1
|
Xu J, Frankovich J, Liu RJ, Thienemann M, Silverman M, Farhadian B, Willett T, Manko C, Columbo L, Leibold C, Vaccarino FM, Che A, Pittenger C. Elevated antibody binding to striatal cholinergic interneurons in patients with pediatric acute-onset neuropsychiatric syndrome. Brain Behav Immun 2024; 122:241-255. [PMID: 39084540 PMCID: PMC11569416 DOI: 10.1016/j.bbi.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/16/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Pediatric Acute-onset Neuropsychiatric Syndrome (PANS) is characterized by the abrupt onset of significant obsessive-compulsive symptoms (OCS) and/or severe food restriction, together with other neuropsychiatric manifestations. An autoimmune pathogenesis triggered by infection has been proposed for at least a subset of PANS. The older diagnosis of Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcus (PANDAS) describes rapid onset of OCD and/or tics associated with infection with Group A Streptococcus. The pathophysiology of PANS and PANDAS remains incompletely understood. We recently found serum antibodies from children with rigorously defined PANDAS to selectively bind to cholinergic interneurons (CINs) in the striatum. Here we examine this binding in children with relapsing and remitting PANS, a more heterogeneous condition, collected in a distinct clinical context from those examined in our previous work, from children with a clinical history of Streptococcus infection. IgG from PANS cases showed elevated binding to striatal CINs in both mouse and human brain. Patient plasma collected during symptom flare decreased a molecular marker of CIN activity, phospho-riboprotein S6, in ex vivo brain slices; control plasma did not. Neither elevated antibody binding to CINs nor diminished CIN activity was seen with plasma collected from the same children during remission. These findings replicate what we have seen previously in PANDAS and support the hypothesis that at least a subset of PANS cases have a neuroimmune pathogenesis. Given the critical role of CINs in modulating basal ganglia function, these findings confirm striatal CINs as a locus of interest in the pathophysiology of both PANS and PANDAS.
Collapse
Affiliation(s)
- Jian Xu
- Departments of Psychiatry, Yale University, New Haven, CT, USA.
| | - Jennifer Frankovich
- Departments of Pediatrics, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford University, CA, USA
| | - Rong-Jian Liu
- Departments of Psychiatry, Yale University, New Haven, CT, USA
| | - Margo Thienemann
- Departments of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Child & Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford University, CA, USA
| | - Melissa Silverman
- Departments of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Child & Adolescent Psychiatry and Child Development, Stanford University School of Medicine, Stanford University, CA, USA
| | - Bahare Farhadian
- Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford University, CA, USA
| | - Theresa Willett
- Departments of Pediatrics, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford University, CA, USA
| | - Cindy Manko
- Departments of Pediatrics, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford University, CA, USA
| | - Laurie Columbo
- Departments of Pediatrics, Stanford University School of Medicine, Stanford University, CA, USA; Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA; Division of Allergy, Immunology, Rheumatology, Stanford University School of Medicine, Stanford University, CA, USA
| | - Collin Leibold
- Immune Behavioral Health Clinic and Research Program, Stanford University School of Medicine, Stanford University, CA, USA
| | - Flora M Vaccarino
- Departments of Neuroscience, Yale University, New Haven, CT, USA; Child Study Center, Yale University, New Haven, CT, USA
| | - Alicia Che
- Departments of Psychiatry, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA; Center for Brain and Mind Health, Yale University, New Haven, CT, USA
| | - Christopher Pittenger
- Departments of Psychiatry, Yale University, New Haven, CT, USA; Departments of Psychology, Yale University, New Haven, CT, USA; Child Study Center, Yale University, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Wu-Tsai Institute, Yale University, New Haven, CT, USA; Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
2
|
Ribeiro FC, Cozachenco D, Argyrousi EK, Staniszewski A, Wiebe S, Calixtro JD, Soares‐Neto R, Al‐Chami A, Sayegh FE, Bermudez S, Arsenault E, Cossenza M, Lacaille J, Nader K, Sun H, De Felice FG, Lourenco MV, Arancio O, Aguilar‐Valles A, Sonenberg N, Ferreira ST. The ketamine metabolite (2R,6R)-hydroxynorketamine rescues hippocampal mRNA translation, synaptic plasticity and memory in mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:5398-5410. [PMID: 38934107 PMCID: PMC11350050 DOI: 10.1002/alz.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-β oligomers (AβO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.
