1
|
Chen M, Li J, Shan W, Yang J, Zuo Z. Auditory fear memory retrieval requires BLA-LS and LS-VMH circuitries via GABAergic and dopaminergic neurons. EMBO Rep 2025; 26:1816-1834. [PMID: 40055468 PMCID: PMC11977213 DOI: 10.1038/s44319-025-00403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 04/09/2025] Open
Abstract
Fear and associated learning and memory are critical for developing defensive behavior. Excessive fear and anxiety are important components of post-traumatic stress disorder. However, the neurobiology of fear conditioning, especially tone-related fear memory retrieval, has not been clearly defined, which limits specific intervention development for patients with excessive fear and anxiety. Here, we show that auditory fear memory retrieval stimuli activate multiple brain regions including the lateral septum (LS). Inhibition of the LS and the connection between basolateral amygdala (BLA) and LS or between LS and ventromedial nucleus of the hypothalamus (VMH) attenuates tone-related fear conditioning and memory retrieval. Inhibiting GABAergic neurons or dopaminergic neurons in the LS also attenuates tone-related fear conditioning. Our data further show that fear conditioning is inhibited by blocking orexin B signaling in the LS. Our results indicate that the neural circuitries BLA-LS and LS-VMH are critical for tone-related fear conditioning and memory retrieval, and that GABAergic neurons, dopaminergic neurons and orexin signaling in the LS participate in this auditory fear conditioning.
Collapse
Affiliation(s)
- Miao Chen
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Li
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Weiran Shan
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
| | - Jianjun Yang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Aukema RJ, Petrie GN, Matarasso AK, Baglot SL, Molina LA, Füzesi T, Kadhim S, Nastase AS, Rodriguez Reyes I, Bains JS, Morena M, Bruchas MR, Hill MN. Identification of a stress-responsive subregion of the basolateral amygdala in male rats. Neuropsychopharmacology 2024; 49:1989-1999. [PMID: 39117904 PMCID: PMC11480132 DOI: 10.1038/s41386-024-01927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
The basolateral amygdala (BLA) is reliably activated by psychological stress and hyperactive in conditions of pathological stress or trauma; however, subsets of BLA neurons are also readily activated by rewarding stimuli and can suppress fear and avoidance behaviours. The BLA is highly heterogeneous anatomically, exhibiting continuous molecular and connectivity gradients throughout the entire structure. A critical gap remains in understanding the anatomical specificity of amygdala subregions, circuits, and cell types explicitly activated by acute stress and how they are dynamically activated throughout stimulus exposure. Using a combination of topographical mapping for the activity-responsive protein FOS and fiber photometry to measure calcium transients in real-time, we sought to characterize the spatial and temporal patterns of BLA activation in response to a range of novel stressors (shock, swim, restraint, predator odour) and non-aversive, but novel stimuli (crackers, citral odour). We report four main findings: (1) the BLA exhibits clear spatial activation gradients in response to novel stimuli throughout the medial-lateral and dorsal-ventral axes, with aversive stimuli strongly biasing activation towards medial aspects of the BLA; (2) novel stimuli elicit distinct temporal activation patterns, with stressful stimuli exhibiting particularly enhanced or prolonged temporal activation patterns; (3) changes in BLA activity are associated with changes in behavioural state; and (4) norepinephrine enhances stress-induced activation of BLA neurons via the ß-noradrenergic receptor. Moving forward, it will be imperative to combine our understanding of activation gradients with molecular and circuit-specificity.
Collapse
Affiliation(s)
- Robert J Aukema
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Gavin N Petrie
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Avi K Matarasso
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Samantha L Baglot
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Leonardo A Molina
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Tamás Füzesi
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Sandra Kadhim
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Andrei S Nastase
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Itzel Rodriguez Reyes
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Jaideep S Bains
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, 00185, Italy
- Neuropsychopharmacology Unit, European Center for Brain Research, Santa Lucia Foundation, Rome, 00143, Italy
| | - Michael R Bruchas
- Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- UW Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Matthew N Hill
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, AB, T2N 4N1, Canada.
