1
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
2
|
Glycosylation, transport, and complex formation of palmitoyl protein thioesterase 1 (PPT1)--distinct characteristics in neurons. BMC Cell Biol 2007; 8:22. [PMID: 17565660 PMCID: PMC1906764 DOI: 10.1186/1471-2121-8-22] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 06/12/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Neuronal ceroid lipofuscinoses (NCLs) are collectively the most common type of recessively inherited childhood encephalopathies. The most severe form of NCL, infantile neuronal ceroid lipofuscinosis (INCL), is caused by mutations in the CLN1 gene, resulting in a deficiency of the lysosomal enzyme, palmitoyl protein thioesterase 1 (PPT1). The deficiency of PPT1 causes a specific death of neocortical neurons by a mechanism, which is currently unclear. To understand the function of PPT1 in more detail, we have further analyzed the basic properties of the protein, especially focusing on possible differences in non-neuronal and neuronal cells. RESULTS Our study shows that the N-glycosylation of N197 and N232, but not N212, is essential for PPT1's activity and intracellular transport. Deglycosylation of overexpressed PPT1 produced in neurons and fibroblasts demonstrates differentially modified PPT1 in different cell types. Furthermore, antibody internalization assays showed differences in PPT1 transport when compared with a thoroughly characterized lysosomal enzyme aspartylglucosaminidase (AGA), an important observation potentially influencing therapeutic strategies. PPT1 was also demonstrated to form oligomers by size-exclusion chromatography and co-immunoprecipitation assays. Finally, the consequences of disease mutations were analyzed in the perspective of our new results, suggesting that the mutations increase both the degree of glycosylation of PPT1 and its ability to form complexes. CONCLUSION Our current study describes novel properties for PPT1. We observe differences in PPT1 processing and trafficking in neuronal and non-neuronal cells, and describe for the first time the ability of PPT1 to form complexes. Understanding the basic characteristics of PPT1 is fundamental in order to clarify the molecular pathogenesis behind neurodegeneration in INCL.
Collapse
|
3
|
Jalanko A, Vesa J, Manninen T, von Schantz C, Minye H, Fabritius AL, Salonen T, Rapola J, Gentile M, Kopra O, Peltonen L. Mice with Ppt1Δex4 mutation replicate the INCL phenotype and show an inflammation-associated loss of interneurons. Neurobiol Dis 2005; 18:226-41. [PMID: 15649713 DOI: 10.1016/j.nbd.2004.08.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 07/26/2004] [Accepted: 08/18/2004] [Indexed: 11/22/2022] Open
Abstract
Infantile Neuronal Ceroid Lipofuscinosis (INCL) results from mutations in the palmitoyl protein thioesterase (PPT1, CLN1) gene and is characterized by dramatic death of cortical neurons. We generated Ppt1Deltaex4 mice by a targeted deletion of exon 4 of the mouse Ppt1 gene. Similar to the clinical phenotype, the homozygous mutants show loss of vision from the age of 8 weeks, seizures after 4 months and paralysis of hind limbs at the age of 5 months. Autopsy revealed a dramatic loss of brain mass and histopathology demonstrated accumulation of autofluorescent granular osmiophilic deposits (GRODS), both characteristic of INCL. At 6 months, the homozygous Ppt1Deltaex4 mice showed a prominent loss of GABAergic interneurons in several brain areas. The transcript profiles of wild-type and mutant mouse brains revealed that most prominent alterations involved parts of the immune response, implicating alterations similar to those of the aging brain and neurodegeneration. These findings make the Ppt1Deltaex4 mouse an interesting model for the inflammation-associated death of interneurons.
