1
|
Kaufman MJ, Meloni EG. Xenon gas as a potential treatment for opioid use disorder, alcohol use disorder, and related disorders. Med Gas Res 2025; 15:234-253. [PMID: 39812023 PMCID: PMC11918480 DOI: 10.4103/mgr.medgasres-d-24-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/26/2024] [Indexed: 01/16/2025] Open
Abstract
Xenon gas is considered to be a safe anesthetic and imaging agent. Research on its other potentially beneficial effects suggests that xenon may have broad efficacy for treating health disorders. A number of reviews on xenon applications have been published, but none have focused on substance use disorders. Accordingly, we review xenon effects and targets relevant to the treatment of substance use disorders, with a focus on opioid use disorder and alcohol use disorder. We report that xenon inhaled at subsedative concentrations inhibits conditioned memory reconsolidation and opioid withdrawal symptoms. We review work by others reporting on the antidepressant, anxiolytic, and analgesic properties of xenon, which could diminish negative affective states and pain. We discuss research supporting the possibility that xenon could prevent analgesic- or stress-induced opioid tolerance and, by so doing could reduce the risk of developing opioid use disorder. The rapid kinetics, favorable safety and side effect profiles, and multitargeting capability of xenon suggest that it could be used as an ambulatory on-demand treatment to rapidly attenuate maladaptive memory, physical and affective withdrawal symptoms, and pain drivers of substance use disorders when they occur. Xenon may also have human immunodeficiency virus and oncology applications because its effects relevant to substance use disorders could be exploited to target human immunodeficiency virus reservoirs, human immunodeficiency virus protein-induced abnormalities, and cancers. Although xenon is expensive, low concentrations exert beneficial effects, and gas separation, recovery, and recycling advancements will lower xenon costs, increasing the economic feasibility of its therapeutic use. More research is needed to better understand the remarkable repertoire of effects of xenon and its potential therapeutic applications.
Collapse
Affiliation(s)
- Marc J Kaufman
- McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | | |
Collapse
|
2
|
Ferreira VF, Porto RR, Popik B, Pérez ADA, Fernandes HS, Gonçalves DA, de Oliveira Alvares L. The time-dependent effects of physical exercise on fear memory reconsolidation and extinction in male rats. Behav Brain Res 2025; 487:115593. [PMID: 40221100 DOI: 10.1016/j.bbr.2025.115593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Aversive memories can enter a labile state during reactivation, allowing its content to be modified. Molecular changes induced by distinct interventions such as physical exercise can either facilitate or impair the strength of the original memory. However, the effect of the physical exercise performed at distinct time-points around memory reactivation remains poorly understood. Here we investigated how a single treadmill exercise bout delivered at different moments before or after a 5, 15 or 30-min reactivation session influences the reconsolidation and extinction of contextual fear conditioned memory in rats. Our results indicate that physical exercise of low-intensity 24 h and 10 min before the reactivation impairs reconsolidation and facilitates extinction. However, when the exercise protocol is performed immediately after the reactivation session, it facilitates reconsolidation and impairs extinction memory. Our results suggest that the specific time-point in which the physical exercise is performed plays an essential role in the reconsolidation and extinction outcome in fear conditioned animals.
Collapse
Affiliation(s)
- Vitor Flores Ferreira
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil
| | - Rossana Rosa Porto
- Behavioural Neuroscience Laboratory, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
| | - Bruno Popik
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil
| | - Angel David Arellano Pérez
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil
| | - Henrique Schaan Fernandes
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil
| | - Débora Aguirre Gonçalves
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil
| | - Lucas de Oliveira Alvares
- Laboratório de Neurobiologia da Memória, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre 91,501-970, Brazil; Graduate Program in Neuroscience, Institute of Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90,046-900, Brazil.
| |
Collapse
|
3
|
Cardoso NC, Sohn JMB, Raymundi AM, Santos MR, Prickaerts J, Gazarini L, Stern CAJ. Time-dependent fear memory generalization triggered by phosphodiesterase 5 inhibition during reconsolidation. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111274. [PMID: 39870136 DOI: 10.1016/j.pnpbp.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025]
Abstract
Fear generalization, a lack of discrimination between safe and unsafe cues, is a hallmark of posttraumatic stress disorder. The phosphodiesterase 5 (PDE5) regulates the cyclic guanosine monophosphate (cGMP) pathway, which has been proposed to be involved in fear memory generalization. However, whether PDE5 activity underlies fear memory generalization remains unexplored. Considering the importance of retrieval-induced reconsolidation in memory maintenance, we aimed to investigate whether PDE5 inhibition during reconsolidation of recent fear memory affects generalization over time in adult male Wistar rats submitted to contextual fear conditioning. The PDE5 inhibition with vardenafil (VAR) 1 mg/kg i.p. during reconsolidation triggered a time-dependent fear generalization without affecting fear memory in the paired context. Fear generalization and impaired pattern separation appear to be interlinked. Likewise, an impairment of object pattern separation was observed in the VAR-treated group at the remote time point. These effects depended on memory retrieval and were restricted to the reconsolidation time window. A chemogenetic inhibition of the anterior cingulate cortex (ACC), a region involved in allocating remote memories and generalization, prevented the effects of VAR. Moreover, VAR infusion into the ACC (6 μg/0.2 μL) after retrieval also promoted fear generalization and impaired OPS in remote time point, suggesting that ACC underlies the behavioral outcomes of the treatment with VAR. In conclusion, our results suggest that inhibiting PDE5 during the reconsolidation of a recent fear memory recruits the activity of the ACC, triggering fear memory generalization and impairing object pattern separation over time.
Collapse
Affiliation(s)
| | | | - Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Mateus Reis Santos
- Department of Pharmacology, Federal University of Parana, Curitiba, Parana, Brazil
| | - Jos Prickaerts
- Peitho Translational, Drug Discovery and Development Consulting, Maastricht, the Netherlands
| | - Lucas Gazarini
- Federal University of Mato Grosso do Sul, Três Lagoas, Mato Grosso do Sul, Brazil
| | | |
Collapse
|
4
|
Dong X, Wang Y, Liu Y, Li Y. Fear generalization modulated by shock intensity and protein synthesis inhibitor. Psychopharmacology (Berl) 2024; 241:2627-2637. [PMID: 39105767 DOI: 10.1007/s00213-024-06662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
RATIONALE Maladaptive fear responses, including sensitized threat reactions and overgeneralization, contribute to anxiety disorders such as generalized anxiety disorder and post-traumatic stress disorder. Although stress intensity influences the generation and extent of these maladaptive fears, the underlying mechanisms remain unclear. OBJECTIVES The present study examined whether varying footshock stress intensity and inhibition of protein synthesis have differential effect on fear sensitization and generalization in mice. METHODS Mice were subjected to a classic fear conditioning protocol involving five different levels of footshock intensities. Prior to fear acquisition, the protein synthesis inhibitor cycloheximide (CHX) was administered intraperitoneally. Fear sensitization to white noise and fear generalization to tones with frequencies differing from the conditioned tone were assessed at either 2 or 4 days after fear acquisition. RESULTS The results showed that, although varying shock intensities (except the lowest) led to a similar pattern of increased freezing during auditory cues in fear acquisition, the extent of both fear sensitization and generalization increased with the intensity of the footshock in the following days. As shock intensities increased, there was a proportional rise in sensitized fear to white noise and generalized freezing to tones with frequencies progressively closer to the conditioned stimulus. Mildest shocks did not induce discriminative conditioned fear memory, whereas the most intense shocks led to pronounced fear generalization. Administration of CHX before fear acquisition did not affect sensitized fear but reduced generalization of freezing to tones dissimilar from the conditioned stimulus in the group exposed to the most intense shock. CONCLUSIONS Our results suggest that maladaptive fear responses elicited by varying stress intensities exhibit distinct characteristics. The effect of CHX to prevent overgeneralization without affecting discriminative fear memory points to potential therapeutic approaches for fear-related disorders, suggesting the possibility of mitigating overgeneralization while preserving necessary fear discrimination.
Collapse
Affiliation(s)
- Xinwen Dong
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.
| | - Yunyun Wang
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yudan Liu
- Department of Neuroendocrine Pharmacology, School of Pharmacy, China Medical University, Shenyang, China
| | - Yonghui Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Renda B, Leri F. The anxiogenic drug yohimbine is a reinforcer in male and female rats. Neuropsychopharmacology 2024; 50:432-443. [PMID: 39289489 PMCID: PMC11631961 DOI: 10.1038/s41386-024-01985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
The indole alkaloid yohimbine is an anxiogenic drug that activates stress-responsive systems in the brain. However, because yohimbine also elicits approach behaviors, this study employed male and female Sprague-Dawley rats to explore its potential reinforcing effects. Thus, it was first determined if intravenous (IV) infusions of yohimbine (0.25 mg/kg/infusion) could maintain lever pressing, whether intake could be modulated by dose/infusion, and if lever pressing would persist in the absence of yohimbine or yohimbine-paired cues. Next, to assess yohimbine's effect on memory consolidation, 0.3, 1.25 or 3 mg/kg yohimbine was administered post-training using an object recognition memory task. Finally, place conditioning assessed whether doses of yohimbine that elevate blood serum corticosterone levels (1.25 or 3 mg/kg) could elicit a conditioned place preference. It was found that both sexes acquired yohimbine IV self-administration, that intake was modulated by dose/infusion, and that lever pressing persisted during extinction and in the absence of the yohimbine-paired cue. As well, post-training injections of 1.25 mg/kg yohimbine enhanced consolidation of object memory, and 1.25 and 3 mg/kg elevated corticosterone levels and elicited a place preference in both sexes. Finally, in behavioral tests of psychomotor functions, acute yohimbine increased lever pressing for a visual cue and elevated locomotor activity. These findings reveal a profile of yohimbine's behavioral effects that is consistent with that of psychostimulant reinforcing drugs.
Collapse
Affiliation(s)
- Briana Renda
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Francesco Leri
- Department of Psychology and Collaborative Neuroscience Program, University of Guelph, Guelph, ON, Canada.