- Department of Psychiatry, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
3
|
van Velthoven CTJ, Gao Y, Kunst M, Lee C, McMillen D, Chakka AB, Casper T, Clark M, Chakrabarty R, Daniel S, Dolbeare T, Ferrer R, Gloe J, Goldy J, Guzman J, Halterman C, Ho W, Huang M, James K, Nguy B, Pham T, Ronellenfitch K, Thomas ED, Torkelson A, Pagan CM, Kruse L, Dee N, Ng L, Waters J, Smith KA, Tasic B, Yao Z, Zeng H. The transcriptomic and spatial organization of telencephalic GABAergic neuronal types. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599583. [PMID: 38948843 PMCID: PMC11212977 DOI: 10.1101/2024.06.18.599583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The telencephalon of the mammalian brain comprises multiple regions and circuit pathways that play adaptive and integrative roles in a variety of brain functions. There is a wide array of GABAergic neurons in the telencephalon; they play a multitude of circuit functions, and dysfunction of these neurons has been implicated in diverse brain disorders. In this study, we conducted a systematic and in-depth analysis of the transcriptomic and spatial organization of GABAergic neuronal types in all regions of the mouse telencephalon and their developmental origins. This was accomplished by utilizing 611,423 single-cell transcriptomes from the comprehensive and high-resolution transcriptomic and spatial cell type atlas for the adult whole mouse brain we have generated, supplemented with an additional single-cell RNA-sequencing dataset containing 99,438 high-quality single-cell transcriptomes collected from the pre- and postnatal developing mouse brain. We present a hierarchically organized adult telencephalic GABAergic neuronal cell type taxonomy of 7 classes, 52 subclasses, 284 supertypes, and 1,051 clusters, as well as a corresponding developmental taxonomy of 450 clusters across different ages. Detailed charting efforts reveal extraordinary complexity where relationships among cell types reflect both spatial locations and developmental origins. Transcriptomically and developmentally related cell types can often be found in distant and diverse brain regions indicating that long-distance migration and dispersion is a common characteristic of nearly all classes of telencephalic GABAergic neurons. Additionally, we find various spatial dimensions of both discrete and continuous variations among related cell types that are correlated with gene expression gradients. Lastly, we find that cortical, striatal and some pallidal GABAergic neurons undergo extensive postnatal diversification, whereas septal and most pallidal GABAergic neuronal types emerge simultaneously during the embryonic stage with limited postnatal diversification. Overall, the telencephalic GABAergic cell type taxonomy can serve as a foundational reference for molecular, structural and functional studies of cell types and circuits by the entire community.
Collapse
Affiliation(s)
| | - Yuan Gao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Changkyu Lee
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Scott Daniel
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Mike Huang
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - Beagan Nguy
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | | | | | | | - Lauren Kruse
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA, USA
| |
Collapse
|
4
|
Balouek JA, Mclain CA, Minerva AR, Rashford RL, Bennett SN, Rogers FD, Peña CJ. Reactivation of Early-Life Stress-Sensitive Neuronal Ensembles Contributes to Lifelong Stress Hypersensitivity. J Neurosci 2023; 43:5996-6009. [PMID: 37429717 PMCID: PMC10451005 DOI: 10.1523/jneurosci.0016-23.2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/01/2023] [Accepted: 06/17/2023] [Indexed: 07/12/2023] Open
Abstract
Early-life stress (ELS) is one of the strongest lifetime risk factors for depression, anxiety, suicide, and other psychiatric disorders, particularly after facing additional stressful events later in life. Human and animal studies demonstrate that ELS sensitizes individuals to subsequent stress. However, the neurobiological basis of such stress sensitization remains largely unexplored. We hypothesized that ELS-induced stress sensitization would be detectable at the level of neuronal ensembles, such that cells activated by ELS would be more reactive to adult stress. To test this, we leveraged transgenic mice to genetically tag, track, and manipulate experience-activated neurons. We found that in both male and female mice, ELS-activated neurons within the nucleus accumbens (NAc), and to a lesser extent the medial prefrontal cortex, were preferentially reactivated by adult stress. To test whether reactivation of ELS-activated ensembles in the NAc contributes to stress hypersensitivity, we expressed hM4Dis receptor in control or ELS-activated neurons of pups and chemogenetically inhibited their activity during experience of adult stress. Inhibition of ELS-activated NAc neurons, but not control-tagged neurons, ameliorated social avoidance behavior following chronic social defeat stress in males. These data provide evidence that ELS-induced stress hypersensitivity is encoded at the level of corticolimbic neuronal ensembles.SIGNIFICANCE STATEMENT Early-life stress enhances sensitivity to stress later in life, yet the mechanisms of such stress sensitization are largely unknown. Here, we show that neuronal ensembles in corticolimbic brain regions remain hypersensitive to stress across the life span, and quieting these ensembles during experience of adult stress rescues stress hypersensitivity.