Collapse
Affiliation(s)
- Felipe C. Ribeiro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Agnieszka Staniszewski
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | - Shane Wiebe
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Joao D. Calixtro
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Rubens Soares‐Neto
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Aycheh Al‐Chami
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fatema El Sayegh
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Sara Bermudez
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Emily Arsenault
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Marcelo Cossenza
- Department of Physiology and Pharmacology, Fluminense Federal UniversityBiomedical InstituteNiteróiRio de JaneiroBrazil
| | - Jean‐Claude Lacaille
- Department of Neurosciences, Université de MontréalCentre for Interdisciplinary Research on Brain and Learning and Research Group on Neural Signaling and CircuitsMontrealQuebecCanada
| | - Karim Nader
- Department of PsychologyMcGill UniversityMontrealQuebecCanada
| | - Hongyu Sun
- Department of NeuroscienceCarleton UniversityOttawaOntarioCanada
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
- Department of PsychiatryQueen's UniversityKingstonOntarioCanada
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
| | - Mychael V. Lourenco
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging BrainColumbia UniversityNew YorkNew YorkUSA
| | | | - Nahum Sonenberg
- Department of BiochemistryMcGill UniversityMontrealQuebecCanada
| | - Sergio T. Ferreira
- Institute of Medical Biochemistry Leopoldo de MeisFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
- D'Or Institute for Research and EducationRio de JaneiroRio de JaneiroBrazil
- Institute of Biophysics Carlos Chagas FilhoFederal University of Rio de JaneiroRio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
3
|
Huai Z, Huang B, He G, Li H, Liu Y, Le Q, Wang F, Ma L, Liu X. Accumulation of NMDA receptors in accumbal neuronal ensembles mediates increased conditioned place preference for cocaine after prolonged withdrawal. Prog Neurobiol 2024; 234:102573. [PMID: 38401668 DOI: 10.1016/j.pneurobio.2024.102573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
Cue-induced cocaine craving gradually intensifies following abstinence, a phenomenon known as the incubation of drug craving. Neuronal ensembles activated by initial cocaine use, are critically involved in this process. However, the mechanisms by which neuronal changes occurring in the ensembles after withdrawal contribute to incubation remain largely unknown. Here we labeled neuronal ensembles in the shell of nucleus accumbens (NAcSh) activated by cocaine conditioned place preference (CPP) training. NAcSh ensembles showed an increasing activity induced by CPP test after 21-day withdrawal. Inhibiting synaptic transmission of NAcSh ensembles suppressed the preference for cocaine paired-side after 21-day withdrawal, demonstrating a critical role of NAcSh ensembles in increased preference for cocaine. The density of dendritic spines in dopamine D1 receptor expressing ensembles was increased after 21-day withdrawal. Moreover, the expression of Grin1, a subunit of the N-methyl-D-aspartate (NMDA) receptor, specifically increased in the NAcSh ensembles after cocaine withdrawal in both CPP and self-administration (SA) mouse models. Targeted knockdown or dysfunction of Grin1 in NAcSh ensembles significantly suppressed craving for cocaine. Our results suggest that the accumulation of NMDA receptors in NAcSh ensembles mediates increased craving for cocaine after prolonged withdrawal, thereby providing potential molecular targets for treatment of drug addiction.
Collapse
Affiliation(s)
- Ziqing Huai
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Bing Huang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Guanhong He
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Haibo Li
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Yonghui Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Qiumin Le
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Feifei Wang
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China
| | - Lan Ma
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| | - Xing Liu
- School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Department of Neurology, Pharmacology Research Center, Huashan Hospital, Fudan University, Shanghai 200032, China; Research Unit of Addiction Memory, Chinese Academy of Medical Sciences (2021RU009), Shanghai 200032, China.
| |
Collapse
|
4
|
Solana‐Balaguer J, Campoy‐Campos G, Martín‐Flores N, Pérez‐Sisqués L, Sitjà‐Roqueta L, Kucukerden M, Gámez‐Valero A, Coll‐Manzano A, Martí E, Pérez‐Navarro E, Alberch J, Soriano J, Masana M, Malagelada C. Neuron-derived extracellular vesicles contain synaptic proteins, promote spine formation, activate TrkB-mediated signalling and preserve neuronal complexity. J Extracell Vesicles 2023; 12:e12355. [PMID: 37743539 PMCID: PMC10518375 DOI: 10.1002/jev2.12355] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 07/21/2023] [Indexed: 09/26/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in intercellular communication as carriers of signalling molecules such as bioactive miRNAs, proteins and lipids. EVs are key players in the functioning of the central nervous system (CNS) by influencing synaptic events and modulating recipient neurons. However, the specific role of neuron-to-neuron communication via EVs is still not well understood. Here, we provide evidence that primary neurons uptake neuron-derived EVs in the soma, dendrites, and even in the dendritic spines, and carry synaptic proteins. Neuron-derived EVs increased spine density and promoted the phosphorylation of Akt and ribosomal protein S6 (RPS6), via TrkB-signalling, without impairing the neuronal network activity. Strikingly, EVs exerted a trophic effect on challenged nutrient-deprived neurons. Altogether, our results place EVs in the spotlight for synaptic plasticity modulation as well as a possible therapeutic tool to fight neurodegeneration.