- Department of Psychology, University of Toronto, Scarborough, ON, Canada.
| |
Collapse
|
6
|
Soares LA, Nascimento LMM, Guimarães FS, Gazarini L, Bertoglio LJ. Dual-step pharmacological intervention for traumatic-like memories: implications from D-cycloserine and cannabidiol or clonidine in male and female rats. Psychopharmacology (Berl) 2024; 241:1827-1840. [PMID: 38691149 DOI: 10.1007/s00213-024-06596-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE Therapeutic approaches to mitigating traumatic memories have often faced resistance. Exploring safe reconsolidation blockers, drugs capable of reducing the emotional valence of the memory upon brief retrieval and reactivation, emerges as a promising pharmacological strategy. Towards this objective, preclinical investigations should focus on aversive memories resulting in maladaptive outcomes and consider sex-related differences to enhance their translatability. OBJECTIVES After selecting a relatively high training magnitude leading to the formation of a more intense and generalized fear memory in adult female and male rats, we investigated whether two clinically approved drugs disrupting its reconsolidation remain effective. RESULTS We found resistant reconsolidation impairment by the α2-adrenergic receptor agonist clonidine or cannabidiol, a major non-psychotomimetic Cannabis sativa component. However, pre-retrieval administration of D-cycloserine, a partial agonist at the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor complex, facilitated their impairing effects on reconsolidation. A similar reconsolidation blockade by clonidine or cannabidiol was achieved following exposure to a non-conditioned but generalized context after D-cycloserine administration. This suggests that sufficient memory destabilization can accompany generalized fear expression. Combining clonidine with cannabidiol without potentiating memory destabilization by D-cycloserine was ineffective. CONCLUSIONS These findings highlight the importance of NMDA receptor signaling in memory destabilization and underscore the efficacy of a dual-step pharmacological intervention in attenuating traumatic-like memories, even in a context different from the original learning environment.
Collapse
Affiliation(s)
- Luciane A Soares
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Laura M M Nascimento
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Lucas Gazarini
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil
| | - Leandro J Bertoglio
- Universidade Federal de Mato Grosso Do Sul, Três Lagoas, MS, Brazil.
- Depto. de Farmacologia, CCB, UFSC, Campus Universitário S/N, Florianópolis, SC, 88049-900, Brazil.
| |
Collapse
|
7
|
Marx H, Krahe TE, Wolmarans DW. Large nesting expression in deer mice remains stable under conditions of visual deprivation despite heightened limbic involvement: Perspectives on compulsive-like behavior. J Neurosci Res 2024; 102:e25320. [PMID: 38509778 DOI: 10.1002/jnr.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Visual stimuli and limbic activation varyingly influence obsessive-compulsive symptom expression and so impact treatment outcomes. Some symptom phenotypes, for example, covert repugnant thoughts, are likely less sensitive to sensory stimuli compared to symptoms with an extrinsic focus, that is, symptoms related to contamination, safety, and "just-right-perceptions." Toward an improved understanding of the neurocognitive underpinnings of obsessive-compulsive psychobiology, work in naturalistic animal model systems is useful. Here, we explored the impact of visual feedback and limbic processes on 24 normal (NNB) and large (LNB) nesting deer mice, respectively (as far as possible, equally distributed between sexes). Briefly, after behavioral classification into either the NNB or LNB cohorts, mice of each cohort were separated into two groups each and assessed for nesting expression under either standard light conditions or conditions of complete visual deprivation (VD). Nesting outcomes were assessed in terms of size and neatness. After nesting assessment completion, mice were euthanized, and samples of frontal-cortical and hippocampal tissues were collected to determine serotonin and noradrenaline concentrations. Our results show that LNB, as opposed to NNB, represents an inflexible and excessive behavioral phenotype that is not dependent on visually guided action-outcome processing, and that it associates with increased frontal-cortical and hippocampal noradrenaline concentrations, irrespective of lighting condition. Collectively, the current results are informing of the neurocognitive underpinnings of nesting behavior. It also provides a valuable foundation for continued investigations into the noradrenergic mechanisms that may influence the development and promulgation of excessive, rigid, and inflexible behaviors.
Collapse
Affiliation(s)
- Harry Marx
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
8
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
9
|
Govindula A, Ranadive N, Nampoothiri M, Rao CM, Arora D, Mudgal J. Emphasizing the Crosstalk Between Inflammatory and Neural Signaling in Post-traumatic Stress Disorder (PTSD). J Neuroimmune Pharmacol 2023; 18:248-266. [PMID: 37097603 PMCID: PMC10577110 DOI: 10.1007/s11481-023-10064-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic incapacitating condition with recurrent experience of trauma-related memories, negative mood, altered cognition, and hypervigilance. Agglomeration of preclinical and clinical evidence in recent years specified that alterations in neural networks favor certain characteristics of PTSD. Besides the disruption of hypothalamus-pituitary-axis (HPA) axis, intensified immune status with elevated pro-inflammatory cytokines and arachidonic metabolites of COX-2 such as PGE2 creates a putative scenario in worsening the neurobehavioral facet of PTSD. This review aims to link the Diagnostic and Statistical Manual of mental disorders (DSM-V) symptomology to major neural mechanisms that are supposed to underpin the transition from acute stress reactions to the development of PTSD. Also, to demonstrate how these intertwined processes can be applied to probable early intervention strategies followed by a description of the evidence supporting the proposed mechanisms. Hence in this review, several neural network mechanisms were postulated concerning the HPA axis, COX-2, PGE2, NLRP3, and sirtuins to unravel possible complex neuroinflammatory mechanisms that are obscured in PTSD condition.
Collapse
Affiliation(s)
- Anusha Govindula
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Niraja Ranadive
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Devinder Arora
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast campus, Gold Coast, Queensland, 4222, Australia.
| | - Jayesh Mudgal
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Ahad MA, Chear NJY, Keat LG, Has ATC, Murugaiyah V, Hassan Z. Bio-enhanced fraction from Clitoria ternatea root extract ameliorates cognitive functions and in vivo hippocampal neuroplasticity in chronic cerebral hypoperfusion rat model. Ageing Res Rev 2023; 89:101990. [PMID: 37343678 DOI: 10.1016/j.arr.2023.101990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/12/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Research employing a bio-enhanced fraction of Clitoria ternatea (CT) to treat cognitive decline in the animal model has not yet been found. This study aimed to determine the neuroprotective effect of CT root bioactive fraction (CTRF) in chronic cerebral hypoperfusion (CCH) rat model. CTRF and its major compound, clitorienolactones A (CLA), were obtained using column chromatography. A validated HPLC-UV method was employed for the standardization of CTRF. CCH rats were given orally either vehicle or fraction (10, 20 and 40 mg/kg). Behavioural and hippocampal neuroplasticity studies were conducted following 4 weeks post-surgery. The brain hippocampus was extracted for proteins and neurotransmitters analyses. HPLC analysis showed that CTRF contained 25% (w/w) of CLA. All tested doses of CTRF and CLA (10 mg/kg) significantly restored cognitive deficits and reversed the inhibition of neuroplasticity by CCH. However, only CTRF (40 mg/kg) and CLA (10 mg/kg) significantly reversed the elevation of amyloid-beta plaque. Subsequently, treatment with CTRF (40 mg/kg) and CLA (10 mg/kg) alleviated the downregulation of molecular synaptic signalling proteins levels caused by CCH. The neurotransmitters level was restored following treatment of CTRF and CLA. Our finding suggested that CTRF improves memory and neuroplasticity in CCH rats which was mainly contributed by CLA.
Collapse
Affiliation(s)
| | | | - Lim Gin Keat
- School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Ahmad Tarmizi Che Has
- Department of Neurosciences, School of Medical Sciences, USM Health Campus Kota Bharu, Kelantan, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
11
|
On making (and turning adaptive to) maladaptive aversive memories in laboratory rodents. Neurosci Biobehav Rev 2023; 147:105101. [PMID: 36804263 DOI: 10.1016/j.neubiorev.2023.105101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Fear conditioning and avoidance tasks usually elicit adaptive aversive memories. Traumatic memories are more intense, generalized, inflexible, and resistant to attenuation via extinction- and reconsolidation-based strategies. Inducing and assessing these dysfunctional, maladaptive features in the laboratory are crucial to interrogating posttraumatic stress disorder's neurobiology and exploring innovative treatments. Here we analyze over 350 studies addressing this question in adult rats and mice. There is a growing interest in modeling several qualitative and quantitative memory changes by exposing already stressed animals to freezing- and avoidance-related tests or using a relatively high aversive training magnitude. Other options combine aversive/fearful tasks with post-acquisition or post-retrieval administration of one or more drugs provoking neurochemical or epigenetic alterations reported in the trauma aftermath. It is potentially instructive to integrate these procedures and incorporate the measurement of autonomic and endocrine parameters. Factors to consider when defining the organismic and procedural variables, partially neglected aspects (sex-dependent differences and recent vs. remote data comparison) and suggestions for future research (identifying reliable individual risk and treatment-response predictors) are discussed.
Collapse
|
12
|
Durán E, Pandinelli M, Logothetis NK, Eschenko O. Altered norepinephrine transmission after spatial learning impairs sleep-mediated memory consolidation in rats. Sci Rep 2023; 13:4231. [PMID: 36918712 PMCID: PMC10014950 DOI: 10.1038/s41598-023-31308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The therapeutic use of noradrenergic drugs makes the evaluation of their effects on cognition of high priority. Norepinephrine (NE) is an important neuromodulator for a variety of cognitive processes and may importantly contribute to sleep-mediated memory consolidation. The NE transmission fluctuates with the behavioral and/or brain state and influences associated neural activity. Here, we assessed the effects of altered NE transmission after learning of a hippocampal-dependent task on neural activity and spatial memory in adult male rats. We administered clonidine (0.05 mg/kg, i.p.; n = 12 rats) or propranolol (10 mg/kg, i.p.; n = 11) after each of seven daily learning sessions on an 8-arm radial maze. Compared to the saline group (n = 9), the drug-treated rats showed lower learning rates. To assess the effects of drugs on cortical and hippocampal activity, we recorded prefrontal EEG and local field potentials from the CA1 subfield of the dorsal hippocampus for 2 h after each learning session or drug administration. Both drugs significantly reduced the number of hippocampal ripples for at least 2 h. An EEG-based sleep scoring revealed that clonidine made the sleep onset faster while prolonging quiet wakefulness. Propranolol increased active wakefulness at the expense of non-rapid eye movement (NREM) sleep. Clonidine reduced the occurrence of slow oscillations (SO) and sleep spindles during NREM sleep and altered the temporal coupling between SO and sleep spindles. Thus, pharmacological alteration of NE transmission produced a suboptimal brain state for memory consolidation. Our results suggest that the post-learning NE contributes to the efficiency of hippocampal-cortical communication underlying memory consolidation.
