
Collapse
|
25
|
Bapat SA, Jin V, Berry N, Balch C, Sharma N, Kurrey N, Zhang S, Fang F, Lan X, Li M, Kennedy B, Bigsby RM, Huang THM, Nephew KP. Multivalent epigenetic marks confer microenvironment-responsive epigenetic plasticity to ovarian cancer cells. Epigenetics 2010; 5:716-29. [PMID: 20676026 DOI: 10.4161/epi.5.8.13014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Epigenetic plasticity" refers to the capability of mammalian cells to alter their differentiation status via chromatin remodeling-associated alterations in gene expression. While epigenetic plasticity has been best associated with lineage commitment of embryonic stem cells, recent studies have demonstrated chromatin remodeling even in terminally differentiated normal cells, and advanced-stage melanoma and breast cancer cells, in context-dependent responses to alterations in their microenvironment. In the current study, we extend this attribute of epigenetic plasticity to aggressive ovarian cancer cells, by using an integrative approach to associate cellular phenotypes with chromatin modifications ("ChIP-chip") and mRNA and microRNA expression. While we identified numerous gene promoters possessing the well-known "bivalent mark" of H3K27me3/H3K4me2, we also report 14 distinct, lesser-known bi-, tri-, and tetravalent combinations of activating and repressive chromatin modifications, in platinum-resistant CP70 ovarian cancer cells. The vast majority (>90%) of all the histone marks studied localized to regions within 2000 bp of transcription start sites, supporting a role in gene regulation. Upon a simple alteration in the microenvironment, transition from two- to three-dimensional culture, an increase (17% to 38%) in repressive-only marked promoters was observed, concomitant with a decrease (31% to 21%) in multivalent (i.e., juxtaposed permissive and repressive histone marked) promoters. Like embryonic/tissue stem and other (non-ovarian) carcinoma cells, ovarian cancer cell epigenetic plasticity reflects an inherent transcriptional flexibility for context-responsive alterations in phenotype. It is possible that this plasticity could be therapeutically exploited for the management of this lethal gynecologic malignancy.
Collapse
Affiliation(s)
- Sharmila A Bapat
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Pune, India.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Singh S, Johnson J, Chellappan S. Small molecule regulators of Rb-E2F pathway as modulators of transcription. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1799:788-94. [PMID: 20637913 PMCID: PMC2997897 DOI: 10.1016/j.bbagrm.2010.07.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 12/25/2022]
Abstract
The retinoblastoma tumor suppressor protein, Rb, plays a major role in the regulation of mammalian cell cycle progression. It has been shown that Rb function is essential for the proper modulation of G1/S transition and inactivation of Rb contributes to deregulated cell proliferation. Rb exerts its cell cycle regulatory functions mainly by targeting the E2F family of transcription factors and Rb has been shown to physically interact with E2Fs 1, 2 and 3, repressing their transcriptional activity. Multiple genes involved in DNA synthesis and cell cycle progression are regulated by E2Fs, and Rb prevents their expression by inhibiting E2F activity, inducing growth arrest. It has been established that inactivation of Rb by phosphorylation, mutation, or by the interaction of viral oncoproteins leads to a release of the repression of E2F activity, facilitating cell cycle progression. Rb-mediated repression of E2F activity involves the recruitment of a variety of transcriptional co-repressors and chromatin remodeling proteins, including histone deacetylases, DNA methyltransferases and Brg1/Brm chromatin remodeling proteins. Inactivation of Rb by sequential phosphorylation events during cell cycle progression leads to a dissociation of these co-repressors from Rb, facilitating transcription. It has been found that small molecules that prevent the phosphorylation of Rb prevent the dissociation of certain co-repressors from Rb, especially Brg1, leading to the maintenance of Rb-mediated transcriptional repression and cell cycle arrest. Such small molecules have anti-cancer activities and will also act as valuable probes to study chromatin remodeling and transcriptional regulation.