Collapse
Affiliation(s)
- Julia Solana‐Balaguer
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Genís Campoy‐Campos
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Núria Martín‐Flores
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Leticia Pérez‐Sisqués
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Laia Sitjà‐Roqueta
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Melike Kucukerden
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Ana Gámez‐Valero
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Albert Coll‐Manzano
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Eulàlia Martí
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)MadridSpain
| | - Esther Pérez‐Navarro
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Jordi Soriano
- Departament de Física de la Matèria CondensadaUniversitat de BarcelonaBarcelonaSpain
- Universitat de Barcelona, Institute of Complex Systems (UBICS)Universitat de BarcelonaBarcelonaSpain
| | - Mercè Masana
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Cristina Malagelada
- Departament de Biomedicina, Institut de Neurociències (UBneuro)Universitat de BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| |
Collapse
|
5
|
Xing Y, Zhang Y, Li C, Luo L, Hua Y, Hu J, Bai Y. Repetitive Transcranial Magnetic Stimulation of the Brain After Ischemic Stroke: Mechanisms from Animal Models. Cell Mol Neurobiol 2023; 43:1487-1497. [PMID: 35917043 PMCID: PMC11412424 DOI: 10.1007/s10571-022-01264-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022]
Abstract
Stroke is a common cerebrovascular disease with high morbidity, mortality, and disability worldwide. Post-stroke dysfunction is related to the death of neurons and impairment of synaptic structure, which results from cerebral ischemic damage. Currently, transcranial magnetic stimulation (TMS) techniques are available to provide clinically effective interventions and quantitative diagnostic and prognostic biomarkers. The development of TMS has been 40 years and a range of repetitive TMS (rTMS) protocols are now available to regulate neuronal plasticity in many neurological disorders, such as stroke, Parkinson disease, psychiatric disorders, Alzheimer disease, and so on. Basic studies in an animal model with ischemic stroke are significant for demonstrating potential mechanisms of neural restoration induced by rTMS. In this review, the mechanisms were summarized, involving synaptic plasticity, neural cell death, neurogenesis, immune response, and blood-brain barrier (BBB) disruption in vitro and vivo experiments with ischemic stroke models. Those findings can contribute to the understanding of how rTMS modulated function recovery and the exploration of novel therapeutic targets. The mechanisms of rTMS in treating ischemic stroke from animal models. rTMS can prompt synaptic plasticity by increasing NMDAR, AMPAR and BDNF expression; rTMS can inhibit pro-inflammatory cytokines TNF and facilitate the expression of anti-inflammatory cytokines IL-10 by shifting astrocytic phenotypes from A1 to A2, and shifting microglial phenotypes from M1 to M2; rTMS facilitated the release of angiogenesis-related factors TGFβ and VEGF in A2 astrocytes, which can contribute to vasculogenesis and angiogenesis; rTMS can suppress apoptosis by increasing Bcl-2 expression and inhibiting Bax, caspase-3 expression; rTMS can also suppress pyroptosis by decreasing caspase-1, IL-1β, ASC, GSDMD and NLRP1 expression. rTMS, repetitive transcranial magnetic stimulation; NMDAR, N-methyl-D-aspartic acid receptors; AMPAR: α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors; BDNF, brain-derived neurotrophic factor; VEGF, vascular endothelial growth factor; GSDMD: cleaved Caspase-1 cleaves Gasdermin D; CBF: cerebral blood flow.
Collapse
Affiliation(s)
- Ying Xing
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yuqian Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Congqin Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Lu Luo
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yan Hua
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Jian Hu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, No. 12 Middle Wulumuqi Road, Jing'an District, Shanghai, 200040, China.
| |
Collapse
|
6
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
7
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|
8
|
Oliveira D, Morales-Vicente DA, Amaral MS, Luz L, Sertié AL, Leite FS, Navarro C, Kaid C, Esposito J, Goulart E, Caires L, Alves LM, Melo US, Figueiredo T, Mitne-Neto M, Okamoto OK, Verjovski-Almeida S, Zatz M. Different gene expression profiles in iPSC-derived motor neurons from ALS8 patients with variable clinical courses suggest mitigating pathways for neurodegeneration. Hum Mol Genet 2021; 29:1465-1475. [PMID: 32280986 DOI: 10.1093/hmg/ddaa069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/04/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
Amyotrophic lateral sclerosis type 8 (ALS8) is an autosomal dominant form of ALS, which is caused by pathogenic variants in the VAPB gene. Here we investigated five ALS8 patients, classified as 'severe' and 'mild' from a gigantic Brazilian kindred, carrying the same VAPB mutation but displaying different clinical courses. Copy number variation and whole exome sequencing analyses in such individuals ruled out previously described genetic modifiers of pathogenicity. After deriving induced pluripotent stem cells (iPSCs) for each patient (N = 5) and controls (N = 3), motor neurons were differentiated, and high-throughput RNA-Seq gene expression measurements were performed. Functional cell death and oxidative metabolism assays were also carried out in patients' iPSC-derived motor neurons. The degree of cell death and mitochondrial oxidative metabolism were similar in iPSC-derived motor neurons from mild patients and controls and were distinct from those of severe patients. Similar findings were obtained when RNA-Seq from such cells was performed. Overall, 43 genes were upregulated and 66 downregulated in the two mild ALS8 patients when compared with severe ALS8 individuals and controls. Interestingly, significantly enriched pathways found among differentially expressed genes, such as protein translation and protein targeting to the endoplasmic reticulum (ER), are known to be associated with neurodegenerative processes. Taken together, the mitigating mechanisms here presented appear to maintain motor neuron survival by keeping translational activity and protein targeting to the ER in such cells. As ALS8 physiopathology has been associated with proteostasis mechanisms in ER-mitochondria contact sites, such differentially expressed genes appear to relate to the bypass of VAPB deficiency.