Collapse
Affiliation(s)
- Ernesto Durán
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Martina Pandinelli
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany
| | - Nikos K Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.,International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China.,Division of Imaging Science and Biomedical Engineering, University of Manchester, Manchester, M13 9PT, UK
| | - Oxana Eschenko
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076, Tübingen, Germany.
| |
Collapse
|
13
|
Raymundi AM, Batista Sohn JM, Salemme BW, Cardoso NC, Silveira Guimarães F, Stern CA. Effects of delta-9 tetrahydrocannabinol on fear memory labilization and reconsolidation: A putative role of GluN2B-NMDA receptor within the dorsal hippocampus. Neuropharmacology 2023; 225:109386. [PMID: 36549374 DOI: 10.1016/j.neuropharm.2022.109386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
Cannabis preparations could be an effective reconsolidation-based treatment for post-traumatic stress disorder. However, the effects of Δ9-tetrahydrocannabinol (THC) in fear memory labilization, a critical condition for retrieval-induced reconsolidation, are undetermined. We sought to investigate the effect of a conventional and an ultra-low dose of THC in memory labilization of adult male Wistar rats submitted to contextual fear conditioning. Pretreatment with THC 0.002, but not THC 0.3 mg/kg, i. p., before memory retrieval, did not change memory expression during the retrieval but impaired reconsolidation. No treatment changed freezing expression in an unpaired context. Before retrieval, THC 0.3, but not THC 0.002, decreased GluN2A-NMDA expression and the GluN2A/GluN2B ratio in the dorsal hippocampus (DH) 24 h later. No changes were observed immediately after retrieval. Pretreatment with THC 0.3 abolished the reconsolidation-impairing effect of anisomycin injected into the DH, suggesting an impairment in memory labilization. This effect was associated with an increased freezing expression in the unpaired context and was not observed with the THC ultra-low dose. The GluN2B-NMDA antagonism increased fear generalization in the anisomycin-treated group but restored its reconsolidation-impairing effect and reduced fear generalization when animals were pretreated with THC 0.3. GluN2A-NMDA antagonism or inhibition of the ubiquitin-proteasome system in the DH did not interfere with the effects of THC 0.3. Our findings indicate that THC causes a bidirectional effect on fear memory labilization that depends on hippocampal GluN2B-NMDA receptors' involvement in fear memory generalization.
Collapse
Affiliation(s)
- Ana Maria Raymundi
- Department of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
Balbinot G, Haubrich J. Dorsal Hippocampal β-Adrenergic System Modulates Recognition Memory Reconsolidation. Neuroscience 2023; 516:91-99. [PMID: 36858308 DOI: 10.1016/j.neuroscience.2023.02.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023]
Abstract
Targeting reconsolidation with propranolol, a blocker of β-adrenergic receptors (β-ARs), emerged as a potential treatment for maladaptive memories such as those involved in posttraumatic stress disorder (PTSD). Reconsolidation targeting treatments for PTSD are becoming a common practice in the clinic and it is important to unveil any side effects upon 'non-targeted' memories. While previous studies have focused on propranolol's effects on the reconsolidation of emotional/distressful memories, the present study asked whether propranolol is involved in the reconsolidation of recognition memories - by assessing its effects on distinct memory components and the role of the dorsal hippocampus. Rats performed an object recognition (OR) task where they were exposed to different objects: A and B presented during the sample phase; A and C presented during the reactivation phase; and D in combination of either A, B, or C during a final test. Intra-hippocampal injections of propranolol (5 µg or 10 µg) were conducted immediately after the reactivation session. Propranolol infusions consistently impaired the addition of novel information to the previously consolidated memory trace regardless of dose, and the retention of familiar objects was not affected. Higher doses of propranolol also hindered memory of a familiar object that was not presented during the reactivation session, but was previously placed at the same location where novel information was presented during reactivation. The present results shed light on the role of β-ARs on the reconsolidation of different memory components and argue for the need for further studies examining possible recognition memory deficits following propranolol treatment.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil; KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Josué Haubrich
- Department of Neurophysiology, Medical Faculty, Ruhr-University, Bochum, Germany.
| |
Collapse
|
15
|
Saggu S, Chen Y, Cottingham C, Rehman H, Wang H, Zhang S, Augelli-Szafran C, Lu S, Lambert N, Jiao K, Lu XY, Wang Q. Activation of a novel α 2AAR-spinophilin-cofilin axis determines the effect of α 2 adrenergic drugs on fear memory reconsolidation. Mol Psychiatry 2023; 28:588-600. [PMID: 36357671 PMCID: PMC9647772 DOI: 10.1038/s41380-022-01851-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/12/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
Posttraumatic stress disorder (PTSD) after the pandemic has emerged as a major neuropsychiatric component of post-acute COVID-19 syndrome, yet the current pharmacotherapy for PTSD is limited. The use of adrenergic drugs to treat PTSD has been suggested; however, it is hindered by conflicting clinical results and a lack of mechanistic understanding of drug actions. Our studies, using both genetically modified mice and human induced pluripotent stem cell-derived neurons, reveal a novel α2A adrenergic receptor (α2AAR)-spinophilin-cofilin axis in the hippocampus that is critical for regulation of contextual fear memory reconsolidation. In addition, we have found that two α2 ligands, clonidine and guanfacine, exhibit differential abilities in activating this signaling axis to disrupt fear memory reconsolidation. Stimulation of α2AAR with clonidine, but not guanfacine, promotes the interaction of the actin binding protein cofilin with the receptor and with the dendritic spine scaffolding protein spinophilin to induce cofilin activation at the synapse. Spinophilin-dependent regulation of cofilin is required for clonidine-induced disruption of contextual fear memory reconsolidation. Our results inform the interpretation of differential clinical observations of these two drugs on PTSD and suggest that clonidine could provide immediate treatment for PTSD symptoms related to the current pandemic. Furthermore, our study indicates that modulation of dendritic spine morphology may represent an effective strategy for the development of new pharmacotherapies for PTSD.
Collapse
Affiliation(s)
- Shalini Saggu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christopher Cottingham
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Biology, University of North Alabama, Florence, AL, 35632, USA
| | - Hasibur Rehman
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Hongxia Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sixue Zhang
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Corinne Augelli-Szafran
- Department of Chemistry, Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
- Scientific Platforms, Southern Research, Birmingham, AL, 35205, USA
| | - Sumin Lu
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Nevin Lambert
- Department of Pharmacology, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, GA, GA30912, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
16
|
Franzen JM, Vanz F, Werle I, Guimarães FS, Bertoglio LJ. Cannabidiol impairs fear memory reconsolidation in female rats through dorsal hippocampus CB1 but not CB2 receptor interaction. Eur Neuropsychopharmacol 2022; 64:7-18. [PMID: 36049316 DOI: 10.1016/j.euroneuro.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 01/23/2023]
Abstract
Women present increased susceptibility to anxiety- and stress-related disorders compared to men. A potentially promising pharmacological-based strategy to regulate abnormal aversive memories disrupts their reconsolidation stage after reactivation and destabilization. Male rodent findings indicate that cannabidiol (CBD), a relatively safe and effective treatment for several mental health conditions, can impair the reconsolidation of aversive memories. However, whether and how CBD influences it in females is still unknown. The present study addressed this question in contextually fear-conditioned female rats. We report that systemically administered CBD impaired their reconsolidation, reducing freezing expression for over a week. This action was restricted to a time when the reconsolidation presumably lasted (< six hours post-retrieval) and depended on memory reactivation/destabilization. Moreover, the impairing effects of CBD on memory reconsolidation relied on the activation of cannabinoid type-1 but not type-2 receptors located in the CA1 subregion of the dorsal hippocampus. CBD applied directly to this brain area was sufficient to reproduce the effects of systemic CBD treatment. Contextual fear memories attenuated by CBD did not show reinstatement, an extinction-related feature. By demonstrating that destabilized fear memories are sensitive to CBD and how it hinders mechanisms in the DH CA1 that may restabilize them in female rats, the present findings concur that reconsolidation blockers are viable and could be effective in disrupting abnormally persistent and distressing aversive memories such as those related to posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jaqueline M Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Felipe Vanz
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Isabel Werle
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
17
|
Noradrenergic consolidation of social recognition memory is mediated by β-arrestin-biased signaling in the mouse prefrontal cortex. Commun Biol 2022; 5:1097. [PMID: 36253525 PMCID: PMC9576713 DOI: 10.1038/s42003-022-04051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 09/28/2022] [Indexed: 11/08/2022] Open
Abstract
Social recognition memory (SRM) is critical for maintaining social relationships and increasing the survival rate. The medial prefrontal cortex (mPFC) is an important brain area associated with SRM storage. Norepinephrine (NE) release regulates mPFC neuronal intrinsic excitability and excitatory synaptic transmission, however, the roles of NE signaling in the circuitry of the locus coeruleus (LC) pathway to the mPFC during SRM storage are unknown. Here we found that LC-mPFC NE projections bidirectionally regulated SRM consolidation. Propranolol infusion and β-adrenergic receptors (β-ARs) or β-arrestin2 knockout in the mPFC disrupted SRM consolidation. When carvedilol, a β-blocker that can mildly activate β-arrestin-biased signaling, was injected, the mice showed no significant suppression of SRM consolidation. The impaired SRM consolidation caused by β1-AR or β-arrestin2 knockout in the mPFC was not rescued by activating LC-mPFC NE projections; however, the impaired SRM by inhibition of LC-mPFC NE projections or β1-AR knockout in the mPFC was restored by activating the β-arrestin signaling pathway in the mPFC. Furthermore, the activation of β-arrestin signaling improved SRM consolidation in aged mice. Our study suggests that LC-mPFC NE projections regulate SRM consolidation through β-arrestin-biased β-AR signaling. Social memory consolidation requires norepinephrine release in the medial prefrontal cortex (mPFC), and enhancing beta-arrestin signaling in the mPFC restores social recognition memory that is normally impaired by age in mice.