Collapse
Affiliation(s)
- Julie-Anne Balouek
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Christabel A Mclain
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Adelaide R Minerva
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Rebekah L Rashford
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Shannon N Bennett
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | - Forrest D Rogers
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544
| | | |
Collapse
|
5
|
Beaver JN, Weber BL, Ford MT, Anello AE, Ruffin KM, Kassis SK, Gilman TL. Generalization of contextual fear is sex-specifically affected by high salt intake. PLoS One 2023; 18:e0286221. [PMID: 37440571 PMCID: PMC10343085 DOI: 10.1371/journal.pone.0286221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/10/2023] [Indexed: 07/15/2023] Open
Abstract
A hallmark symptom of many anxiety disorders, and multiple neuropsychiatric disorders more broadly, is generalization of fearful responses to non-fearful stimuli. Anxiety disorders are often comorbid with cardiovascular diseases. One established, and modifiable, risk factor for cardiovascular diseases is salt intake. Yet, investigations into how excess salt consumption affects anxiety-relevant behaviors remains little explored. Moreover, no studies have yet assessed how high salt intake influences generalization of fear. Here, we used adult C57BL/6J mice of both sexes to evaluate the influence of two or six weeks of high salt consumption (4.0% NaCl), compared to controls (0.4% NaCl), on contextual fear acquisition, expression, and generalization. Further, we measured osmotic and physiological stress by quantifying serum osmolality and corticosterone levels, respectively. Consuming excess salt did not influence contextual fear acquisition nor discrimination between the context used for training and a novel, neutral context when training occurred 48 prior to testing. However, when a four week delay between training and testing was employed to induce natural fear generalization processes, we found that high salt intake selectively increases contextual fear generalization in females, but the same diet reduces contextual fear generalization in males. These sex-specific effects were independent of any changes in serum osmolality nor corticosterone levels, suggesting the behavioral shifts are a consequence of more subtle, neurophysiologic changes. This is the first evidence of salt consumption influencing contextual fear generalization, and adds information about sex-specific effects of salt that are largely missing from current literature.
Collapse
Affiliation(s)
- Jasmin N. Beaver
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Brady L. Weber
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Matthew T. Ford
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Anna E. Anello
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - Kaden M. Ruffin
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
| | - Sarah K. Kassis
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
| | - T. Lee Gilman
- Department of Psychological Sciences, Kent State University, Kent, Ohio, United States of America
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, Ohio, United States of America
| |
Collapse
|
6
|
Fan R, Reader SM, Sakata JT. Alarm cues and alarmed conspecifics: neural activity during social learning from different cues in Trinidadian guppies. Proc Biol Sci 2022; 289:20220829. [PMID: 36043284 PMCID: PMC9428528 DOI: 10.1098/rspb.2022.0829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022] Open
Abstract
Learning to respond appropriately to novel dangers is often essential to survival and success, but carries risks. Learning about novel threats from others (social learning) can reduce these risks. Many species, including the Trinidadian guppy (Poecilia reticulata), respond defensively to both conspecific chemical alarm cues and conspecific anti-predator behaviours, and in other fish such social information can lead to a learned aversion to novel threats. However, relatively little is known about the neural substrates underlying social learning and the degree to which different forms of learning share similar neural mechanisms. Here, we explored the neural substrates mediating social learning of novel threats from two different conspecific cues (i.e. social cue-based threat learning). We first demonstrated that guppies rapidly learn about threats paired with either alarm cues or with conspecific threat responses (demonstration). Then, focusing on acquisition rather than recall, we discovered that phospho-S6 expression, a marker of neural activity, was elevated in guppies during learning from alarm cues in the putative homologue of the mammalian lateral septum and the preoptic area. Surprisingly, these changes in neural activity were not observed in fish learning from conspecific demonstration. Together, these results implicate forebrain areas in social learning about threat but raise the possibility that circuits contribute to such learning in a stimulus-specific manner.