Collapse
Affiliation(s)
- Danyllo Oliveira
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - David A Morales-Vicente
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Murilo S Amaral
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil
| | - Livia Luz
- Laboratory of DNA Repair, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Felipe S Leite
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Claudia Navarro
- Department of Clinical Pathology, Faculty of Medical Sciences, University of Campinas, Campinas 13083-887, Brazil
| | - Carolini Kaid
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Joyce Esposito
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Ernesto Goulart
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Luiz Caires
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Luciana M Alves
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Uirá S Melo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Thalita Figueiredo
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil.,Faculty of Medicine, Federal University of Alagoas, Maceió 57972-900, Brazil
| | - Miguel Mitne-Neto
- Fleury Group, Research and Development. São Paulo, São Paulo 04344-070, Brazil
| | - Oswaldo K Okamoto
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Sergio Verjovski-Almeida
- Laboratory of Gene Expression in Eukaryotes, Instituto Butantan, São Paulo 05503-900, Brazil.,Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Mayana Zatz
- Department of Genetics and Evolutionary Biology, Human Genome and Stem Cell Research Center, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| |
Collapse
|
9
|
Delorme J, Wang L, Kuhn FR, Kodoth V, Ma J, Martinez JD, Raven F, Toth BA, Balendran V, Vega Medina A, Jiang S, Aton SJ. Sleep loss drives acetylcholine- and somatostatin interneuron-mediated gating of hippocampal activity to inhibit memory consolidation. Proc Natl Acad Sci U S A 2021; 118:e2019318118. [PMID: 34344824 PMCID: PMC8364159 DOI: 10.1073/pnas.2019318118] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To characterize effects of learning and sleep loss, we quantified activity-dependent phosphorylation of ribosomal protein S6 (pS6) across the dorsal hippocampus of mice. We find that pS6 is enhanced in dentate gyrus (DG) following single-trial contextual fear conditioning (CFC) but is reduced throughout the hippocampus after brief sleep deprivation (SD; which disrupts contextual fear memory [CFM] consolidation). To characterize neuronal populations affected by SD, we used translating ribosome affinity purification sequencing to identify cell type-specific transcripts on pS6 ribosomes (pS6-TRAP). Cell type-specific enrichment analysis revealed that SD selectively activated hippocampal somatostatin-expressing (Sst+) interneurons and cholinergic and orexinergic hippocampal inputs. To understand the functional consequences of SD-elevated Sst+ interneuron activity, we used pharmacogenetics to activate or inhibit hippocampal Sst+ interneurons or cholinergic input from the medial septum. The activation of either cell population was sufficient to disrupt sleep-dependent CFM consolidation by gating activity in granule cells. The inhibition of either cell population during sleep promoted CFM consolidation and increased S6 phosphorylation among DG granule cells, suggesting their disinhibition by these manipulations. The inhibition of either population across post-CFC SD was insufficient to fully rescue CFM deficits, suggesting that additional features of sleeping brain activity are required for consolidation. Together, our data suggest that state-dependent gating of DG activity may be mediated by cholinergic input and local Sst+ interneurons. This mechanism could act as a sleep loss-driven inhibitory gate on hippocampal information processing.