Collapse
|
18
|
Evidence on the impairing effects of Ayahuasca on fear memory reconsolidation. Psychopharmacology (Berl) 2022; 239:3325-3336. [PMID: 36069952 DOI: 10.1007/s00213-022-06217-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
RATIONALE To uncover whether psychedelic drugs attenuate fear memory responses would advance the development of better psychedelic-based treatments for posttraumatic stress disorder (PTSD). Ayahuasca (AYA), a psychedelic brew containing indolamine N, N-dimethyltryptamine (DMT) and β-carbolines, facilitates fear extinction and improves neural plasticity. Upon retrieval, fear memory undergoes labilization and reconsolidation; however, the effects of AYA on this memory stabilization phase are unknown. OBJECTIVES We aimed to investigate the effects of AYA treatment on fear memory reconsolidation. METHODS Fear-conditioned Wistar rats received AYA (60, 120, or 240 mg/kg) or H2O orally via gavage o.g. 20 min before, immediately, or 3 h after a short retrieval session. Analysis of AYA through liquid chromatography-tandem mass spectrometry was used to determine the content of DMT and β-carbolines in AYA. RESULTS AYA impaired fear memory reconsolidation when given 20 min before or 3 h after memory retrieval, with the dose of 60 mg/kg being effective at both moments. This dose of AYA was devoid of anxiolytic effect. Importantly, during retrieval, AYA did not change fear expression. The lack of retrieval abolished the reconsolidation impairing effect of AYA. The effects of AYA treatment 20 min before or 3 h after memory retrieval lasted at least 22 days, suggesting no spontaneous recovery of fear memory. Fear memory impairments induced by AYA treatment, at both moments, do not show reinstatement. CONCLUSIONS Our findings support the view that a low dose of AYA treatment impairs early and late stages of memory reconsolidation instead of facilitating fear extinction.
Collapse
|
19
|
Pharmacological Management of Nightmares Associated with Posttraumatic Stress Disorder. CNS Drugs 2022; 36:721-737. [PMID: 35688992 DOI: 10.1007/s40263-022-00929-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/03/2022]
Abstract
Posttraumatic stress disorder (PTSD) can be a chronic and disabling condition. Post-traumatic nightmares (PTNs) form a core component of PTSD and are highly prevalent in this patient population. Nightmares in PTSD have been associated with significant distress, functional impairment, poor health outcomes, and decreased quality of life. Nightmares in PTSD are also an independent risk factor for suicide. Nightmare cessation can lead to improved quality of life, fewer hospital admissions, lower healthcare costs, and reduced all-cause mortality. Effective treatment of nightmares is critical and often leads to improvement of other PTSD symptomatology. However, approved pharmacological agents for the treatment of PTSD have modest effects on sleep and nightmares, and may cause adverse effects. No pharmacological agent has been approved specifically for the treatment of PTNs, but multiple agents have been studied. This current narrative review aimed to critically appraise proven as well as novel pharmacological agents used in the treatment of PTNs. Evidence of varying quality exists for the use of prazosin, doxazosin, clonidine, tricyclic antidepressants, trazodone, mirtazapine, atypical antipsychotics (especially risperidone, olanzapine and quetiapine), gabapentin, topiramate, and cyproheptadine. Evidence does not support the use of venlafaxine, β-blockers, benzodiazepines, or sedative hypnotics. Novel agents such as ramelteon, cannabinoids, ketamine, psychedelic agents, and trihexyphenidyl have shown promising results. Large randomized controlled trials (RCTs) are needed to evaluate the use of these novel agents. Future research directions are identified to optimize the treatment of nightmares in patients with PTSD.
Collapse
|
20
|
Sperl MFJ, Panitz C, Skoluda N, Nater UM, Pizzagalli DA, Hermann C, Mueller EM. Alpha-2 Adrenoreceptor Antagonist Yohimbine Potentiates Consolidation of Conditioned Fear. Int J Neuropsychopharmacol 2022; 25:759-773. [PMID: 35748393 PMCID: PMC9515133 DOI: 10.1093/ijnp/pyac038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Hyperconsolidation of aversive associations and poor extinction learning have been hypothesized to be crucial in the acquisition of pathological fear. Previous animal and human research points to the potential role of the catecholaminergic system, particularly noradrenaline and dopamine, in acquiring emotional memories. Here, we investigated in a between-participants design with 3 groups whether the noradrenergic alpha-2 adrenoreceptor antagonist yohimbine and the dopaminergic D2-receptor antagonist sulpiride modulate long-term fear conditioning and extinction in humans. METHODS Fifty-five healthy male students were recruited. The final sample consisted of n = 51 participants who were explicitly aware of the contingencies between conditioned stimuli (CS) and unconditioned stimuli after fear acquisition. The participants were then randomly assigned to 1 of the 3 groups and received either yohimbine (10 mg, n = 17), sulpiride (200 mg, n = 16), or placebo (n = 18) between fear acquisition and extinction. Recall of conditioned (non-extinguished CS+ vs CS-) and extinguished fear (extinguished CS+ vs CS-) was assessed 1 day later, and a 64-channel electroencephalogram was recorded. RESULTS The yohimbine group showed increased salivary alpha-amylase activity, confirming a successful manipulation of central noradrenergic release. Elevated fear-conditioned bradycardia and larger differential amplitudes of the N170 and late positive potential components in the event-related brain potential indicated that yohimbine treatment (compared with a placebo and sulpiride) enhanced fear recall during day 2. CONCLUSIONS These results suggest that yohimbine potentiates cardiac and central electrophysiological signatures of fear memory consolidation. They thereby elucidate the key role of noradrenaline in strengthening the consolidation of conditioned fear associations, which may be a key mechanism in the etiology of fear-related disorders.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Correspondence: Matthias F. J. Sperl, Justus Liebig University Giessen, Department of Psychology, Otto-Behaghel-Str. 10F, 35394 Giessen, Germany ()
| | - Christian Panitz
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany,Department of Psychology, Experimental Psychology and Methods, University of Leipzig, Leipzig, Germany,Center for the Study of Emotion and Attention, University of Florida, Gainesville, Florida, USA
| | - Nadine Skoluda
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Urs M Nater
- Department of Clinical and Health Psychology, University of Vienna, Vienna, Austria
| | - Diego A Pizzagalli
- Department of Psychiatry, Harvard Medical School, & Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, Massachusetts, USA
| | - Christiane Hermann
- Department of Psychology, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Department of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany
| |
Collapse
|
21
|
Gazarini L, Stern CA, Takahashi RN, Bertoglio LJ. Interactions of Noradrenergic, Glucocorticoid and Endocannabinoid Systems Intensify and Generalize Fear Memory Traces. Neuroscience 2021; 497:118-133. [PMID: 34560200 DOI: 10.1016/j.neuroscience.2021.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/13/2022]
Abstract
Systemic administration of drugs that activate the noradrenergic or glucocorticoid system potentiates aversive memory consolidation and reconsolidation. The opposite happens with the stimulation of endocannabinoid signaling under certain conditions. An unbalance of these interacting neurotransmitters can lead to the formation and maintenance of traumatic memories, whose strength and specificity attributes are often maladaptive. Here we aimed to investigate whether originally low-intensity and precise contextual fear memories would turn similar to traumatic ones in rats systemically administered with adrenaline, corticosterone, and/or the cannabinoid type-1 receptor antagonist/inverse agonist AM251 during consolidation or reconsolidation. The high dose of each pharmacological agent evaluated significantly increased freezing times at test in the conditioning context one and nine days later when given alone post-acquisition or post-retrieval. Their respective low dose produced no relative changes when given separately, but co-treatment of adrenaline with corticosterone or AM251 and the three drugs combined, but not corticosterone with AM251, produced results equivalent to those mentioned initially. Neither the high nor the low dose of adrenaline, corticosterone, or AM251 altered freezing times at test in a novel, neutral context two and ten days later. In contrast, animals receiving the association of their low dose exhibited significantly higher freezing times than controls. Together, the results indicate that newly acquired and destabilized threat memory traces become more intense and generalized after a combined interference acting synergistically and mimicking that reported in patients presenting stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Lucas Gazarini
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Universidade Federal de Mato Grosso do Sul, Três Lagoas, MS, Brazil.
| | - Cristina A Stern
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Reinaldo N Takahashi
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Leandro J Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
22
|
MacCormack JK, Armstrong-Carter E, Humphreys KL, Muscatell KA. Neurophysiological contributors to advantageous risk-taking: an experimental psychopharmacological investigation. Soc Cogn Affect Neurosci 2021; 16:926-936. [PMID: 33860790 PMCID: PMC8421704 DOI: 10.1093/scan/nsab047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/12/2021] [Accepted: 04/15/2021] [Indexed: 12/04/2022] Open
Abstract
The ability to learn from experience is critical for determining when to take risks and when to play it safe. However, we know little about how within-person state changes, such as an individual's degree of neurophysiological arousal, may impact the ability to learn which risks are most likely to fail vs succeed. To test this, we used a randomized, double-blind, placebo-controlled design to pharmacologically manipulate neurophysiological arousal and assess its causal impact on risk-related learning and performance. Eighty-seven adults (45% female, Mage = 20.1 ± 1.46 years) took either propranolol (n = 42), a beta-adrenergic receptor blocker that attenuates sympathetic nervous system-related signaling, or a placebo (n = 45). Participants then completed the Balloon Emotional Learning Task, a risk-taking task wherein experiential learning is necessary for task success. We found that individuals on propranolol, relative to placebo, earned fewer points on the task, suggesting that they were less effective risk-takers. This effect was mediated by the fact that those on propranolol made less optimal decisions in the final phase of the task on trials with the greatest opportunity for advantageous risk-taking. These findings highlight that neurophysiological arousal supports risk-related learning and, in turn, more advantageous decision-making and optimal behavior under conditions of risk.
Collapse
Affiliation(s)
- Jennifer K MacCormack
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - Kathryn L Humphreys
- Department of Psychology and Human Development, Vanderbilt University, Nashville, USA
| | - Keely A Muscatell
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Seo DO, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, Gomez AM, Nguyen TK, Xia L, Bruchas MR. A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron 2021; 109:2116-2130.e6. [PMID: 34081911 PMCID: PMC8754261 DOI: 10.1016/j.neuron.2021.05.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/19/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
Dysregulation in contextual processing is believed to affect several forms of psychopathology, such as post-traumatic stress disorder (PTSD). The dentate gyrus (DG), a subregion of the hippocampus, is thought to be an important brain region for disambiguating new experiences from prior experiences. Noradrenergic (NE) neurons in the locus coeruleus (LC) are more tonically active during stressful events and send dense projections to the DG, yet an understanding of their function in DG-dependent contextual discrimination has not been established. Here, we isolate a key function of the LC-NE-DG circuit in contextual aversive generalization using selective manipulations and in vivo single-cell calcium imaging. We report that activation of LC-NE neurons and terminal activity results in contextual generalization. We found that these effects required β-adrenergic-mediated modulation of hilar interneurons to ultimately promote aversive generalization, suggesting that disruption of noradrenergic tone may serve as an important avenue for treating stress-induced disorders.