Collapse
Affiliation(s)
- Sandeep Singh
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Jackie Johnson
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| | - Srikumar Chellappan
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612
| |
Collapse
|
27
|
Werner T. Next generation sequencing in functional genomics. Brief Bioinform 2010; 11:499-511. [PMID: 20501549 DOI: 10.1093/bib/bbq018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genome-wide sequencing has enabled modern biomedical research to relate more and more events in healthy as well as disease-affected cells and tissues to the genomic sequence. Now next generation sequencing (NGS) extends that reach into multiple almost complete genomes of the same species, revealing more and more details about how individual genomes as well as individual aspects of their regulation differ from each other. The inclusion of NGS-based transcriptome sequencing, chromatin-immunoprecipitation (ChIP) of transcription factor binding and epigenetic analyses (usually based on DNA methylation or histone modification ChIP) completes the picture with unprecedented resolution enabling the detection of even subtle differences such as alternative splicing of individual exons. Functional genomics aims at the elucidation of the molecular basis of biological functions and requires analyses that go far beyond the primary analysis of the reads such as mapping to a genome template sequence. The various and complex interactions between the genome, gene products and metabolites define biological function, which necessitates inclusion of results other than sequence tags in quite elaborative approaches. However, the extra efforts pay off in revealing mechanisms as well as providing the foundation for new strategies in systems biology and personalized medicine. This review emphasizes the particular contribution NGS-based technologies make to functional genomics research with a special focus on gene regulation by transcription factor binding sites.
Collapse
|
28
|
He X, Chen CC, Hong F, Fang F, Sinha S, Ng HH, Zhong S. A biophysical model for analysis of transcription factor interaction and binding site arrangement from genome-wide binding data. PLoS One 2009; 4:e8155. [PMID: 19956545 PMCID: PMC2780727 DOI: 10.1371/journal.pone.0008155] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 11/10/2009] [Indexed: 11/19/2022] Open
Abstract
Background How transcription factors (TFs) interact with cis-regulatory sequences and interact with each other is a fundamental, but not well understood, aspect of gene regulation. Methodology/Principal Findings We present a computational method to address this question, relying on the established biophysical principles. This method, STAP (sequence to affinity prediction), takes into account all combinations and configurations of strong and weak binding sites to analyze large scale transcription factor (TF)-DNA binding data to discover cooperative interactions among TFs, infer sequence rules of interaction and predict TF target genes in new conditions with no TF-DNA binding data. The distinctions between STAP and other statistical approaches for analyzing cis-regulatory sequences include the utility of physical principles and the treatment of the DNA binding data as quantitative representation of binding strengths. Applying this method to the ChIP-seq data of 12 TFs in mouse embryonic stem (ES) cells, we found that the strength of TF-DNA binding could be significantly modulated by cooperative interactions among TFs with adjacent binding sites. However, further analysis on five putatively interacting TF pairs suggests that such interactions may be relatively insensitive to the distance and orientation of binding sites. Testing a set of putative Nanog motifs, STAP showed that a novel Nanog motif could better explain the ChIP-seq data than previously published ones. We then experimentally tested and verified the new Nanog motif. A series of comparisons showed that STAP has more predictive power than several state-of-the-art methods for cis-regulatory sequence analysis. We took advantage of this power to study the evolution of TF-target relationship in Drosophila. By learning the TF-DNA interaction models from the ChIP-chip data of D. melanogaster (Mel) and applying them to the genome of D. pseudoobscura (Pse), we found that only about half of the sequences strongly bound by TFs in Mel have high binding affinities in Pse. We show that prediction of functional TF targets from ChIP-chip data can be improved by using the conservation of STAP predicted affinities as an additional filter. Conclusions/Significance STAP is an effective method to analyze binding site arrangements, TF cooperativity, and TF target genes from genome-wide TF-DNA binding data.
Collapse
Affiliation(s)
- Xin He
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Chieh-Chun Chen
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Feng Hong
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Fang Fang
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore, Singapore
| | - Saurabh Sinha
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Huck-Hui Ng
- Gene Regulation Laboratory, Genome Institute of Singapore, Singapore, Singapore
| | - Sheng Zhong
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- Department of Statistics, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
- * E-mail:
| |
Collapse
|
29
|
Abstract
Mutations of the retinoblastoma tumour suppressor gene (RB1) or components regulating the RB pathway have been identified in almost every human malignancy. The E2F transcription factors function in cell cycle control and are intimately regulated by RB. Studies of model organisms have revealed conserved functions for E2Fs during development, suggesting that the cancer-related proliferative roles of E2F family members represent a recent evolutionary adaptation. However, given that some human tumours have concurrent RB1 inactivation and E2F amplification and overexpression, we propose that there are alternative tumour-promoting activities for the E2F family, which are independent of cell cycle regulation.