Collapse
Affiliation(s)
- James Delorme
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Femke Roig Kuhn
- Program in Behavioural and Cognitive Neurosciences, University of Groningen, 9700 AB Groningen, The Netherlands
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Jingqun Ma
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48019
| | - Jessy D Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Brandon A Toth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Vinodh Balendran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Alexis Vega Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019;
| |
Collapse
|
10
|
Bryan de la Peña J, Kunder N, Lou TF, Chase R, Stanowick A, Barragan-Iglesias P, Pancrazio JJ, Campbell ZT. A Role for Translational Regulation by S6 Kinase and a Downstream Target in Inflammatory Pain. Br J Pharmacol 2021; 178:4675-4690. [PMID: 34355805 DOI: 10.1111/bph.15646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Translational controls pervade neurobiology. Nociceptors play an integral role in the detection and propagation of pain signals. Nociceptors can undergo persistent changes in their intrinsic excitability. Pharmacologic disruption of nascent protein synthesis diminishes acute and chronic forms of pain-associated behaviors. Yet, the targets of translational controls that facilitate plasticity in nociceptors are unclear. EXPERIMENTAL APPROACH We used ribosome profiling to probe the translational landscape in DRG neurons after treatment of the inflammatory mediators NGF and IL-6. We validated the expression dynamics of c-Fos using immunoblotting and immunohistochemistry. Given that inflammation is known to stimulate mTOR signaling, we reasoned that downstream factors (e.g., ribosomal protein S6 kinase 1, S6K1) might control c-Fos levels. We utilized small-molecule inhibitors of S6K1 (DG2) or c-Fos (T-5224) to probe their effects on nociceptor activity in vitro using multi-electrode arrays (MEAs) and pain behavior in vivo using a hyperalgesic priming model. KEY RESULTS We demonstrate that c-Fos is expressed in sensory neurons. Inflammatory mediators that promote pain in both humans and rodents promote c-Fos translation. We demonstrate that the mTOR effector S6K1 is essential for c-Fos biosynthesis. Inhibition of S6K1 or c-Fos with small molecules diminish mechanical and thermal hypersensitivity in response to inflammatory cues. Additionally, both inhibitors reduce evoked nociceptor activity. CONCLUSION Our data reveal a novel role of S6K1 in modulating rapid response to inflammatory mediators, with c-Fos being one key downstream target. Targeting the S6 kinase pathway or c-Fos is an exciting new avenue for pain-modulating compounds.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Alexander Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Paulino Barragan-Iglesias
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA.,Department of Physiology and Pharmacology, Center for Basic Sciences, Autonomous University of Aguascalientes, Aguascalientes, Mexico
| | - Joseph J Pancrazio
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA.,Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
11
|
Goldberg LR, Kutlu MG, Zeid D, Seemiller LR, Gould TJ. Systems genetic analysis of nicotine withdrawal deficits in hippocampus-dependent learning. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12734. [PMID: 33797169 DOI: 10.1111/gbb.12734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022]
Abstract
Cognitive deficits, such as disrupted learning, are a major symptom of nicotine withdrawal. These deficits are heritable, yet their genetic basis is largely unknown. Our lab has developed a mouse model of nicotine withdrawal deficits in learning, using chronic nicotine exposure via osmotic minipumps and fear conditioning. Here, we utilized the BXD genetic reference panel to identify genetic variants underlying nicotine withdrawal deficits in learning. Male and female mice (n = 6-11 per sex per strain, 31 strains) received either chronic saline or nicotine (6.3 mg/kg per day for 12 days), and were then tested for hippocampus-dependent learning deficits using contextual fear conditioning. Quantitative trait locus (QTL) mapping analyses using GeneNetwork identified a significant QTL on Chromosome 4 (82.13 Mb, LRS = 20.03, p < 0.05). Publicly available hippocampal gene expression data were used to identify eight positional candidates (Snacpc3, Mysm1, Rps6, Plaa, Lurap1l, Slc24a2, Hacd4, Ptprd) that overlapped with our behavioral QTL and correlated with our behavioral data. Overall, this study demonstrates that genetic factors impact cognitive deficits during nicotine withdrawal in the BXD recombinant inbred panel and identifies candidate genes for future research.
Collapse
Affiliation(s)
- Lisa R Goldberg
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Munir Gunes Kutlu
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Dana Zeid
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Laurel R Seemiller
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| | - Thomas J Gould
- Department of Biobehavioral Health, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
12
|
Xu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, Duman RS, Williams K, Swedo S, Pittenger C. Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. Am J Psychiatry 2021; 178:48-64. [PMID: 32539528 PMCID: PMC8573771 DOI: 10.1176/appi.ajp.2020.19070698] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Pediatric obsessive-compulsive disorder (OCD) sometimes appears rapidly, even overnight, often after an infection. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, or PANDAS, describes such a situation after infection with Streptococcus pyogenes. PANDAS may result from induced autoimmunity against brain antigens, although this remains unproven. Pilot work suggests that IgG antibodies from children with PANDAS bind to cholinergic interneurons (CINs) in the striatum. CIN deficiency has been independently associated with tics in humans and with repetitive behavioral pathology in mice, making it a plausible locus of pathology. The authors sought to replicate and extend earlier work and to investigate the cellular effects of PANDAS antibodies on cholinergic interneurons. METHODS Binding of IgG to specific neurons in human and mouse brain slices was evaluated ex vivo after incubation with serum from 27 children with rigorously characterized PANDAS, both at baseline and after intravenous immunoglobulin (IVIG) treatment, and 23 matched control subjects. Binding was correlated with symptom measures. Neural activity after serum incubation was assessed in mouse slices using molecular markers and electrophysiological recording. RESULTS IgG from children with PANDAS bound to CINs, but not to several other neuron types, more than IgG from control subjects, in three independent cohorts of patients. Post-IVIG serum had reduced IgG binding to CINs, and this reduction correlated with symptom improvement. Baseline PANDAS sera decreased activity of striatal CINs, but not of parvalbumin-expressing GABAergic interneurons, and altered their electrophysiological responses, in acute mouse brain slices. Post-IVIG PANDAS sera and IgG-depleted baseline sera did not alter the activity of striatal CINs. CONCLUSIONS These findings provide strong evidence for striatal CINs as a critical cellular target that may contribute to pathophysiology in children with rapid-onset OCD symptoms, and perhaps in other conditions.