Collapse
Affiliation(s)
- Dong-Oh Seo
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric T Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Sean C Piantadosi
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - David J Marcus
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Laura E Motard
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bryce K Kan
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Adrian M Gomez
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tammy K Nguyen
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Li Xia
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Bioengineering, University of Washington, Seattle, WA 98105, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Center for the Neurobiology of Addiction, Pain and Emotion, University of Washington, Seattle, WA 98195, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Departments of Anesthesiology and Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
25
|
Vanderkam P, Solinas M, Ingrand I, Doux N, Ebrahimighavam S, Jaafari N, Lafay-Chebassier C. Effectiveness of drugs acting on adrenergic receptors in the treatment for tobacco or alcohol use disorders: systematic review and meta-analysis. Addiction 2021; 116:1011-1020. [PMID: 32959918 DOI: 10.1111/add.15265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/08/2020] [Accepted: 09/11/2020] [Indexed: 11/27/2022]
Abstract
AIM To assess the efficacy of drugs directly acting on alpha- and beta-adrenergic receptors in the treatment of patients suffering from tobacco or alcohol use disorder. METHODS Using Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, studies were identified through PUBMED, EMBASE, the Cochrane Central Register of Controlled Trials and clinicaltrial.gov. We selected only randomized controlled trials with adult patients with tobacco or alcohol use disorders according to DSM-5 criteria. Interventions included any molecule having a direct pharmacological action on alpha- or beta-adrenergic receptors (agonist or antagonist). Comparators were placebo or other validated pharmacotherapies. The duration of the intervention was a minimum of 1 month, with 3 months of follow-up. Measurements included smoking cessation for tobacco; for alcohol, we selected abstinence, alcohol consumption (drinks per day or week) and heavy drinking days (HDD). Ten studies with tobacco and six with alcohol use disorder were included in the qualitative synthesis and fifteen studies in the quantitative analysis. RESULTS We found that clonidine, an alpha-2 agonist, significantly increased smoking abstinence [relative risk = 1.39 with a 95% confidence interval (CI) = 1.04, 1.84]. Beta-blockers had no significant effect on smoking abstinence. The alpha-1 antagonists prazosin and doxazosin decreased alcohol consumption [SMD = -0.32 (-0.56, -0.07)] but had no effect on abstinence or HDD. CONCLUSIONS The noradrenaline system may represent a promising mechanism to target in tobacco and alcohol use disorders.
Collapse
Affiliation(s)
- Paul Vanderkam
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
- Unité de recherche clinique intersectorielle en psychiatrie, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Marcello Solinas
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
- Unité de recherche clinique intersectorielle en psychiatrie, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Isabelle Ingrand
- Service de Pharmacologie Clinique et Vigilances, CHU de Poitiers, Poitiers, France
- Unité d'Epidémiologie et Biostatistique, Registre Général des Cancers Poitou-Charentes, INSERM CIC 1402, Université, CHU de Poitiers, France
| | - Nicolas Doux
- Service Commun de Documentation, Bibliothèque universitaire de Médecine et de Pharmacie, Université de Poitiers, Poitiers, France
| | - Soghra Ebrahimighavam
- Department of Educational Psychology, Faculty of Psychology and Educational Science, Allameh Tabatabai University, Iran
| | - Nematollah Jaafari
- Unité de recherche clinique intersectorielle en psychiatrie, Centre Hospitalier Henri Laborit, Poitiers, France
| | - Claire Lafay-Chebassier
- INSERM, U-1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
- Service de Pharmacologie Clinique et Vigilances, CHU de Poitiers, Poitiers, France
| |
Collapse
|
26
|
Cassel JC, Ferraris M, Quilichini P, Cholvin T, Boch L, Stephan A, Pereira de Vasconcelos A. The reuniens and rhomboid nuclei of the thalamus: A crossroads for cognition-relevant information processing? Neurosci Biobehav Rev 2021; 126:338-360. [PMID: 33766671 DOI: 10.1016/j.neubiorev.2021.03.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 01/29/2023]
Abstract
Over the past twenty years, the reuniens and rhomboid (ReRh) nuclei, which constitute the ventral midline thalamus, have received constantly growing attention. Since our first review article about the functional contributions of ReRh nuclei (Cassel et al., 2013), numerous (>80) important papers have extended anatomical knowledge, including at a developmental level, introduced new and very original electrophysiological insights on ReRh functions, and brought novel results on cognitive and non-cognitive implications of the ReRh. The current review will cover these recent articles, more on Re than on Rh, and their contribution will be approached according to their affiliation with work before 2013. These neuroanatomical, electrophysiological or behavioral findings appear coherent and point to the ReRh nuclei as two major components of a multistructural system supporting numerous cognitive (and non-cognitive) functions. They gate the flow of information, perhaps especially from the medial prefrontal cortex to the hippocampus and back, and coordinate activity and processing across these two (and possibly other) brain regions of major cognitive relevance.
Collapse
Affiliation(s)
- Jean-Christophe Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France.
| | - Maëva Ferraris
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Pascale Quilichini
- Aix Marseille Université, INSERM, INS, Inst Neurosci Syst, Marseille, France
| | - Thibault Cholvin
- Institute for Physiology I, University Clinics Freiburg, 79104 Freiburg, Germany
| | - Laurine Boch
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Aline Stephan
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Université de Strasbourg, F-67000 Strasbourg, France; LNCA, UMR 7364 - CNRS, F-67000 Strasbourg, France
| |
Collapse
|
27
|
Troyner F, Bertoglio LJ. Nucleus reuniens of the thalamus controls fear memory reconsolidation. Neurobiol Learn Mem 2020; 177:107343. [PMID: 33242589 DOI: 10.1016/j.nlm.2020.107343] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 01/09/2023]
Abstract
The nucleus reuniens has been shown to support the acquisition, consolidation, maintenance, destabilization upon retrieval, and extinction of aversive memories. However, the direct participation of this thalamic subregion in memory reconsolidation is yet to be examined. The present study addressed this question in contextually fear-conditioned rats. Post-reactivation infusion of the GABAA receptor agonist muscimol, the glutamate N2A-containing NMDA receptor antagonist TCN-201, or the protein synthesis inhibitor anisomycin into the NR induced significant impairments in memory reconsolidation. Administering muscimol or TCN-201 and anisomycin locally, or associating locally infused muscimol or TCN-201 with systemically administered clonidine, an α2-receptor adrenergic agonist that attenuates the noradrenergic tonus associated with memory reconsolidation, produced no further reduction in freezing times when compared with the muscimol-vehicle, TCN-201-vehicle, vehicle-anisomycin, and vehicle-clonidine groups. This pattern of results indicates that such treatment combinations produced no additive/synergistic effects on reconsolidation. It is plausible that NR inactivation and antagonism of glutamate N2A-containing NMDA receptors weakened/prevented the subsequent action of anisomycin and clonidine because they disrupted the early stages of signal transduction pathways involved in memory reconsolidation. It is noteworthy that these pharmacological interventions, either alone or combined, induced no contextual memory specificity changes, as assessed in a later test in a novel and unpaired context. Besides, omitting memory reactivation precluded the impairing effects of muscimol, TCN-201, anisomycin, and clonidine on reconsolidation. Together, the present findings demonstrate interacting mechanisms through which the NR can regulate contextual fear memory restabilization.
Collapse
Affiliation(s)
- Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| |
Collapse
|
28
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Thalamic nucleus reuniens regulates fear memory destabilization upon retrieval. Neurobiol Learn Mem 2020; 175:107313. [DOI: 10.1016/j.nlm.2020.107313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 11/18/2022]
|
30
|
Swiercz AP, Iyer L, Yu Z, Edwards A, Prashant NM, Nguyen BN, Horvath A, Marvar PJ. Evaluation of an angiotensin Type 1 receptor blocker on the reconsolidation of fear memory. Transl Psychiatry 2020; 10:363. [PMID: 33110066 PMCID: PMC7591922 DOI: 10.1038/s41398-020-01043-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/11/2020] [Accepted: 10/07/2020] [Indexed: 12/30/2022] Open
Abstract
Inhibition of the angiotensin type 1 receptor (AT1R) has been shown to decrease fear responses in both humans and rodents. These effects are attributed to modulation of extinction learning, however the contribution of AT1R to alternative memory processes remains unclear. Using classic Pavlovian conditioning combined with radiotelemetry and whole-genome RNA sequencing, we evaluated the effects of the AT1R antagonist losartan on fear memory reconsolidation. Following the retrieval of conditioned auditory fear memory, animals were given a single intraperitoneal injection of losartan or saline. In response to the conditioned stimulus (CS), losartan-treated animals exhibited significantly less freezing at 24 h and 1 week; an effect that was dependent upon memory reactivation and independent of conditioned cardiovascular reactivity. Using an unbiased whole-genome RNA sequencing approach, transcriptomic analysis of the basolateral amygdala (BLA) identified losartan-dependent differences in gene expression during the reconsolidation phase. These findings demonstrate that post-retrieval losartan modifies behavioral and transcriptomic markers of conditioned fear memory, supporting an important regulatory role for this receptor in reconsolidation and as a potential pharmacotherapeutic target for maladaptive fear disorders such as PTSD.