Collapse
Affiliation(s)
- Hui-Zi Chen
- Human Cancer Genetics Program, Department of Molecular Virology, Immunology and Medical Genetics and Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
30
|
Fernández-Ramires R, Solé X, De Cecco L, Llort G, Cazorla A, Bonifaci N, Garcia MJ, Caldés T, Blanco I, Gariboldi M, Pierotti MA, Pujana MA, Benítez J, Osorio A. Gene expression profiling integrated into network modelling reveals heterogeneity in the mechanisms of BRCA1 tumorigenesis. Br J Cancer 2009; 101:1469-80. [PMID: 19826428 PMCID: PMC2768459 DOI: 10.1038/sj.bjc.6605275] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Gene expression profiling has distinguished sporadic breast tumour classes with genetic and clinical differences. Less is known about the molecular classification of familial breast tumours, which are generally considered to be less heterogeneous. Here, we describe molecular signatures that define BRCA1 subclasses depending on the expression of the gene encoding for oestrogen receptor, ESR1. METHODS For this purpose, we have used the Oncochip v2, a cancer-related cDNA microarray to analyze 14 BRCA1-associated breast tumours. RESULTS Signatures were found to be molecularly associated with different biological processes and transcriptional regulatory programs. The signature of ESR1-positive tumours was mainly linked to cell proliferation and regulated by ER, whereas the signature of ESR1-negative tumours was mainly linked to the immune response and possibly regulated by transcription factors of the REL/NFkappaB family. These signatures were then verified in an independent series of familial and sporadic breast tumours, which revealed a possible prognostic value for each subclass. Over-expression of immune response genes seems to be a common feature of ER-negative sporadic and familial breast cancer and may be associated with good prognosis. Interestingly, the ESR1-negative tumours were substratified into two groups presenting slight differences in the magnitude of the expression of immune response transcripts and REL/NFkappaB transcription factors, which could be dependent on the type of BRCA1 germline mutation. CONCLUSION This study reveals the molecular complexity of BRCA1 breast tumours, which are found to display similarities to sporadic tumours, and suggests possible prognostic implications.
Collapse
|
31
|
Cheng H, Jiang L, Wu M, Liu Q. Inferring Transcriptional Interactions by the Optimal Integration of ChIP-chip and Knock-out Data. Bioinform Biol Insights 2009; 3:129-40. [PMID: 20140075 PMCID: PMC2808186 DOI: 10.4137/bbi.s3445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
How to combine heterogeneous data sources for reliable prediction of transcriptional regulation is a challenge. Here we present an easy but powerful method to integrate Chromatin immunoprecipitation (ChIP)-chip and knock-out data. Since these two types of data provide complementary (physical and functional) information about transcription, the method combining them is expected to achieve high detection rates and very low false positive rates. We try to seek the optimal integration of these two data using hyper-geometric distribution. We evaluate our method on yeast data and compare our predictions with YEASTRACT, high-quality ChIP-chip data, and literature. The results show that even using low-quality ChIP-chip data, our method uncovers more relations than those inferred before from high-quality data. Furthermore our method achieves a low false positive rate. We find experimental and computational evidence in literature for most transcription factor (TF)-gene relations uncovered by our method.
Collapse
Affiliation(s)
- Haoyu Cheng
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | |
Collapse
|
32
|
Williams CMJ, Scibetta AG, Friedrich JK, Canosa M, Berlato C, Moss CH, Hurst HC. AP-2gamma promotes proliferation in breast tumour cells by direct repression of the CDKN1A gene. EMBO J 2009; 28:3591-601. [PMID: 19798054 DOI: 10.1038/emboj.2009.290] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 08/28/2009] [Indexed: 12/20/2022] Open
Abstract
Overexpression of the activator protein (AP)-2gamma transcription factor in breast tumours has been identified as an independent predictor of poor outcome and failure of hormone therapy. To understand further the function of AP-2gamma in breast carcinoma, we have used an RNA interference and gene expression profiling strategy with the MCF-7 cell line as a model. Gene expression changes between control and silenced cells implicate AP-2gamma in the control of cell cycle progression and developmental signalling. A function for AP-2gamma in cell cycle control was verified using flow cytometry: AP-2gamma silencing led to a partial G1/S arrest and induction of the cyclin-dependent kinase inhibitor, p21cip/CDKN1A. Reporter and chromatin immunoprecipitation assays demonstrated a direct, functional interaction by AP-2gamma at the CDKN1A proximal promoter. AP-2gamma silencing coincided with acquisition of an active chromatin conformation at the CDKN1A locus and increased gene expression. These data provide a mechanism whereby AP-2gamma overexpression can promote breast epithelial proliferation and, coupled with previously published data, suggest how loss of oestrogen regulation of AP-2gamma may contribute to the failure of hormone therapy in patients.