Collapse
Affiliation(s)
- Jian Xu
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519
| | - Rong-Jian Liu
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519
| | - Shaylyn Fahey
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519
| | - Luciana Frick
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519,Current address: Hunter James Kelly Research Institute,
University at Buffalo
| | - James Leckman
- Child Study Center, Yale University School of
Medicine,Department of Pediatrics, Yale University School of
Medicine
| | - Flora Vaccarino
- Child Study Center, Yale University School of
Medicine,Department of Neuroscience, Yale University School of
Medicine
| | - Ronald S. Duman
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519
| | - Kyle Williams
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519,Current address: Department of Psychiatry, Massachusetts
General Hospital and Harvard Medical School
| | - Susan Swedo
- Pediatrics and Developmental Neuroscience Branch, National
Institute of Mental Health,PANDAS Physicians Network
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of
Medicine, 34 Park Street, New Haven, CT 06519,Child Study Center, Yale University School of
Medicine,Interdepartmental Neuroscience Program, Yale
University,Address correspondence to: Christopher Pittenger,
Yale University School of Medicine, 34 Park Street 333b, New Haven, CT 06519.
Phone: 203-974-7675.
| |
Collapse
|
13
|
Blackmore DG, Turpin F, Palliyaguru T, Evans HT, Chicoteau A, Lee W, Pelekanos M, Nguyen N, Song J, Sullivan RKP, Sah P, Bartlett PF, Götz J. Low-intensity ultrasound restores long-term potentiation and memory in senescent mice through pleiotropic mechanisms including NMDAR signaling. Mol Psychiatry 2021; 26:6975-6991. [PMID: 34040151 PMCID: PMC8760044 DOI: 10.1038/s41380-021-01129-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022]
Abstract
Advanced physiological aging is associated with impaired cognitive performance and the inability to induce long-term potentiation (LTP), an electrophysiological correlate of memory. Here, we demonstrate in the physiologically aged, senescent mouse brain that scanning ultrasound combined with microbubbles (SUS+MB), by transiently opening the blood-brain barrier, fully restores LTP induction in the dentate gyrus of the hippocampus. Intriguingly, SUS treatment without microbubbles (SUSonly), i.e., without the uptake of blood-borne factors, proved even more effective, not only restoring LTP, but also ameliorating the spatial learning deficits of the aged mice. This functional improvement is accompanied by an altered milieu of the aged hippocampus, including a lower density of perineuronal nets, increased neurogenesis, and synaptic signaling, which collectively results in improved spatial learning. We therefore conclude that therapeutic ultrasound is a non-invasive, pleiotropic modality that may enhance cognition in elderly humans.
Collapse
Affiliation(s)
- Daniel G. Blackmore
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Fabrice Turpin
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Tishila Palliyaguru
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Harrison T. Evans
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Antony Chicoteau
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Wendy Lee
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Matthew Pelekanos
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Nghia Nguyen
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Jae Song
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Robert K. P. Sullivan
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia
| | - Pankaj Sah
- grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia ,grid.263817.90000 0004 1773 1790Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province P. R. China
| | - Perry F. Bartlett
- grid.1003.20000 0000 9320 7537Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia ,grid.1003.20000 0000 9320 7537Queensland Brain Institute, The University of Queensland, Brisbane, QLD Australia ,grid.263817.90000 0004 1773 1790Joint Center for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province P. R. China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
14
|
Fujiki M, Yee KM, Steward O. Non-invasive High Frequency Repetitive Transcranial Magnetic Stimulation (hfrTMS) Robustly Activates Molecular Pathways Implicated in Neuronal Growth and Synaptic Plasticity in Select Populations of Neurons. Front Neurosci 2020; 14:558. [PMID: 32612497 PMCID: PMC7308563 DOI: 10.3389/fnins.2020.00558] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Patterns of neuronal activity that induce synaptic plasticity and memory storage activate kinase cascades in neurons that are thought to be part of the mechanism for synaptic modification. One such cascade involves induction of phosphorylation of ribosomal protein S6 in neurons due to synaptic activation of AKT/mTOR and via a different pathway, activation of MAP kinase/ERK1/2. Here, we show that phosphorylation of ribosomal protein S6 can also be strongly activated by high frequency repetitive transcranial magnetic stimulation (hfrTMS). HfrTMS was delivered to lightly anesthetized rats using a stimulation protocol that is a standard for inducing LTP in the perforant path in vivo (trains of 8 pulses at 400 Hz repeated at intervals of 1/10 s). Stimulation produced stimulus-locked motor responses but did not elicit behavioral seizures either during or after stimulation. After as little as 10 min of hfrTMS, immunostaining using phospho-specific antibodies for the phosphorylated form of ribosomal protein S6 (rpS6) revealed robust induction of rpS6 phosphorylation in large numbers of neurons in the cortex, especially the piriform cortex, and also in thalamic relay nuclei. Quantification revealed that the extent of the increased immunostaining depended on the number of trains and stimulus intensity. Of note, immunostaining for the immediate early genes Arc and c-fos revealed strong induction of IEG expression in many of the same populations of neurons throughout the cortex, but not the thalamus. These results indicate that hfrTMS can robustly activate molecular pathways critical for plasticity, which may contribute to the beneficial effects of TMS on recovery following brain and spinal cord injury and symptom amelioration in human psychiatric disorders. These molecular processes may be a useful surrogate marker to allow optimization of TMS parameters for maximal therapeutic benefit.