Collapse
Affiliation(s)
- Adam P. Swiercz
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Laxmi Iyer
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Zhe Yu
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Allison Edwards
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - N. M. Prashant
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Bryan N. Nguyen
- grid.253615.60000 0004 1936 9510Computational Biology Institute, George Washington University, Washington, DC 20052 USA
| | - Anelia Horvath
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA
| | - Paul J. Marvar
- grid.253615.60000 0004 1936 9510Department of Pharmacology and Physiology, George Washington University, Washington, DC 20052 USA ,grid.253615.60000 0004 1936 9510Department of Psychiatry and Behavioral Sciences, George Washington University, Washington, DC 20052 USA
| |
Collapse
|
31
|
Abdullahi PR, Raeis-Abdollahi E, Sameni H, Vafaei AA, Ghanbari A, Rashidy-Pour A. Protective effects of morphine in a rat model of post-traumatic stress disorder: Role of hypothalamic-pituitary-adrenal axis and beta- adrenergic system. Behav Brain Res 2020; 395:112867. [PMID: 32827567 DOI: 10.1016/j.bbr.2020.112867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 07/18/2020] [Accepted: 08/12/2020] [Indexed: 11/25/2022]
Abstract
Post-traumatic stress disorder (PTSD) arises after tremendous traumatic experiences. Recently, we have reported that morphine has time-dependent protective effects against behavioral and morphological deficits in the single prolonged stress (SPS) as an experimental model of PTSD in adult male rats. To find the mechanisms underlying the protective effects of morphine against SPS-induced PTSD-like symptoms, the present study investigated the interaction between morphine and hypothalamic-pituitary-adrenal (HPA) axis and beta - adrenergic system, which crucially involved in the stress response, on PTSD-like symptoms in male rats. The animals were exposed to the SPS procedure (restraint for 2 h, forced swimming for 20 min, and ether anesthesia) and morphine (10 mg/kg) or saline was injected 24 h following the SPS. The glucocorticoid receptor antagonist RU486 (20 mg/kg), the mineralocorticoid receptor antagonist spironolactone (50 mg/kg), and the corticosterone synthesis inhibitor metyrapone (50 mg/kg) were injected 90 min before morphine administration to block the HPA axis activity. The beta - adrenergic receptor blocker propranolol (10 mg/kg) and the peripheral beta-adrenergic receptor blocker nadolol (5 mg/kg) were administered 30 min before morphine injection to block the beta - adrenergic system. Anxiety-like behaviors were evaluated using the elevated plus maze (EPM) 11 days after the SPS. After that, animals were conditioned in a fear-conditioning task and extinction training was performed on days 1, 2, 3, 4 and 11 after fear conditioning. SPS increased anxiety-like behaviors and impaired fear extinction. Morphine injection 24 h after SPS significantly improved anxiety-like behaviors and enhanced fear extinction. The RU486, spironolactone and metyrapone prevented the protective effects of morphine on both SPS-induced anxiety-like behaviors and impaired fear extinction. The propranolol, and nadolol did not prevent the effect of morphine on anxiety-like behaviors, but the propranolol prevented morphine effects on fear extinction in SPS animals. These findings together suggest that the protective effects of morphine on PTSD-like symptoms in rats require a certain level of the HPA axis and central beta - adrenergic activity and any alteration in the function of these systems can impede the protective effects of morphine.
Collapse
Affiliation(s)
| | - Ehsan Raeis-Abdollahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Ghanbari
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
32
|
Perez DM. α 1-Adrenergic Receptors in Neurotransmission, Synaptic Plasticity, and Cognition. Front Pharmacol 2020; 11:581098. [PMID: 33117176 PMCID: PMC7553051 DOI: 10.3389/fphar.2020.581098] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022] Open
Abstract
α1-adrenergic receptors are G-Protein Coupled Receptors that are involved in neurotransmission and regulate the sympathetic nervous system through binding and activating the neurotransmitter, norepinephrine, and the neurohormone, epinephrine. There are three α1-adrenergic receptor subtypes (α1A, α1B, α1D) that are known to play various roles in neurotransmission and cognition. They are related to two other adrenergic receptor families that also bind norepinephrine and epinephrine, the β- and α2-, each with three subtypes (β1, β2, β3, α2A, α2B, α2C). Previous studies assessing the roles of α1-adrenergic receptors in neurotransmission and cognition have been inconsistent. This was due to the use of poorly-selective ligands and many of these studies were published before the characterization of the cloned receptor subtypes and the subsequent development of animal models. With the availability of more-selective ligands and the development of animal models, a clearer picture of their role in cognition and neurotransmission can be assessed. In this review, we highlight the significant role that the α1-adrenergic receptor plays in regulating synaptic efficacy, both short and long-term synaptic plasticity, and its regulation of different types of memory. We will also present evidence that the α1-adrenergic receptors, and particularly the α1A-adrenergic receptor subtype, are a potentially good target to treat a wide variety of neurological conditions with diminished cognition.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
33
|
Marin FN, Franzen JM, Troyner F, Molina VA, Giachero M, Bertoglio LJ. Taking advantage of fear generalization-associated destabilization to attenuate the underlying memory via reconsolidation intervention. Neuropharmacology 2020; 181:108338. [PMID: 33002500 DOI: 10.1016/j.neuropharm.2020.108338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/24/2020] [Accepted: 09/26/2020] [Indexed: 02/05/2023]
Abstract
Upon retrieval, an aversive memory can undergo destabilization and reconsolidation. A traumatic-like memory, however, may be resistant to this process. The present study sought to contribute with a strategy to overcome this potential issue by investigating whether generalized fear retrieval is susceptible to destabilization-reconsolidation that can be pharmacologically modified. We hypothesized that exposure to a context that elicits moderate generalization levels would allow a malleable memory state. We developed a fear conditioning protocol in context A (cxt-A) paired with yohimbine administration to promote significant fear to a non-conditioned context B (cxt-B) in rats, mimicking the enhanced noradrenergic activity reported after traumatic events in humans. Next, we attempted to impair the reconsolidation phase by administering clonidine (CLO) immediately after exposure to cxt-A, cxt-B, or a third context C (cxt-C) neither conditioned nor generalized. CLO administered post-cxt-B exposure for two consecutive days subsequently resulted in decreased freezing levels in cxt-A. CLO after cxt-B only once, after cxt-A or cxt-C in two consecutive days, or independently of cxt-B exposures did not affect fear in a later test. A 6-h-delay in CLO treatment post-cxt-B exposures produced no effects, and nimodipine administered pre-cxt-B exposures precluded the CLO action. We then quantified the Egr1/Zif268 protein expression following cxt-B exposures and CLO treatments. We found that these factors interact to modulate this memory destabilization-reconsolidation mechanism in the basolateral amygdala but not the dorsal CA1 hippocampus. Altogether, memory destabilization can accompany generalized fear expression; thus, we may exploit it to potentiate reconsolidation blockers' action.
Collapse
Affiliation(s)
- Fernanda Navarro Marin
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Jaqueline Maisa Franzen
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Fernanda Troyner
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Victor Alejandro Molina
- Departamento de Farmacología, IFEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marcelo Giachero
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Instituto de Neurociencia Cognitiva y Traslacional (INCYT), CONICET, Fundación INECO, Universidad Favaloro, Buenos Aires, Argentina.
| | - Leandro Jose Bertoglio
- Departamento de Farmacologia, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
34
|
Haubrich J, Bernabo M, Nader K. Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. eLife 2020; 9:e57010. [PMID: 32420872 PMCID: PMC7297527 DOI: 10.7554/elife.57010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 12/31/2022] Open
Abstract
Memory reconsolidation is a fundamental plasticity process in the brain that allows established memories to be changed or erased. However, certain boundary conditions limit the parameters under which memories can be made plastic. Strong memories do not destabilize, for instance, although why they are resilient is mostly unknown. Here, we investigated the hypothesis that specific modulatory signals shape memory formation into a state that is reconsolidation-resistant. We find that the activation of the noradrenaline-locus coeruleus system (NOR-LC) during strong fear memory encoding increases molecular mechanisms of stability at the expense of lability in the amygdala of rats. Preventing the NOR-LC from modulating strong fear encoding results in the formation of memories that can undergo reconsolidation within the amygdala and thus are vulnerable to post-reactivation interference. Thus, the memory strength boundary condition on reconsolidation is set at the time of encoding by the action of the NOR-LC.
Collapse
Affiliation(s)
- Josué Haubrich
- Department of Psychology, McGill UniversityMontrealCanada
| | - Matteo Bernabo
- Department of Neurology and Neurosurgery, McGill UniversityMontrealCanada
| | - Karim Nader
- Department of Psychology, McGill UniversityMontrealCanada
| |
Collapse
|
35
|
Clonidine, an α2 adrenergic receptor agonist, disrupts reconsolidation of a cocaine-paired environmental memory. Behav Pharmacol 2020; 30:529-533. [PMID: 31386639 PMCID: PMC6686963 DOI: 10.1097/fbp.0000000000000473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Environmental cues can elicit robust cocaine reward memories, contributing to relapse to cocaine abuse. Memories can be manipulated pharmacologically by interfering with reconsolidation after reactivation. Clonidine, an α2 noradrenergic receptor agonist, was tested for its ability to block reconsolidation of cocaine environmental-paired memory. Male Sprague-Dawley rats completed an 8-day cocaine place conditioning procedure to establish a cocaine place preference. Cocaine memory was reactivated by exposure to the cocaine-paired environment in a drug-free state, followed immediately by administration of clonidine (10 or 50 µg/kg) or vehicle. Cocaine place preference was retested 24 h and 1 week later. Clonidine significantly attenuated the previously established cocaine place preference when tested 1 or 7 days later. To investigate the generalizability of this effect to other drug classes, morphine conditioned place preference was tested. Clonidine administration after morphine memory reactivation did not significantly alter the expression of morphine place preference. These results suggest that clonidine can interfere with reconsolidation of cocaine memory and may be a useful approach to reduce relapse.
Collapse
|
36
|
Pittig A, Wong AH, Glück VM, Boschet JM. Avoidance and its bi-directional relationship with conditioned fear: Mechanisms, moderators, and clinical implications. Behav Res Ther 2020; 126:103550. [DOI: 10.1016/j.brat.2020.103550] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
|
37
|
Lagunin AA, Ivanov SM, Gloriozova TA, Pogodin PV, Filimonov DA, Kumar S, Goel RK. Combined network pharmacology and virtual reverse pharmacology approaches for identification of potential targets to treat vascular dementia. Sci Rep 2020; 10:257. [PMID: 31937840 PMCID: PMC6959222 DOI: 10.1038/s41598-019-57199-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/21/2019] [Indexed: 02/07/2023] Open
Abstract
Dementia is a major cause of disability and dependency among older people. If the lives of people with dementia are to be improved, research and its translation into druggable target are crucial. Ancient systems of healthcare (Ayurveda, Siddha, Unani and Sowa-Rigpa) have been used from centuries for the treatment vascular diseases and dementia. This traditional knowledge can be transformed into novel targets through robust interplay of network pharmacology (NetP) with reverse pharmacology (RevP), without ignoring cutting edge biomedical data. This work demonstrates interaction between recent and traditional data, and aimed at selection of most promising targets for guiding wet lab validations. PROTEOME, DisGeNE, DISEASES and DrugBank databases were used for selection of genes associated with pathogenesis and treatment of vascular dementia (VaD). The selection of new potential drug targets was made by methods of NetP (DIAMOnD algorithm, enrichment analysis of KEGG pathways and biological processes of Gene Ontology) and manual expert analysis. The structures of 1976 phytomolecules from the 573 Indian medicinal plants traditionally used for the treatment of dementia and vascular diseases were used for computational estimation of their interactions with new predicted VaD-related drug targets by RevP approach based on PASS (Prediction of Activity Spectra for Substances) software. We found 147 known genes associated with vascular dementia based on the analysis of the databases with gene-disease associations. Six hundred novel targets were selected by NetP methods based on 147 gene associations. The analysis of the predicted interactions between 1976 phytomolecules and 600 NetP predicted targets leaded to the selection of 10 potential drug targets for the treatment of VaD. The translational value of these targets is discussed herewith. Twenty four drugs interacting with 10 selected targets were identified from DrugBank. These drugs have not been yet studied for the treatment of VaD and may be investigated in this field for their repositioning. The relation between inhibition of two selected targets (GSK-3, PTP1B) and the treatment of VaD was confirmed by the experimental studies on animals and reported separately in our recent publications.