Collapse
Affiliation(s)
- Raina Fan
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Simon M. Reader
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Jon T. Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada
- Center for Studies in Behavioural Neurobiology, Concordia University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
van der Veldt S, Etter G, Mosser CA, Manseau F, Williams S. Conjunctive spatial and self-motion codes are topographically organized in the GABAergic cells of the lateral septum. PLoS Biol 2021; 19:e3001383. [PMID: 34460812 PMCID: PMC8432898 DOI: 10.1371/journal.pbio.3001383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/10/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022] Open
Abstract
The hippocampal spatial code’s relevance for downstream neuronal populations—particularly its major subcortical output the lateral septum (LS)—is still poorly understood. Here, using calcium imaging combined with unbiased analytical methods, we functionally characterized and compared the spatial tuning of LS GABAergic cells to those of dorsal CA3 and CA1 cells. We identified a significant number of LS cells that are modulated by place, speed, acceleration, and direction, as well as conjunctions of these properties, directly comparable to hippocampal CA1 and CA3 spatially modulated cells. Interestingly, Bayesian decoding of position based on LS spatial cells reflected the animal’s location as accurately as decoding using the activity of hippocampal pyramidal cells. A portion of LS cells showed stable spatial codes over the course of multiple days, potentially reflecting long-term episodic memory. The distributions of cells exhibiting these properties formed gradients along the anterior–posterior and dorsal–ventral axes of the LS, directly reflecting the topographical organization of hippocampal inputs to the LS. Finally, we show using transsynaptic tracing that LS neurons receiving CA3 and CA1 excitatory input send projections to the hypothalamus and medial septum, regions that are not targeted directly by principal cells of the dorsal hippocampus. Together, our findings demonstrate that the LS accurately and robustly represents spatial, directional as well as self-motion information and is uniquely positioned to relay this information from the hippocampus to its downstream regions, thus occupying a key position within a distributed spatial memory network. Calcium imaging of neurons in freely behaving mice reveals how the lateral septum, the main output of the hippocampal place cells, effectively represents information about not only location, but also head direction and self-movement, and may be pivotal in sending this information to downstream brain regions.
Collapse
Affiliation(s)
| | - Guillaume Etter
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Coralie-Anne Mosser
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Frédéric Manseau
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
| | - Sylvain Williams
- McGill University & Douglas Mental Health University Institute, Montreal, Canada
- * E-mail:
| |
Collapse
|
8
|
Zhang Y, Wang Z, Ju J, Liao J, Zhou Q. Elevated activity in the dorsal dentate gyrus reduces expression of fear memory after fear extinction training. J Psychiatry Neurosci 2021; 46:E390-E401. [PMID: 34077148 PMCID: PMC8327976 DOI: 10.1503/jpn.200151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/02/2020] [Accepted: 01/23/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Effectively reducing the expression of certain aversive memories (fear or trauma memories) with extinction training is generally viewed to be therapeutically important. A deeper understanding of the biological basis for a more effective extinction process is also of high scientific importance. METHODS Our study involved intraventricular injection or local injection into the dorsal dentate gyrus of anti-neuregulin 1 antibodies (anti-NRG1) before fear extinction training, followed by testing the expression of fear memory 24 hours afterward or 9 days later. We used local injection of chemogenetic or optogenetic viruses into the dorsal dentate gyrus to manipulate the activity of the dorsal dentate gyrus and test the expression of fear memory. We also examined the effect of deep brain stimulation in the dorsal dentate gyrus on the expression of fear memory. RESULTS Mice that received intraventricular injection with anti-NRG1 antibodies exhibited lower expression of fear memory and increased density of activated excitatory neurons in the dorsal dentate gyrus. Injection of anti-NRG1 antibodies directly into the dorsal dentate gyrus also led to lower expression of fear memory and more activated neurons in the dorsal dentate gyrus. Inhibiting the activity of dorsal dentate gyrus excitatory neurons using an inhibitory designer receptor exclusively activated by designer drugs (DREADD) eliminated the effects of the anti-NRG1 antibodies. Enhancing the activity of the dorsal dentate gyrus with an excitatory DREADD or optogenetic stimulation resulted in lower expression of fear memory in mice that did not receive infusion of anti-NRG1 antibodies. Deep brain stimulation in the dorsal dentate gyrus effectively suppressed expression of fear memory, both during and after fear extinction training. LIMITATIONS The mechanism for the contribution of the dorsal dentate gyrus to the expression of fear memory needs further exploration. CONCLUSION Activation of the dorsal dentate gyrus may play an important role in modulating the expression of fear memory; its potential use in fear memory extinction is worthy of further exploration.