Collapse
Affiliation(s)
- Minoru Fujiki
- Department of Neurosurgery, School of Medicine, Oita University, Oita, Japan
| | - Kelly Matsudaira Yee
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, Irvine, CA, United States.,Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, CA, United States.,Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
15
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 PMCID: PMC7105616 DOI: 10.3389/fphar.2020.00344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.,Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain.,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
16
|
Nihonmatsu I, Ohkawa N, Saitoh Y, Okubo-Suzuki R, Inokuchi K. Selective targeting of mRNA and the following protein synthesis of CaMKIIα at the long-term potentiation-induced site. Biol Open 2020; 9:bio.042861. [PMID: 31874853 PMCID: PMC6994928 DOI: 10.1242/bio.042861] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Late-phase long-term potentiation (L-LTP) in hippocampus, thought to be the cellular basis of long-term memory, requires new protein synthesis. Neural activity enhances local protein synthesis in dendrites, which in turn mediates long-lasting synaptic plasticity. Ca2+/calmodulin-dependent protein kinase IIα (CaMKIIα) is a locally synthesized protein crucial for this plasticity, as L-LTP is impaired when its local synthesis is eliminated. However, the distribution of Camk2a mRNA during L-LTP induction remains unclear. In this study, we investigated the dendritic targeting of Camk2a mRNA after high-frequency stimulation, which induces L-LTP in synapses of perforant path and granule cells in the dentate gyrus in vivo. In situ hybridization studies revealed that Camk2a mRNA was immediately but transiently targeted to the site receiving high-frequency stimulation. This was associated with an increase in de novo protein synthesis of CaMKIIα. These results suggest that dendritic translation of CaMKIIα is locally mediated where L-LTP is induced. This phenomenon may be one of the essential processes for memory establishment. Summary: Selective targeting of mRNA and the following protein synthesis of CaMKIIalpha at neuronal plasticity-induced sites may be one of important processes for establishment of long-term memory.
Collapse
Affiliation(s)
- Itsuko Nihonmatsu
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan
| | - Noriaki Ohkawa
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan .,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yoshito Saitoh
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, 880 Kita-kobayashi, Mibu-machi, Shimotsuga-gun, Tochigi 321-0293, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Reiko Okubo-Suzuki
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kaoru Inokuchi
- Mitsubishi Kagaku Institute of Life Sciences, MITILS, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.,Department of Biochemistry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama 930-0194, Japan.,CREST, JST, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
17
|
Ibarra-Lecue I, Diez-Alarcia R, Morentin B, Meana JJ, Callado LF, Urigüen L. Ribosomal Protein S6 Hypofunction in Postmortem Human Brain Links mTORC1-Dependent Signaling and Schizophrenia. Front Pharmacol 2020; 11:344. [PMID: 32265715 DOI: 10.3389/fphar.2020.00344/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/09/2020] [Indexed: 05/20/2023] Open
Abstract
The mechanistic target of rapamycin (also known as mammalian target of rapamycin) (mTOR)-dependent signaling pathway plays an important role in protein synthesis, cell growth, and proliferation, and has been linked to the development of the central nervous system. Recent studies suggest that mTOR signaling pathway dysfunction could be involved in the etiopathogenesis of schizophrenia. The main goal of this study was to evaluate the status of mTOR signaling pathway in postmortem prefrontal cortex (PFC) samples of subjects with schizophrenia. For this purpose, we quantified the protein expression and phosphorylation status of the mTOR downstream effector ribosomal protein S6 as well as other pathway interactors such as Akt and GSK3β. Furthermore, we quantified the status of these proteins in the brain cortex of rats chronically treated with the antipsychotics haloperidol, clozapine, or risperidone. We found a striking decrease in the expression of total S6 and in its active phosphorylated form phospho-S6 (Ser235/236) in the brain of subjects with schizophrenia compared to matched controls. The chronic treatment with the antipsychotics haloperidol and clozapine affected both the expression of GSK3β and the activation of Akt [phospho-Akt (Ser473)] in rat brain cortex, while no changes were observed in S6 and phospho-S6 (Ser235/236) protein expression with any antipsychotic treatment. These findings provide further evidence for the involvement of the mTOR-dependent signaling pathway in schizophrenia and suggest that a hypofunctional S6 may have a role in the etiopathogenesis of this disorder.