Collapse
Affiliation(s)
- Anu Jalanko
- Department of Medical Genetics and Molecular Medicine, University of Helsinki and National Public Health Institute, Biomedicum Helsinki, FIN-00251 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Boyer A, Lussier JG, Sinclair AH, McClive PJ, Silversides DW. Pre-sertoli specific gene expression profiling reveals differential expression of Ppt1 and Brd3 genes within the mouse genital ridge at the time of sex determination. Biol Reprod 2004; 71:820-7. [PMID: 15128596 DOI: 10.1095/biolreprod.104.029371] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In mammals, testis determination is initiated when the SRY gene is expressed in pre-Sertoli cells of the undifferentiated genital ridge. SRY directs the differentiation of these cells into Sertoli cells and initiates the testis differentiation pathway via currently ill-defined mechanisms. Because Sertoli cells are the first somatic cells to differentiate within the developing testis, it is likely that the signals for orchestrating testis determination are expressed within pre-Sertoli cells. We have previously generated a transgenic mouse line that expresses green fluorescent protein under the control of the pig SRY promoter, thus marking pre-Sertoli cells via fluorescence. We have now used suppression-subtractive hybridization (SSH) to construct a normalized cDNA library derived from fluorescence-activated cell sorting (FACS) purified pre-Sertoli cells taken from 12.0 to 12.5 days postcoitum (dpc) fetal transgenic mouse testes. A total of 35 candidate cDNAs for known genes were identified. Detection of Sf1, a gene known for its role in sex determination as well as Vanin-1, Vcp1, Sparc, and Aldh3a1, four genes previously identified in differential screens as gene overexpressed in developing testis compared with ovary, support the biological validity of our experimental model. Whole-mount in situ hybridization was performed on the 35 candidate genes for qualitative differential expression between male and female genital ridges; six were upregulated in the testis and one was upregulated in the ovary. The expression pattern of two genes, Ppt1 and Brd3, were examined in further detail. We conclude that combining transgenically marked fluorescent cell populations with differential expression screening is useful for cell expression profiling in developmental systems such as sex determination and differentiation.
Collapse
Affiliation(s)
- Alexandre Boyer
- Centre de recherche en reproduction animale, Faculté de médecin vétérinaire, Université de Montréal, St.-Hyacinthe, Québec J2S 7C6, Canada
| | | | | | | | | |
Collapse
|
5
|
Glaser RL, Hickey AJ, Chotkowski HL, Chu-LaGraff Q. Characterization of Drosophila palmitoyl-protein thioesterase 1. Gene 2003; 312:271-9. [PMID: 12909364 DOI: 10.1016/s0378-1119(03)00623-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Batten disease or neuronal ceroid lipofuscinoses (NCL) are a group of genetic neurodegenerative diseases that primarily afflict infants and children and are characterized by progressive loss of brain functions caused by the death of central nervous system (CNS) neurons. The most severe form of the disease is infantile NCL (INCL). INCL is caused by mutations in the palmitoyl-protein thioesterase 1 (PPT1) gene, which encodes a palmitoyl-protein thioesterase 1 enzyme that cleaves long-chain fatty acids from S-acylated proteins within the lysosome. How the loss of this activity causes the death of CNS neurons is not known. A PPT1 homolog and palmitoyl-protein thioesterase 1 enzyme activity were characterized in Drosophila melanogaster as an initial step in developing Drosophila as a model system for studying the etiology of INCL. Predicted gene CG12108 in region 8A2 of the X chromosome is 55% identical and 72% similar to human PPT1 and contains conserved catalytic residues and sites of glycosylation. Northern-blot hybridizations revealed a major 1.5 kb CG12108 transcript in unfertilized eggs, embryos, larvae, pupae, adult head and thorax, ovary, testis, and S2 tissue culture cells, as well as several minor mRNA species in some tissues. Levels of the 1.5 kb transcript were fairly uniform among tissues except in testis, where the transcript was enriched 5-fold. The same tissues also contained palmitoyl-protein thioesterase 1 enzyme activity measured using the fluorometric substrate 4-methylumbelliferyl-6-thiopalmitoyl-beta-D-glucoside. Enzyme activity was highest in testis and varied among the other tissues to a greater extent than did CG12108 message, suggesting that CG12108 is subjected to post-transcriptional regulation. Finally, flies homozygous for a deletion that removes CG12108 and three unrelated neighboring genes had less than 3% of wildtype levels of enzyme activity, consistent with CG12108 encoding functional palmitoyl-protein thioesterase 1 activity and being the fly ortholog of human PPT1. CG12108 has been appropriately renamed Ppt1.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Cell Line
- Drosophila/cytology
- Drosophila/enzymology
- Drosophila/genetics
- Embryo, Nonmammalian/enzymology
- Embryo, Nonmammalian/metabolism
- Female
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Enzymologic
- Genes, Insect/genetics
- Humans
- Male
- Models, Molecular
- Molecular Sequence Data
- Protein Conformation
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Thiolester Hydrolases/chemistry
- Thiolester Hydrolases/genetics
- Thiolester Hydrolases/metabolism
Collapse
Affiliation(s)
- Robert L Glaser
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002, USA.