Collapse
Affiliation(s)
- Yujie Zhang
- From the Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen 518055, Peoples R China (Zhang, Wang, Zhou); the Precision Medicine Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China (Ju); and the Pediatric Neurology, Shenzhen Children’s Hospital, Shenzhen, 518038, China (Zhang, Liao)
| | - Zongliang Wang
- From the Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen 518055, Peoples R China (Zhang, Wang, Zhou); the Precision Medicine Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China (Ju); and the Pediatric Neurology, Shenzhen Children’s Hospital, Shenzhen, 518038, China (Zhang, Liao)
| | - Jun Ju
- From the Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen 518055, Peoples R China (Zhang, Wang, Zhou); the Precision Medicine Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China (Ju); and the Pediatric Neurology, Shenzhen Children’s Hospital, Shenzhen, 518038, China (Zhang, Liao)
| | - Jianxiang Liao
- From the Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen 518055, Peoples R China (Zhang, Wang, Zhou); the Precision Medicine Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China (Ju); and the Pediatric Neurology, Shenzhen Children’s Hospital, Shenzhen, 518038, China (Zhang, Liao)
| | - Qiang Zhou
- From the Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen 518055, Peoples R China (Zhang, Wang, Zhou); the Precision Medicine Centre, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China (Ju); and the Pediatric Neurology, Shenzhen Children’s Hospital, Shenzhen, 518038, China (Zhang, Liao)
| |
Collapse
|
9
|
Traumatic Stress Induces Prolonged Aggression Increase through Synaptic Potentiation in the Medial Amygdala Circuits. eNeuro 2020; 7:ENEURO.0147-20.2020. [PMID: 32651265 PMCID: PMC7385664 DOI: 10.1523/eneuro.0147-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 12/28/2022] Open
Abstract
Traumatic stress can lead to heightened aggression which may be a symptom of psychiatric diseases such as PTSD and intermittent explosive disorder. The medial amygdala (MeA) is an evolutionarily conserved subnucleus of the amygdala that regulates attack behavior and behavioral responses to stressors. The precise contribution of the MeA in traumatic stress-induced aggression, however, requires further elucidation. In this study, we used foot shock to induce traumatic stress in mice and examine the mechanisms of prolonged aggression increase associated with it. Foot shock causes a prolonged increase in aggression that lasts at least one week. In vivo electrophysiological recordings revealed that foot shock induces potentiation of synapses formed between the MeA and the ventromedial hypothalamus (VmH) and bed nucleus of the stria terminalis (BNST). This synaptic potentiation lasts at least one week. Induction of synaptic depotentiation with low-frequency photostimulation (LFPS) immediately after foot shock suppresses the prolonged aggression increase without affecting non-aggressive social behavior, anxiety-like and depression-like behaviors, or fear learning. These results show that potentiation of the MeA-VmH and MeA-BNST circuits is essential for traumatic stress to cause a prolonged increase in aggression. These circuits may be potential targets for the development of therapeutic strategies to treat the aggression symptom associated with psychiatric diseases.