Collapse
Affiliation(s)
- Christopher M J Williams
- Barts & The London School of Medicine and Dentistry, Queen Mary University of London, Centre for Tumour Biology, Institute of Cancer, Charterhouse Square, London, UK
| | | | | | | | | | | | | |
Collapse
|
33
|
Kennedy BA, Gao W, Huang THM, Jin VX. HRTBLDb: an informative data resource for hormone receptors target binding loci. Nucleic Acids Res 2009; 38:D676-81. [PMID: 19773424 PMCID: PMC2808888 DOI: 10.1093/nar/gkp734] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Three hormone receptors, the estrogen receptor (ER), the androgen receptor (AR) and glucocorticoid receptor (GR) play an important role in regulating the cellular differentiation tissue development of skin, bone, the brain and the endocrine system; therefore, there is a strong scientific need to identify and characterize hormone receptor transcriptional regulation. Given that the vast amount of regulatory data for hormone being produced by ChIP-based high-throughput experiments is widely scattered in disparate, poorly cross-indexed data stores, a flexible platform for organizing and relating these data would provide significant value. We created a data management system called the Hormone Receptor Target Binding Loci, HRTBLDb (http://motif.bmi.ohio-state.edu/hrtbldb), to address this problem. This database contains hormone receptor binding regions (binding loci) from in vivo ChIP-based high-throughput experiments as well as in silico, computationally predicted, binding motifs and cis-regulatory modules for the co-occurring transcription factor binding motifs, which are within a binding locus. It also contains individual binding sites whose regulatory action has been verified by in vitro experiments. The current version contains 44,673 binding elements with 114 hormone response elements which are verified by in vitro experiments; 75 binding motifs which occur with a hormone response element and whose co-regulatory action is verified by in vitro experiments; 18,472 binding loci from in vivo experiments; and 26,012 computationally predicted binding motifs.
Collapse
Affiliation(s)
- Brian A Kennedy
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
34
|
Abstract
A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-seq. This Review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome. It also suggests future experiments that may further our understanding of the causes and consequences of transcription factor-genome interactions.
Collapse
Affiliation(s)
- Peggy J Farnham
- Department of Pharmacology and the Genome Center, University of California Davis, Davis, California 95616, USA.
| |
Collapse
|
35
|
Epigenetic changes during disease progression in a murine model of human chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2009; 106:13433-8. [PMID: 19666576 DOI: 10.1073/pnas.0906455106] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epigenetic alterations, including gain or loss of DNA methylation, are a hallmark of nearly every malignancy. Changes in DNA methylation can impact expression of cancer-related genes including apoptosis regulators and tumor suppressors. Because such epigenetic changes are reversible, they are being aggressively investigated as potential therapeutic targets. Here we use the Emu-TCL1 transgenic mouse model of chronic lymphocytic leukemia (CLL) to determine the timing and patterns of aberrant DNA methylation, and to investigate the mechanisms that lead to aberrant DNA methylation. We show that CLL cells from Emu-TCL1 mice at various stages recapitulate epigenetic alterations seen in human CLL. Aberrant methylation of promoter sequences is observed as early as 3 months of age in these animals, well before disease onset. Abnormally methylated promoter regions include binding sites for the transcription factor FOXD3. We show that loss of Foxd3 expression due to an NF-kappaB p50/p50:HDAC1 repressor complex occurs in TCL1-positive B cells before methylation. Therefore, specific transcriptional repression is an early event leading to epigenetic silencing of target genes in murine and human CLL. These results provide strong rationale for the development of strategies to target NF-kappaB components in CLL and potentially other B-cell malignancies.
Collapse
|
36
|
The p107/E2F pathway regulates fibroblast growth factor 2 responsiveness in neural precursor cells. Mol Cell Biol 2009; 29:4701-13. [PMID: 19564414 DOI: 10.1128/mcb.01767-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have previously shown that p107, a member of the retinoblastoma (Rb) cell cycle regulatory family, has a unique function in regulating the pool of neural precursor cells. As the pool of progenitors is regulated by a limiting supply of trophic factors, we asked if the Rb/E2F pathway may control the size of the progenitor population by regulating the levels of growth factors or their receptors. Here, we demonstrate that fibroblast growth factor 2 (FGF2) is aberrantly upregulated in the brains of animals lacking Rb family proteins and that the gene encoding the FGF2 ligand is directly regulated by p107 and E2F3. Chromatin immunoprecipitation assays demonstrated that E2F3 and p107 occupy E2F consensus sites on the FGF2 promoter in the context of native chromatin. To evaluate the physiological consequence of FGF2 deregulation in both p107 and E2F3 mutants, we measured neural progenitor responsiveness to growth factors. Our results demonstrate that E2F3 and p107 are each mediators of FGF2 growth factor responsiveness in neural progenitor cells. These results support a model whereby p107 regulates the pool of FGF-responsive progenitors by directly regulating FGF2 gene expression in vivo. By identifying novel roles for p107/E2F in regulating genes outside of the classical cell cycle machinery targets, we uncover a new mechanism whereby Rb/E2F mediates proliferation through regulating growth factor responsiveness.