Collapse
Affiliation(s)
- Alexey A Lagunin
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia.
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia.
| | - Sergey M Ivanov
- Pirogov Russian National Research Medical University, Department of Bioinformatics, Moscow, 117997, Russia
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Tatyana A Gloriozova
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Pavel V Pogodin
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Dmitry A Filimonov
- Institute of Biomedical Chemistry, Department of Bioinformatics, Moscow, 119121, Russia
| | - Sandeep Kumar
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India
| | - Rajesh K Goel
- Punjabi University, Department of Pharmaceutical Sciences and Drug Research, Patiala, 147002, India.
| |
Collapse
|
38
|
Hooversmith JM, Bhatti DL, Holmes PV. Galanin administration into the prelimbic cortex impairs consolidation and expression of contextual fear conditioning. Behav Brain Res 2019; 375:112160. [DOI: 10.1016/j.bbr.2019.112160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/12/2019] [Accepted: 08/17/2019] [Indexed: 12/11/2022]
|
39
|
Dos Santos Corrêa M, Vaz BDS, Grisanti GDV, de Paiva JPQ, Tiba PA, Fornari RV. Relationship between footshock intensity, post-training corticosterone release and contextual fear memory specificity over time. Psychoneuroendocrinology 2019; 110:104447. [PMID: 31561085 DOI: 10.1016/j.psyneuen.2019.104447] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/09/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
Abstract
Overgeneralized fear has long been implicated in generalized anxiety and post-traumatic stress disorder, however, time-dependent mechanisms underlying memory retrieval are still not completely understood. Previous studies have revealed that stronger fear conditioning training protocols are associated with both increased post-training corticosterone (CORT) levels and fear responses at later retrieval tests. Here we used contextual fear conditioning (CFC) to investigate the relationship between post-training CORT levels and memory specificity in different retrieval timepoints. Wistar rats were exposed to CFC training with increasing footshock intensities (0.3, 0.6 or 1.0mA) and had their blood collected 30 min afterwards to measure post-training plasma CORT. After 2, 14 or 28 days, rats were tested for memory specificity either in the training or in the novel context. Regression analysis was used to verify linear and non-linear interactions between CORT levels and freezing. Higher footshock intensities increased post-training CORT levels and freezing times during tests in all timepoints. Moreover, stronger trainings elicited faster memory generalization, which was associated with higher CORT levels during memory consolidation. The 0.3mA training maintained memory specificity up to 28 days. Additionally, linear regressions suggest that the shift from specific to generalized memories is underway at 14 days after training. These results are consistent with the hypotheses that stronger training protocols elicit a faster generalization rate, and that this process is associated with increased post-training CORT release.
Collapse
Affiliation(s)
- Moisés Dos Santos Corrêa
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Barbara Dos Santos Vaz
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Gabriel David Vieira Grisanti
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | | | - Paula Ayako Tiba
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil
| | - Raquel Vecchio Fornari
- Centro de Matemática, Computação e Cognição (CMCC), Universidade Federal do ABC (UFABC), São Bernardo do Campo, SP, Brazil.
| |
Collapse
|
40
|
Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective. Brain Sci 2019; 9:brainsci9110300. [PMID: 31683595 PMCID: PMC6896105 DOI: 10.3390/brainsci9110300] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/19/2022] Open
Abstract
The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance.
Collapse
|
41
|
Lima KR, da Silva de Vargas L, Ramborger B, Roehrs R, Sevenster D, Izquierdo I, D'Hooge R, Mello-Carpes PB. Noradrenergic and dopaminergic involvement in novelty modulation of aversive memory generalization of adult rats. Behav Brain Res 2019; 371:111991. [PMID: 31150747 DOI: 10.1016/j.bbr.2019.111991] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/11/2019] [Accepted: 05/27/2019] [Indexed: 11/17/2022]
Abstract
The generalization of aversive memory can be defined as the phenomenon in which a situation similar to (but distinctive from) a previous aversive event triggers an avoidance response. This phenomenon has been suggested to play a role in several psychological disorders. In this study, we investigate the effects of novelty on the generalization of fear memories, and the involvement of noradrenergic and dopaminergic systems in this process. For this study we used male Wistar rats (3 months old, 300-400 g). The participation of each neurotransmitter system was evaluated separately (two set of experiments). In each experimental set, the animals were divided in groups (8 animals each): (i) control, (ii) novelty, and, (iii) antagonist + novelty group (timolol, a β-adrenergic antagonist, or SCH23390, a D1/D5 dopaminergic antagonist, in the first and in the second set of experiments, respectively). Additionaly, to investigate whether novelty exposure increases the levels of noradrenaline and/or dopamine in the hippocampus fifteen animals were divided in three groups (5 animals each).: (i) naïve, (ii) control; and, (iii) novelty. To examine aversive memory, and generalization of aversive memory, we trained adult male Wistar rats in an inhibitory avoidance (IA) memory task and after in a modified inhibitory avoidance (MIA). Before the MIA training some of the animals were exposed to environmental novelty (open field). Immediately before this novelty exposure, some animals received intrahippocampal infusion of timolol (β-adrenergic antagonist), SCH23390 (D1/D5 antagonist) or vehicle to evaluate the involvement of noradrenergic and dopaminergic systems. Finally, to evaluate aversive memory and generalization of aversive memory respectively, half of the animals in each group were tested on IA and half on MIA. We confirmed that the exposure to novelty blocks the generalization of aversive memory, but moreover, demonstrated that this process involves activation of β-adrenergic and dopaminergic D1/D5 pathways. We additionally observed that exposure to novelty raises hippocampal levels of noradrenaline and dopamine. This suggests that these neurotransmitters not only influence long-term memory (LTM) as such, but also aversive memory generalization.
Collapse
Affiliation(s)
- Karine Ramires Lima
- Physiology Research Group, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Bruna Ramborger
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Rafael Roehrs
- Interdisciplinary Group of Research in Teaching Practice, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | - Iván Izquierdo
- National Institute of Translational Neuroscience, National Research Council of Brazil, and Memory Center, Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, University of Leuven, Belgium
| | | |
Collapse
|
42
|
Yabuki Y, Fukunaga K. Clinical Therapeutic Strategy and Neuronal Mechanism Underlying Post-Traumatic Stress Disorder (PTSD). Int J Mol Sci 2019; 20:ijms20153614. [PMID: 31344835 PMCID: PMC6695947 DOI: 10.3390/ijms20153614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is characterized by an exaggerated response to contextual memory and impaired fear extinction, with or without mild cognitive impairment, learning deficits, and nightmares. PTSD is often developed by traumatic events, such as war, terrorist attack, natural calamities, etc. Clinical and animal studies suggest that aberrant susceptibility of emotion- and fear-related neurocircuits, including the amygdala, prefrontal cortex (PFC), and hippocampus may contribute to the development and retention of PTSD symptoms. Psychological and pharmacological therapy, such as cognitive behavioral therapy (CBT), and treatment with anti-depressive agents and/or antipsychotics significantly attenuate PTSD symptoms. However, more effective therapeutics are required for improvement of quality of life in PTSD patients. Previous studies have reported that ω3 long-chain polyunsaturated fatty acid (LCPUFA) supplements can suppress the development of PTSD symptoms. Fatty acid binding proteins (FABPs) are essential for LCPUFA intracellular trafficking. In this review, we have introduced Fabp3 null mice as an animal model of PTSD with impaired fear extinction. Moreover, we have addressed the neuronal circuits and novel therapeutic strategies for PTSD symptoms.
Collapse
Affiliation(s)
- Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan.
| |
Collapse
|
43
|
Troyner F, Bicca MA, Bertoglio LJ. Nucleus reuniens of the thalamus controls fear memory intensity, specificity and long-term maintenance during consolidation. Hippocampus 2019; 28:602-616. [PMID: 29747244 DOI: 10.1002/hipo.22964] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 01/05/2023]
Abstract
The thalamic nucleus reuniens (NR) has been shown to support bidirectional medial prefrontal cortex-hippocampus communication and synchronization relevant for cognitive processing. Using non-selective or prolonged inactivation of the NR, previous studies reported its activity positively modulates aversive memory consolidation. Here we examined the NR's role in consolidating contextual fear memories with varied strength, at both recent and more remote time points, using muscimol-induced temporary inactivation in rats. Results indicate the NR negatively modulates fear memory intensity, specificity, and long-term maintenance. The more intense, generalized, and enduring fear memory induced by NR inactivation during consolidation was less prone to behavioral suppression by extinction or reconsolidation disruption induced by clonidine, an alpha-2 adrenergic receptor agonist. Lastly, we used immunohistochemistry for Arc protein, which is involved in synaptic modifications underlying memory consolidation, to investigate whether treatment condition and/or conditioning status could change its levels not only in the NR, but also in the hippocampus (dorsal and ventral CA1 subregions) and the medial prefrontal cortex (anterior cingulate, prelimbic and infralimbic subregions). Results indicate a significant imbalance in the number of Arc-expressing neurons in the brain areas investigated in muscimol fear conditioned animals when compared with controls. Collectively, present results provide convergent evidence for the NR's role as a hub regulating quantitative and qualitative aspects of a contextual fear memory during its consolidation that seem to influence the subsequent susceptibility to experimental interventions aiming at attenuating its expression. They also indicate the selectivity and duration of a given inactivation approach may influence its outcomes.