Collapse
|
10
|
Butler CW, Wilson YM, Mills SA, Gunnersen JM, Murphy M. Evidence that a defined population of neurons in lateral amygdala is directly involved in auditory fear learning and memory. Neurobiol Learn Mem 2019; 168:107139. [PMID: 31843653 DOI: 10.1016/j.nlm.2019.107139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/12/2019] [Indexed: 10/25/2022]
Abstract
Memory is thought to be encoded within networks of neurons within the brain, but the identity of the neurons involved and circuits they form have not been described for any memory. Previously, we used fos-tau-lacZ (FTL) transgenic mice to identify discrete populations of neurons in different regions of the brain which were specifically activated following fear conditioning. This suggested that these populations of neurons form nodes in a network that encodes fear memory. In particular, one population of learning activated neurons was found within a discrete region of the lateral amygdala (LA), a key nucleus required for fear conditioning. In order to provide evidence that this population is directly involved in fear conditioning, we have analysed the expression of a key molecular requirement for fear conditioning in LA, phosphorylated Extracellular Signal Regulated Kinase 1 and 2 (pERK1/2). The only neurons in LA that specifically expressed pERK1/2 following auditory fear conditioning were in the ventrolateral nucleus of the LA (LAvl), in the same discrete region where we found learning specific FTL+ neurons. Double labelling experiments in FTL mice showed that a substantial proportion of the learning activated neurons expressed both pERK1/2 and FTL. These experiments provide clear evidence that the learning specific neurons we identified within LAvl are directly involved in auditory fear conditioning. In addition, learning specific expression of pERK1/2 was found in a dense network of dendrites contained within the border region of the LAvl. This network of dendrites may represent an activated dendritic field involved in fear conditioning in LA.
Collapse
Affiliation(s)
- Christopher W Butler
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yvette M Wilson
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Samuel A Mills
- Biological Optical Microscopy Platform, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jenny M Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mark Murphy
- Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria 3010, Australia.
| |
Collapse
|
11
|
Langille JJ, Brown RE. The Synaptic Theory of Memory: A Historical Survey and Reconciliation of Recent Opposition. Front Syst Neurosci 2018; 12:52. [PMID: 30416432 PMCID: PMC6212519 DOI: 10.3389/fnsys.2018.00052] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 09/28/2018] [Indexed: 01/12/2023] Open
Abstract
Trettenbrein (2016) has argued that the concept of the synapse as the locus of memory is outdated and has made six critiques of this concept. In this article, we examine these six critiques and suggest that the current theories of the neurobiology of memory and the empirical data indicate that synaptic activation is the first step in a chain of cellular and biochemical events that lead to memories formed in cell assemblies and neural networks that rely on synaptic modification for their formation. These neural networks and their modified synaptic connections can account for the cognitive basis of learning and memory and for memory deterioration in neurological disorders. We first discuss Hebb's (1949) theory that synaptic change and the formation of cell assemblies and phase sequences can link neurophysiology to cognitive processes. We then examine each of Trettenbrein's (2016) critiques of the synaptic theory in light of Hebb's theories and recent empirical data. We examine the biochemical basis of memory formation and the necessity of synaptic modification to form the neural networks underlying learning and memory. We then examine the use of Hebb's theories of synaptic change and cell assemblies for integrating neurophysiological and cognitive conceptions of learning and memory. We conclude with an examination of the applications of the Hebb synapse and cell assembly theories to the study of the neuroscience of learning and memory, the development of computational models of memory and the construction of "intelligent" robots. We conclude that the synaptic theory of memory has not met its demise, but is essential to our understanding of the neural basis of memory, which has two components: synaptic plasticity and intrinsic plasticity.
Collapse
Affiliation(s)
| | - Richard E. Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Neurons Specifically Activated by Fear Learning in Lateral Amygdala Display Increased Synaptic Strength. eNeuro 2018; 5:eN-NWR-0114-18. [PMID: 30027112 PMCID: PMC6051595 DOI: 10.1523/eneuro.0114-18.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/03/2018] [Accepted: 06/03/2018] [Indexed: 12/19/2022] Open
Abstract
The lateral amygdala (LA) plays a critical role in the formation of fear-conditioned associative memories. Previous studies have used c-fos regulated expression to identify a spatially restricted population of neurons within the LA that is specifically activated by fear learning. These neurons are likely to be a part of a memory engram, but, to date, functional evidence for this has been lacking. We show that neurons within a spatially restricted region of the LA had an increase in both the frequency and amplitude of spontaneous postsynaptic currents (sPSC) when compared to neurons recorded from home cage control mice. We then more specifically addressed if this increased synaptic activity was limited to learning-activated neurons. Using a fos-tau-LacZ (FTL) transgenic mouse line, we developed a fluorescence-based method of identifying and recording from neurons activated by fear learning (FTL+) in acute brain slices. An increase in frequency and amplitude of sPSCs was observed in FTL+ neurons when compared to nonactivated FTL− neurons in fear-conditioned mice. No learning-induced changes were observed in the action potential (AP) input-output relationships. These findings support the idea that a discrete LA neuron population forms part of a memory engram through changes in synaptic connectivity.