Collapse
|
37
|
Solé X, Bonifaci N, López-Bigas N, Berenguer A, Hernández P, Reina O, Maxwell CA, Aguilar H, Urruticoechea A, de Sanjosé S, Comellas F, Capellá G, Moreno V, Pujana MA. Biological convergence of cancer signatures. PLoS One 2009; 4:e4544. [PMID: 19229342 PMCID: PMC2642727 DOI: 10.1371/journal.pone.0004544] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/16/2009] [Indexed: 01/13/2023] Open
Abstract
Gene expression profiling has identified cancer prognostic and predictive signatures with superior performance to conventional histopathological or clinical parameters. Consequently, signatures are being incorporated into clinical practice and will soon influence everyday decisions in oncology. However, the slight overlap in the gene identity between signatures for the same cancer type or condition raises questions about their biological and clinical implications. To clarify these issues, better understanding of the molecular properties and possible interactions underlying apparently dissimilar signatures is needed. Here, we evaluated whether the signatures of 24 independent studies are related at the genome, transcriptome or proteome levels. Significant associations were consistently observed across these molecular layers, which suggest the existence of a common cancer cell phenotype. Convergence on cell proliferation and death supports the pivotal involvement of these processes in prognosis, metastasis and treatment response. In addition, functional and molecular associations were identified with the immune response in different cancer types and conditions that complement the contribution of cell proliferation and death. Examination of additional, independent, cancer datasets corroborated our observations. This study proposes a comprehensive strategy for interpreting cancer signatures that reveals common design principles and systems-level properties.
Collapse
Affiliation(s)
- Xavier Solé
- Bioinformatics and Biostatistics Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Núria Bonifaci
- Bioinformatics and Biostatistics Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Núria López-Bigas
- Research Unit on Biomedical Informatics of IMIM/UPF, Barcelona Biomedical Research Park, Barcelona, Spain
| | - Antoni Berenguer
- Bioinformatics and Biostatistics Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Pilar Hernández
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Oscar Reina
- Unit of Infections and Cancer, CIBERESP, Epidemiology Research of Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Christopher A. Maxwell
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Helena Aguilar
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Ander Urruticoechea
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Silvia de Sanjosé
- Unit of Infections and Cancer, CIBERESP, Epidemiology Research of Cancer Program, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Francesc Comellas
- Department of Applied Mathematics IV, Technical University of Catalonia, Castelldefels, Barcelona, Spain
| | - Gabriel Capellá
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Víctor Moreno
- Bioinformatics and Biostatistics Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Miguel Angel Pujana
- Bioinformatics and Biostatistics Unit, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain
- * E-mail: .
| |
Collapse
|
38
|
Pillai S, Dasgupta P, Chellappan SP. Chromatin immunoprecipitation assays: analyzing transcription factor binding and histone modifications in vivo. Methods Mol Biol 2009; 523:323-39. [PMID: 19381928 DOI: 10.1007/978-1-59745-190-1_22] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Studies in the past decade have shown that differential gene expression depends not only on the binding of specific transcription factors to discrete promoter elements but also on the epigenetic modification of the DNA as well as histones associated with the promoter. While techniques like electrophoretic mobility shift assays could detect and characterize the binding of specific transcription factors present in cell lysates to DNA sequences in in vitro binding conditions, they were not effective in assessing the binding in intact cells. Development of chromatin immunoprecipitation technique in the past decade enabled the analysis of the association of regulatory molecules with specific promoters or changes in histone modifications in vivo, without overexpressing any component. ChIP assays can provide a snapshot of how a regulatory transcription factor affects the expression of a single gene or a variety of genes at the same time. Availability of high-quality antibodies that recognizes histones modified in a specific fashion further expanded the use of ChIP assays to analyze even minute changes in histone modification and nucleosomes structure. This chapter outlines the general strategies and protocols used to carry out ChIP assays to study the differential recruitment of transcription factors as well as histone modifications.