Collapse
Affiliation(s)
- Fernanda Troyner
- Departmento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Maíra A Bicca
- Departmento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | - Leandro J Bertoglio
- Departmento de Farmacologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
44
|
Souza RR, Robertson NM, Pruitt DT, Gonzales PA, Hays SA, Rennaker RL, Kilgard MP, McIntyre CK. Vagus nerve stimulation reverses the extinction impairments in a model of PTSD with prolonged and repeated trauma. Stress 2019; 22:509-520. [PMID: 31010369 DOI: 10.1080/10253890.2019.1602604] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown that vagus nerve stimulation (VNS) enhances extinction of conditioned fear and reduces anxiety in rat models of PTSD using moderate stress. However, it is still unclear if VNS can be effective in enhancing extinction of severe fear after prolonged and repeated trauma. Severe fear was induced in adult male rats by combining single prolonged stress (SPS) and protracted aversive conditioning (PAC). After SPS and PAC procedures, rats were implanted with stimulating cuff electrodes, exposed to five days of extinction training with or without VNS, and then tested for extinction retention, return of fear in a new context and reinstatement. The elevated plus maze, open field and startle were used to test anxiety. Sham rats showed no reduction of fear during extensive extinction training. VNS-paired with extinction training reduced freezing at the last extinction session by 70% compared to sham rats. VNS rats exhibited half as much fear as shams, as well as less fear renewal. Sham rats exhibited significantly more anxiety than naive controls, whereas VNS rats did not. These results demonstrate that VNS enhances extinction and reduces anxiety in a severe model of PTSD that combined SPS and a conditioning procedure that is 30 times more intense than the conditioning procedures in previous VNS studies. The broad utility of VNS in enhancing extinction learning in rats and the strong clinical safety record of VNS suggest that VNS holds promise as an adjuvant to exposure-based therapy in people with PTSD and other complex forms of this condition.
Collapse
Affiliation(s)
- Rimenez R Souza
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| | - Nicole M Robertson
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
| | - David T Pruitt
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Phillip A Gonzales
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
| | - Seth A Hays
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Robert L Rennaker
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
- c Erik Jonsson School of Engineering and Computer Science , The University of Texas at Dallas , Richardson , TX , USA
| | - Michael P Kilgard
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| | - Christa K McIntyre
- a Texas Biomedical Device Center , The University of Texas at Dallas , Richardson , TX , USA
- b School of Behavioral Brain Sciences , The University of Texas at Dallas , Richardson , TX , USA
| |
Collapse
|
45
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
46
|
Brandwein NJ, Nguyen PV. A requirement for epigenetic modifications during noradrenergic stabilization of heterosynaptic LTP in the hippocampus. Neurobiol Learn Mem 2019; 161:72-82. [PMID: 30930287 DOI: 10.1016/j.nlm.2019.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 12/31/2022]
Abstract
Beta-adrenergic receptor (b-AR) activation by noradrenaline (NA) enhances memory formation and long-term potentiation (LTP), a form of synaptic plasticity characterized by an activity-dependent increase in synaptic strength. LTP is believed to be a cellular mechanism for contextual learning and memory. In the mammalian hippocampus, LTP can be observed at multiple synaptic pathways after strong stimulation of a single synaptic pathway. This heterosynaptic LTP is believed to involve synaptic tagging of active synapses and capture of plasticity-related proteins that enable heterosynaptic transfer of persistent potentiation. These processes may permit distinct neural pathways to associate information transmitted by separate, but convergent, synaptic inputs. We had previously shown that transcription and epigenetic modifications were necessary for stabilization of homosynaptic LTP. However, it is unclear whether transfer of LTP to a second, heterosynaptic pathway involves b-ARs signalling to the nucleus. Using electrophysiologic recordings in area CA1 of murine hippocampal slices, we show here that pharmacologically inhibiting b-AR activation, transcription, DNA methyltransferase or histone acetyltransferase activation, prevents stabilization of heterosynaptic LTP. Our data suggest that noradrenergic stabilization of heterosynaptic ("tagged") LTP requires not only transcription, but specifically, DNA methylation and histone acetylation. NA promotes stable heterosynaptic plasticity through engagement of nuclear processes that may contribute to prompt consolidation of short-term memories into resilient long-term memories under conditions when the brain's noradrenergic system is recruited.
Collapse
Affiliation(s)
- N J Brandwein
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada
| | - P V Nguyen
- Department of Physiology, University of Alberta School of Medicine, Edmonton, Alberta T6G 2H7, Canada.
| |
Collapse
|
47
|
Asok A, Kandel ER, Rayman JB. The Neurobiology of Fear Generalization. Front Behav Neurosci 2019; 12:329. [PMID: 30697153 PMCID: PMC6340999 DOI: 10.3389/fnbeh.2018.00329] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022] Open
Abstract
The generalization of fear memories is an adaptive neurobiological process that promotes survival in complex and dynamic environments. When confronted with a potential threat, an animal must select an appropriate defensive response based on previous experiences that are not identical, weighing cues and contextual information that may predict safety or danger. Like other aspects of fear memory, generalization is mediated by the coordinated actions of prefrontal, hippocampal, amygdalar, and thalamic brain areas. In this review article, we describe the current understanding of the behavioral, neural, genetic, and biochemical mechanisms involved in the generalization of fear. Fear generalization is a hallmark of many anxiety and stress-related disorders, and its emergence, severity, and manifestation are sex-dependent. Therefore, to improve the dialog between human and animal studies as well as to accelerate the development of effective therapeutics, we emphasize the need to examine both sex differences and remote timescales in rodent models.
Collapse
Affiliation(s)
- Arun Asok
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| | - Eric R. Kandel
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Howard Hughes Medical Institute (HHMI), Columbia University, New York, NY, United States
- Kavli Institute for Brain Science, Columbia University, New York, NY, United States
| | - Joseph B. Rayman
- Jerome L. Greene Science Center, Department of Neuroscience, Columbia University, New York, NY, United States
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
| |
Collapse
|
48
|
Cahill EN, Milton AL. Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology (Berl) 2019; 236:111-132. [PMID: 30656364 PMCID: PMC6373198 DOI: 10.1007/s00213-018-5121-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/12/2018] [Indexed: 12/26/2022]
Abstract
Extinction within the reconsolidation window, or 'retrieval-extinction', has received much research interest as a possible technique for targeting the reconsolidation of maladaptive memories with a behavioural intervention. However, it remains to be determined whether the retrieval-extinction effect-a long-term reduction in fear behaviour, which appears resistant to spontaneous recovery, renewal and reinstatement-depends specifically on destabilisation of the original memory (the 'reconsolidation-update' account) or represents facilitation of an extinction memory (the 'extinction-facilitation' account). We propose that comparing the neurotransmitter systems, receptors and intracellular signalling pathways recruited by reconsolidation, extinction and retrieval-extinction will provide a way of distinguishing between these accounts.
Collapse
Affiliation(s)
- Emma N Cahill
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3EG, UK
| | - Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK.
| |
Collapse
|
49
|
Luján MA, Colomar L, Tarragón E, López-Cruz L, Pastor R, Font L. Drug-free and context-dependent locomotor hyperactivity in DBA/2 J mice previously treated with repeated cocaine: Relationship with behavioral sensitization and role of noradrenergic receptors. Pharmacol Biochem Behav 2018; 176:101-110. [PMID: 30571988 DOI: 10.1016/j.pbb.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 12/21/2022]
Abstract
Drug-associated contexts and discrete cues can trigger motivational states responsible for drug-seeking behavior and relapse. In preclinical research, drug-free conditioned hyperactivity has been used to investigate the expression of memories associated with psychostimulant drug effects. Addictive drugs can produce long-lasting sensitization to their psychomotor actions, a phenomenon known as behavioral sensitization. The neuroplasticity underlying behavioral sensitization appears to be involved in pathological drug pursuit and abuse. In the present study we evaluated drug-free, context-dependent hyperactivity in DBA/2 J mice previously treated with cocaine and we explored whether this conditioned effect was related to behavioral sensitization. Given the role of noradrenergic (NA) neurotransmission in memory retrieval, consolidation and reconsolidation processes, we also investigated whether conditioned hyperactivity in a drug-free state was mediated by NA receptors. Animals underwent a sensitization protocol with six cocaine injections (0, 5, 10 or 20 mg/kg) paired to a particular floor cue. Three days after this sensitization phase, all animals were exposed to the same familiar floor environment without drug treatment. A second test with an unfamiliar floor was conducted 24 h later. Conditioned hyperactivity was also explored after one or three cocaine pairings and was evaluated for its duration (with repeated familiar vs. unfamiliar floor tests). In a series of pharmacological experiments, we evaluated the effects propranolol (a non-selective antagonist of β1- and β2-receptors) and prazosin (α1-receptor antagonist) on conditioned hyperactivity. Cocaine treatment produced both robust sensitization and drug-free conditioned hyperactivity, an effect that lasted up to 17 days (with cocaine 20 mg/kg). A significant correlation between the magnitude of cocaine sensitization and the level of conditioned hyperactivity was found. Propranolol, but not prazosin, blocked context-dependent hyperlocomotion in a drug-free state. Our data, together with a vast body of literature, indicate that the NA system plays a key role in the retrieval and behavioral expression of drug-associated memories.
Collapse
Affiliation(s)
- Miguel A Luján
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain; Neurobiology of Behaviour Research Group (GReNeCNeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura Colomar
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Ernesto Tarragón
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Laura López-Cruz
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain; Department of Psychology and MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Raúl Pastor
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain
| | - Laura Font
- Area de Psicobiología, Facultad de Ciencias de la Salud, Universitat Jaume I, Castellón, Spain.
| |
Collapse
|
50
|
Abstract
Nightmares are considered the hallmark of posttraumatic stress disorder (PTSD). Although the characteristics of these distressing dreams may vary with the type of traumatic event, the pathophysiology exposes central dysfunction of brain structures at the level of the hippocampus, amygdala, and locus coeruleus, modulated by neurochemical imbalance in nor-adrenergic, dopaminergic, and serotonin pathways. Underlying comorbid conditions, including other sleep disorders, may contribute to worsening symptoms. Addressing sleep disruption can alleviate the severity of these nocturnal events and augment the effectiveness of other PTSD treatments. The expansion of behavioral treatment modalities for PTSD-related nightmares has been encouraging, but the core of these interventions is heavily structured around memory manipulation and imagery rescripting. A lack of a standardized delivery and a high dropout rate continue to pose significant challenges in achieving successful outcomes. The efficacy of existing pharmacological studies, such as α-adrenergic blocking agents, antidepressants, and atypical antipsychotics, has been undermined by methodological limitations and absence of large randomized controlled trials. This review is aimed at reviewing the available treatment strategies for alleviating nightmares in subjects with PTSD. Given the intricate relationship between PTSD and nightmares, future clinical trials have to adopt a more pragmatic approach focused not only on efficacy of novel interventions but also on adjunctive iteration of existing therapies tailored to individual socio-cultural background.
Collapse
Affiliation(s)
- Ali A El-Solh
- Research Department, VA Western New York Healthcare System, Buffalo, NY, USA,
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY, USA,
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY, USA,
- Department of Community and Health Behavior, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY, USA,
| |
Collapse
|