Collapse
|
13
|
Egawa J, Schilling JM, Cui W, Posadas E, Sawada A, Alas B, Zemljic-Harpf AE, Fannon-Pavlich MJ, Mandyam CD, Roth DM, Patel HH, Patel PM, Head BP. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma. FASEB J 2017; 31:3403-3411. [PMID: 28450301 DOI: 10.1096/fj.201601288rrr] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/07/2017] [Indexed: 11/11/2022]
Abstract
Studies in vitro and in vivo demonstrate that membrane/lipid rafts and caveolin (Cav) organize progrowth receptors, and, when overexpressed specifically in neurons, Cav-1 augments neuronal signaling and growth and improves cognitive function in adult and aged mice; however, whether neuronal Cav-1 overexpression can preserve motor and cognitive function in the brain trauma setting is unknown. Here, we generated a neuron-targeted Cav-1-overexpressing transgenic (Tg) mouse [synapsin-driven Cav-1 (SynCav1 Tg)] and subjected it to a controlled cortical impact model of brain trauma and measured biochemical, anatomic, and behavioral changes. SynCav1 Tg mice exhibited increased hippocampal expression of Cav-1 and membrane/lipid raft localization of postsynaptic density protein 95, NMDA receptor, and tropomyosin receptor kinase B. When subjected to a controlled cortical impact, SynCav1 Tg mice demonstrated preserved hippocampus-dependent fear learning and memory, improved motor function recovery, and decreased brain lesion volume compared with wild-type controls. Neuron-targeted overexpression of Cav-1 in the adult brain prevents hippocampus-dependent learning and memory deficits, restores motor function after brain trauma, and decreases brain lesion size induced by trauma. Our findings demonstrate that neuron-targeted Cav-1 can be used as a novel therapeutic strategy to restore brain function and prevent trauma-associated maladaptive plasticity.-Egawa, J., Schilling, J. M., Cui, W., Posadas, E., Sawada, A., Alas, B., Zemljic-Harpf, A. E., Fannon-Pavlich, M. J., Mandyam, C. D., Roth, D. M., Patel, H. H., Patel, P. M., Head, B. P. Neuron-specific caveolin-1 overexpression improves motor function and preserves memory in mice subjected to brain trauma.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | - Jan M Schilling
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Weihua Cui
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA.,Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Edmund Posadas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Atsushi Sawada
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Basheer Alas
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Alice E Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA
| | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA; .,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
14
|
Growth hormone biases amygdala network activation after fear learning. Transl Psychiatry 2016; 6:e960. [PMID: 27898076 PMCID: PMC5290350 DOI: 10.1038/tp.2016.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 07/07/2016] [Accepted: 07/18/2016] [Indexed: 01/27/2023] Open
Abstract
Prolonged stress exposure is a risk factor for developing posttraumatic stress disorder, a disorder characterized by the 'over-encoding' of a traumatic experience. A potential mechanism by which this occurs is through upregulation of growth hormone (GH) in the amygdala. Here we test the hypotheses that GH promotes the over-encoding of fearful memories by increasing the number of neurons activated during memory encoding and biasing the allocation of neuronal activation, one aspect of the process by which neurons compete to encode memories, to favor neurons that have stronger inputs. Viral overexpression of GH in the amygdala increased the number of amygdala cells activated by fear memory formation. GH-overexpressing cells were especially biased to express the immediate early gene c-Fos after fear conditioning, revealing strong autocrine actions of GH in the amygdala. In addition, we observed dramatically enhanced dendritic spine density in GH-overexpressing neurons. These data elucidate a previously unrecognized autocrine role for GH in the regulation of amygdala neuron function and identify specific mechanisms by which chronic stress, by enhancing GH in the amygdala, may predispose an individual to excessive fear memory formation.
Collapse
|