Collapse
Affiliation(s)
- Smitha Pillai
- Drug Discovery Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | | |
Collapse
|
39
|
ChIP on chip assays: genome-wide analysis of transcription factor binding and histone modifications. Methods Mol Biol 2009; 523:341-66. [PMID: 19381927 DOI: 10.1007/978-1-59745-190-1_23] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deregulation of transcriptional activity of many genes has been causatively linked to human diseases including cancer. Altered patterns of gene expression in normal and cancer cells are the result of inappropriate expression of transcription factors and chromatin-modifying proteins. Chromatin immunoprecipitation assay is a well-established tool for investigating the interactions between regulatory proteins and DNA at distinct stages of gene activation. ChIP coupled with DNA microarrays, known as ChIP on chip, allow us to determine the entire spectrum of in vivo DNA-binding sites for a given protein. This has been of immense value because ChIP on chip assays can provide a snapshot of the transcriptional regulatory mechanisms on a genome-wide scale. This article outlines the general strategies used to carry out ChIP-chip assays to study the differential recruitment of regulatory molecules based on the studies conducted in our lab as well as other published protocols.
Collapse
|
40
|
Rabinovich A, Jin VX, Rabinovich R, Xu X, Farnham PJ. E2F in vivo binding specificity: comparison of consensus versus nonconsensus binding sites. Genome Res 2008; 18:1763-77. [PMID: 18836037 DOI: 10.1101/gr.080622.108] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that most sites bound by E2F family members in vivo do not contain E2F consensus motifs. However, differences between in vivo target sites that contain or lack a consensus E2F motif have not been explored. To understand how E2F binding specificity is achieved in vivo, we have addressed how E2F family members are recruited to core promoter regions that lack a consensus motif and are excluded from other regions that contain a consensus motif. Using chromatin immunoprecipitation coupled with DNA microarray analysis (ChIP-chip) assays, we have shown that the predominant factors specifying whether E2F is recruited to an in vivo binding site are (1) the site must be in a core promoter and (2) the region must be utilized as a promoter in that cell type. We have tested three models for recruitment of E2F to core promoters lacking a consensus site, including (1) indirect recruitment, (2) looping to the core promoter mediated by an E2F bound to a distal motif, and (3) assisted binding of E2F to a site that weakly resembles an E2F motif. To test these models, we developed a new in vivo assay, termed eChIP, which allows analysis of transcription factor binding to isolated fragments. Our findings suggest that in vivo (1) a consensus motif is not sufficient to recruit E2Fs, (2) E2Fs can bind to isolated regions that lack a consensus motif, and (3) binding can require regions other than the best match to the E2F motif.
Collapse
Affiliation(s)
- Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
41
|
Xie J, Crooke PS, McKinney BA, Soltman J, Brandt SJ. A computational model of quantitative chromatin immunoprecipitation (ChIP) analysis. Cancer Inform 2008; 6:138-46. [PMID: 18458756 PMCID: PMC2367313 DOI: 10.4137/cin.s295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chromatin immunoprecipitation (ChIP) analysis is widely used to identify the locations in genomes occupied by transcription factors (TFs). The approach involves chemical cross-linking of DNA with associated proteins, fragmentation of chromatin by sonication or enzymatic digestion, immunoprecipitation of the fragments containing the protein of interest, and then PCR or hybridization analysis to characterize and quantify the genomic sequences enriched. We developed a computational model of quantitative ChIP analysis to elucidate the factors contributing to the method's resolution. The most important variables identified by the model were, in order of importance, the spacing of the PCR primers, the mean length of the chromatin fragments, and, unexpectedly, the type of fragment width distribution, with very small DNA fragments and smaller amplicons providing the best resolution of TF binding. One of the major predictions of the model was also validated experimentally.
Collapse
Affiliation(s)
- Jingping Xie
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
| | - Philip S. Crooke
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
| | - Brett A. McKinney
- Department of Mathematics, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- Department of Pediatrics, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- Current address: Department of Genetics, University of Alabama Birmingham Medical Center, Birmingham, Alabama 35294, U.S.A
| | - Joel Soltman
- University School of Nashville, Nashville, Tennessee 37212, U.S.A
| | - Stephen J. Brandt
- Department of Medicine, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee 37232, U.S.A
- VA Tennessee Valley Healthcare System, Nashville, Tennessee 37212, U.S.A
| |
Collapse
|
42
|
Kel AE, Niehof M, Matys V, Zemlin R, Borlak J. Genome wide prediction of HNF4alpha functional binding sites by the use of local and global sequence context. Genome Biol 2008; 9:R36. [PMID: 18291023 PMCID: PMC2374721 DOI: 10.1186/gb-2008-9-2-r36] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 11/09/2007] [Accepted: 02/21/2008] [Indexed: 11/16/2022] Open
Abstract
An application of machine learning algorithms enables prediction of the functional context of transcription factor binding sites in the human genome. We report an application of machine learning algorithms that enables prediction of the functional context of transcription factor binding sites in the human genome. We demonstrate that our method allowed de novo identification of hepatic nuclear factor (HNF)4α binding sites and significantly improved an overall recognition of faithful HNF4α targets. When applied to published findings, an unprecedented high number of false positives were identified. The technique can be applied to any transcription factor.