| | | | | | | |
Collapse
|
6
|
Gupta P, Soyombo AA, Atashband A, Wisniewski KE, Shelton JM, Richardson JA, Hammer RE, Hofmann SL. Disruption of PPT1 or PPT2 causes neuronal ceroid lipofuscinosis in knockout mice. Proc Natl Acad Sci U S A 2001; 98:13566-71. [PMID: 11717424 PMCID: PMC61081 DOI: 10.1073/pnas.251485198] [Citation(s) in RCA: 240] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
PPT1 and PPT2 encode two lysosomal thioesterases that catalyze the hydrolysis of long chain fatty acyl CoAs. In addition to this function, PPT1 (palmitoyl-protein thioesterase 1) hydrolyzes fatty acids from modified cysteine residues in proteins that are undergoing degradation in the lysosome. PPT1 deficiency in humans causes a neurodegenerative disorder, infantile neuronal ceroid lipofuscinosis (also known as infantile Batten disease). In the current work, we engineered disruptions in the PPT1 and PPT2 genes to create "knockout" mice that were deficient in either enzyme. Both lines of mice were viable and fertile. However, both lines developed spasticity (a "clasping" phenotype) at a median age of 21 wk and 29 wk, respectively. Motor abnormalities progressed in the PPT1 knockout mice, leading to death by 10 mo of age. In contrast, the majority of PPT2 mice were alive at 12 mo. Myoclonic jerking and seizures were prominent in the PPT1 mice. Autofluorescent storage material was striking throughout the brains of both strains of mice. Neuronal loss and apoptosis were particularly prominent in PPT1-deficient brains. These studies provide a mouse model for infantile neuronal ceroid lipofuscinosis and further suggest that PPT2 serves a role in the brain that is not carried out by PPT1.
Collapse
Affiliation(s)
- P Gupta
- The Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Cho S, Dawson PE, Dawson G. Antisense palmitoyl protein thioesterase 1 (PPT1) treatment inhibits PPT1 activity and increases cell death in LA-N-5 neuroblastoma cells. J Neurosci Res 2000; 62:234-40. [PMID: 11020216 DOI: 10.1002/1097-4547(20001015)62:2<234::aid-jnr8>3.0.co;2-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a childhood neurodegenerative disease caused by the selective death of cortical neurons and retinal degeneration, as the result of a palmitoyl protein thioesterase 1 (PPT1) deficiency. Recently, we showed that overexpression of PPT1 protects LA-N-5 human neuroblastoma cells against apoptotic death (Cho and Dawson [2000a] J. Neurochem. 74:1478-1488) and we now show that inhibition of PPT1 increases the susceptibility of these cells to apoptotic cell death. Transient transfection of LA-N-5 neuroblastoma cells with PPT1-FLAG resulted in a strong expression of PPT-FLAG-tagged protein as evidenced by Western blot analysis and immunofluorescence. Co-transfection of a reverse-oriented (antisense) PPT1 (AS-PPT1) decreased the expression of PPT-FLAG to almost zero, reduced PPT1 enzyme activity (as measured by an in vitro assay) and increased the susceptibility to apoptosis induced by C(2) ceramide. Similarly, inhibition of PPT1 with a synthetic inhibitor (AcG-palmitoyl diaminoproprionate-VKIKK) (DAP1) (100 microM) increased the susceptibility of the cells to apoptosis induced by either C(2)-ceramide or etoposide, a common chemotherapeutic agent used in the treatment of neuroblastoma. Cells stably overexpressing PPT1 were resistant to apoptosis induced by DAP1 suggesting that the inhibitor has a specific action and confirming that low levels of protein palmitoylation block the death pathway. Drugs that raise the level of protein palmitoylation are pro-apoptotic and PPT1 inhibition may enhance the killing efficacy of chemotherapeutic agents used to kill neuroblastoma-derived cells.