Collapse
Affiliation(s)
- Alexander E Kel
- BIOBASE GmbH, Halchtersche Str, 38304 Wolfenbüttel, Germany.
| | | | | | | | | |
Collapse
|
43
|
Bourdeau V, Deschênes J, Laperrière D, Aid M, White JH, Mader S. Mechanisms of primary and secondary estrogen target gene regulation in breast cancer cells. Nucleic Acids Res 2007; 36:76-93. [PMID: 17986456 PMCID: PMC2248750 DOI: 10.1093/nar/gkm945] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Estrogen receptors (ERs), which mediate the proliferative action of estrogens in breast cancer cells, are ligand-dependent transcription factors that regulate expression of their primary target genes through several mechanisms. In addition to direct binding to cognate DNA sequences, ERs can be recruited to DNA through other transcription factors (tethering), or affect gene transcription through modulation of signaling cascades by non-genomic mechanisms of action. To better characterize the mechanisms of gene regulation by estrogens, we have identified more than 700 putative primary and about 1300 putative secondary target genes of estradiol in MCF-7 cells through microarray analysis performed in the presence or absence of the translation inhibitor cycloheximide. Although siRNA-mediated inhibition of ERalpha expression antagonized the effects of estradiol on up- and down-regulated primary target genes, estrogen response elements (EREs) were enriched only in the vicinity of up-regulated genes. Binding sites for several other transcription factors, including proteins known to tether ERalpha, were enriched in up- and/or down-regulated primary targets. Secondary estrogen targets were particularly enriched in sites for E2F family members, several of which were transcriptionally regulated by estradiol, consistent with a major role of these factors in mediating the effects of estrogens on gene expression and cellular growth.
Collapse
Affiliation(s)
- Véronique Bourdeau
- Institute for Research in Immunology and Cancer and Biochemistry Department, Université de Montréal, C.P. 6128 Succursale Centre Ville, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R, Farnham PJ. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res 2007; 17:1550-61. [PMID: 17908821 PMCID: PMC2045138 DOI: 10.1101/gr.6783507] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Using ChIP-chip assays (employing ENCODE arrays and core promoter arrays), we examined the binding patterns of three members of the E2F family in five cell types. We determined that most E2F1, E2F4, and E2F6 binding sites are located within 2 kb of a transcription start site, in both normal and tumor cells. In fact, the majority of promoters that are active (as defined by TAF1 or POLR2A binding) in GM06990 B lymphocytes and Ntera2 carcinoma cells were also bound by an E2F. This very close relationship between E2F binding sites and binding sites for general transcription factors in both normal and tumor cells suggests that a chromatin-bound E2F may be a signpost for active transcription initiation complexes. In general, we found that several E2Fs bind to a given promoter and that there is only modest cell type specificity of the E2F family. Thus, it is difficult to assess the role of any particular E2F in transcriptional regulation, due to extreme redundancy of target promoters. However, Ntera2 carcinoma cells were exceptional in that a large set of promoters were bound by E2F6, but not by E2F1 or E2F4. It has been proposed that E2F6 contributes to gene silencing by recruiting enzymes involved in methylating histone H3. To test this hypothesis, we created Ntera2 cell lines harboring shRNAs to E2F6. We found that reduction of E2F6 only induced minimal alteration of the transcriptome of Ntera2 transcriptome. Our results support the concept of functional redundancy in the E2F family and suggest that E2F6 is not critical for histone methylation.
Collapse
Affiliation(s)
- Xiaoqin Xu
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Mark Bieda
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Victor X. Jin
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Alina Rabinovich
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
| | - Mathew J. Oberley
- University of Wisconsin Medical School, Madison, Wisconsin, 53705 USA
| | - Roland Green
- NimbleGen Systems Inc., Madison, Wisconsin, 53711 USA
| | - Peggy J. Farnham
- Department of Pharmacology and the Genome Center, University of California-Davis, Davis, California 95616, USA
- Corresponding author.E-mail ; fax (530) 754-9658
| |
Collapse
|
45
|
Jin VX, O’Geen H, Iyengar S, Green R, Farnham PJ. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res 2007; 17:807-17. [PMID: 17567999 PMCID: PMC1891340 DOI: 10.1101/gr.6006107] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ChIP-chip studies have revealed that many in vivo binding sites have a weak match to the consensus sequence for the transcription factor being analyzed. Possible explanations for these observations include (1) the in vitro-derived consensus site does not represent the in vivo binding site and/or (2) the factor is recruited to a weak binding site via interaction with another protein. To address these possibilities, we developed an approach (ChIPMotifs) that incorporates a bootstrap resampling method to statistically infer the optimal cutoff threshold for a position weight matrix (PWM) of a motif identified from ChIP-chip data by ab initio motif discovery programs. Using OCT4 ChIP-chip data and the ChIPMotifs approach, we first developed a refined OCT4 PWM. We then used the refined PWM and a ChIPModules approach to identify transcription factors colocalizing with OCT4 in Ntera2 testicular embryonal carcinoma cells. We found that the consensus binding site for SRY, a transcription factor critical for testis development, colocalizes with the OCT4 PWM. To further characterize the relationship between OCT4 and SRY, we performed ChIP-chip experiments with human promoter microarrays, and found that 49% of the top approximately 1000 OCT4 target promoters were also bound by SRY. This analysis represents the first identification of SRY target promoters. Interestingly, we determined that promoters bound by OCT4 and SRY, but not those bound by SRY alone, were also bound by the transcriptional repressor KAP1. Our studies not only validate the ChIPMotifs and ChIPModules combinatorial approach but also identify a possible new regulatory partner of OCT4.
Collapse
Affiliation(s)
- Victor X. Jin
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Henriette O’Geen
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Sushma Iyengar
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
| | - Roland Green
- NimbleGen Systems, Inc., Madison, Wisconsin 53711, USA
| | - Peggy J. Farnham
- Department of Pharmacology and the Genome Center, University of California–Davis, Davis, California 95616, USA
- Corresponding author.E-mail ; fax (530) 754-9658
| |
Collapse
|
46
|
O'Geen H, Nicolet CM, Blahnik K, Green R, Farnham PJ. Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 2006; 41:577-80. [PMID: 17140114 PMCID: PMC2268903 DOI: 10.2144/000112268] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A single chromatin immunoprecipitation (ChIP) sample does not provide enough DNA for hybridization to a genomic tiling array. A commonly used technique for amplifying the DNA obtained from ChIP assays is ligation-mediated PCR (LM-PCR). However; using this amplification method, we could not identify Oct4 binding sites on genomic tiling arrays representing 1% of the human genome (ENCODE arrays). In contrast, hybridization of a pool of 10 ChIP samples to the arrays produced reproducible binding patterns and low background signals. However the pooling method would greatly increase the number of ChIP reactions needed to analyze the entire human genome. Therefore, we have adapted the GenomePlex whole genome amplification (WGA) method for use in ChIP-chip assays; detailed ChIP and amplification protocols used for these analyses are provided as supplementary material. When applied to ENCODE arrays, the products prepared using this new method resulted in an Oct4 binding pattern similar to that from the pooled Oct4 ChIP samples. Importantly, the signal-to-noise ratio using the GenomePlex WGA method is superior to the LM-PCR amplification method.
Collapse
Affiliation(s)
| | | | - Kim Blahnik
- Genome Center, University of California-Davis, Davis, CA
| | | | | |
Collapse
|
47
|
Elnitski L, Jin VX, Farnham PJ, Jones SJM. Locating mammalian transcription factor binding sites: a survey of computational and experimental techniques. Genome Res 2006; 16:1455-64. [PMID: 17053094 DOI: 10.1101/gr.4140006] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fields such as genomics and systems biology are built on the synergism between computational and experimental techniques. This type of synergism is especially important in accomplishing goals like identifying all functional transcription factor binding sites in vertebrate genomes. Precise detection of these elements is a prerequisite to deciphering the complex regulatory networks that direct tissue specific and lineage specific patterns of gene expression. This review summarizes approaches for in silico, in vitro, and in vivo identification of transcription factor binding sites. A variety of techniques useful for localized- and high-throughput analyses are discussed here, with emphasis on aspects of data generation and verification.
Collapse
Affiliation(s)
- Laura Elnitski
- Genomic Functional Analysis Section, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland 20878, USA.
| | | | | | | |
Collapse
|