Collapse
Affiliation(s)
- S Cho
- Departments of Pediatrics, Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | | | | |
Collapse
|
8
|
Pourcel C, Jaubert J, Hadchouel M, Wu X, Schweizer J. A new family of genes and pseudogenes potentially expressing testis- and brain-specific leucine zipper proteins in man and mouse. Gene 2000; 249:105-13. [PMID: 10831844 DOI: 10.1016/s0378-1119(00)00158-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We have characterized a new mouse gene highly transcribed in the testis, and a derived intronless gene expressed in the embryo. The latter gene is present in Mus musculus domesticus and in Mus musculus castaneus but is absent in Mus spretus. The sequencing of different clones from a testis cDNA library reveals a complex transcriptional regulation for the intron-containing gene. The use of several promoters, alternative splicing and trans-splicing, and of two different polyadenylation sites account for the diversity. The different cDNAs encode proteins with features of basic helix-loop-helix leucine zipper (bHLH-ZIP) DNA-binding factors with homology to a new brain-specific factor. The presence of multiple CK2 and PKC phosphorylation sites suggests that their activity may be regulated by phosphorylation. In man, a pseudogene, apparently derived from the same transcript as in mouse and showing 90% homology in the coding region, is present within an intron of another gene. Interestingly, although the human pseudogene is highly mutated in human, in the mouse it has only four nucleotide changes compared with the cDNA of origin, and is still capable of encoding a protein.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Northern
- Brain/metabolism
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Embryo, Mammalian/metabolism
- Female
- Gene Expression
- Gene Expression Regulation, Developmental
- Genes/genetics
- Genetic Variation
- Humans
- In Situ Hybridization
- Introns
- Leucine Zippers/genetics
- Male
- Mice
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Muridae
- Pseudogenes/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Testis/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- C Pourcel
- Immuno-hématologie et Immunopathologie, Institut Pasteur, Paris, France.
| | | | | | | | | |
Collapse
|
9
|
Isosomppi J, Heinonen O, Hiltunen JO, Greene ND, Vesa J, Uusitalo A, Mitchison HM, Saarma M, Jalanko A, Peltonen L. Developmental expression of palmitoyl protein thioesterase in normal mice. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1999; 118:1-11. [PMID: 10611498 DOI: 10.1016/s0165-3806(99)00115-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Deficiency in palmitoyl protein thioesterase (PPT) results in the rapid death of neocortical neurons in human. Very little is known about the developmental and cell-specific expression of this lysosomal enzyme. Here we show that PPT is expressed as a major 2.65 kb and a minor 1.85 kb transcript in the mouse brain. Transcript levels gradually increase between postnatal days 10 and 30. In situ hybridization analysis revealed that PPT transcripts are found widely but not homogeneously in the brain. The most intense signal was detected in the cerebral cortex (layers II, IV-V), hippocampal CA1-CA3 pyramidal cells, dentate gyrus granule cells and the hypothalamus. Immunostaining of PPT was localized in the cell soma, axons and dendrites, especially in the pyramidal and granular cells of the hippocampus, correlating well, both spatially and temporally, with the immunoreactivity of a presynaptic vesicle membrane protein, synaptophysin. In whole embryos, at embryonic day 8, the PPT mRNA expression was most apparent throughout the neuroepithelium, and from day 9 onwards it was seen in all tissues. The expression pattern of PPT suggests its general significance for the brain cells and reflects the response to maturation and growth of the neural networks. Strong PPT immunoreactivity in the axons and dentrites would imply that PPT may not be exclusively a lysosomal enzyme. A notable correlation with synaptophysin would suggest that PPT may have a role in the function of the synaptic machinery.
Collapse
Affiliation(s)
- J Isosomppi
- Department of Human Molecular Genetics, National Public Health Institute and Department of Medical Genetics, University of Helsinki, Mannerheimintie 166, FIN-00300, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|