Collapse
Affiliation(s)
- Inés Ibarra-Lecue
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
| | - Rebeca Diez-Alarcia
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Benito Morentin
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Section of Forensic Pathology, Basque Institute of Legal Medicine, Bilbao, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Luis F Callado
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Leyre Urigüen
- Department of Pharmacology, University of the Basque Country UPV/EHU and Centro de Investigación Biomédica en Red de Salud Mental CIBERSAM, Leioa, Spain
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| |
Collapse
|
18
|
Steward O, Coulibaly AP, Metcalfe M, Yonan JM, Yee KM. AAVshRNA-mediated PTEN knockdown in adult neurons attenuates activity-dependent immediate early gene induction. Exp Neurol 2019; 326:113098. [PMID: 31707081 DOI: 10.1016/j.expneurol.2019.113098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/23/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Genetic deletion or knockdown of PTEN enables regeneration of CNS axons, enhances sprouting of intact axons after injury, and induces de novo growth of uninjured adult neurons. It is unknown, however how PTEN deletion in mature neurons alters neuronal physiology. As a first step to address this question, we used immunocytochemistry for activity-dependent markers to assess consequences of PTEN knockdown in cortical neurons and granule cells of the dentate gyrus. In adult rats that received unilateral intra-cortical injections of AAV expressing shRNA against PTEN, immunostaining for c-fos under resting conditions (home cage, HC) and after 1 h of exploration of a novel enriched environment (EE) revealed no hot spots of c-fos expression that would suggest abnormal activity. Counts revealed similar numbers of c-fos positive neurons in the area of PTEN deletion vs. homologous areas in the contralateral cortex in the HC and similar induction of c-fos with EE. However, IEG induction in response to high frequency stimulation (HFS) of the cortex was attenuated in areas of PTEN deletion. In rats with AAVshRNA-mediated PTEN deletion in the dentate gyrus, induction of the IEGs c-fos and Arc with HFS of the perforant path was abrogated in areas of PTEN deletion. Immunostaining using phosphospecific antibodies for phospho-S6 (a downstream marker for mTOR activation) and phospho-ERK1/2 revealed abrogation of S6 phosphorylation in PTEN-deleted areas but preserved activation of phosphorylation of ERK1/2. SIGNIFICANCE STATEMENT: Deletion or knockdown of the tumor suppressor gene PTEN enables regenerative growth of adult CNS axons after injury, which is accompanied by enhanced recovery of function. Consequently, PTEN represents a potential target for therapeutic interventions to enhance recovery after CNS injury. Here we show that activity-dependent IEG induction is attenuated in PTEN-depleted neurons. These findings raise the intriguing possibility that functional recovery due to regenerative growth may be limited by the disruption of plasticity-related signaling pathways, and that recovery might be enhanced by restoring PTEN expression after regenerative growth has been achieved.
Collapse
Affiliation(s)
- Oswald Steward
- Reeve-Irvine Research Center, University of California Irvine, USA; Departments of Anatomy & Neurobiology, University of California Irvine, USA; Departments of Neurobiology & Behavior, University of California Irvine, USA; Department of Neurosurgery, University of California Irvine, USA; School of Medicine, University of California Irvine, USA.
| | - Aminata P Coulibaly
- Reeve-Irvine Research Center, University of California Irvine, USA; Departments of Anatomy & Neurobiology, University of California Irvine, USA; School of Medicine, University of California Irvine, USA
| | - Mariajose Metcalfe
- Reeve-Irvine Research Center, University of California Irvine, USA; Departments of Anatomy & Neurobiology, University of California Irvine, USA; School of Medicine, University of California Irvine, USA
| | - Jennifer M Yonan
- Reeve-Irvine Research Center, University of California Irvine, USA; Departments of Anatomy & Neurobiology, University of California Irvine, USA; School of Medicine, University of California Irvine, USA
| | - Kelly M Yee
- Reeve-Irvine Research Center, University of California Irvine, USA; Departments of Anatomy & Neurobiology, University of California Irvine, USA; School of Medicine, University of California Irvine, USA
| |
Collapse
|
19
|
Koren SA, Hamm MJ, Meier SE, Weiss BE, Nation GK, Chishti EA, Arango JP, Chen J, Zhu H, Blalock EM, Abisambra JF. Tau drives translational selectivity by interacting with ribosomal proteins. Acta Neuropathol 2019; 137:571-583. [PMID: 30759285 PMCID: PMC6426815 DOI: 10.1007/s00401-019-01970-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
There is a fundamental gap in understanding the consequences of tau-ribosome interactions. Tau oligomers and filaments hinder protein synthesis in vitro, and they associate strongly with ribosomes in vivo. Here, we investigated the consequences of tau interactions with ribosomes in transgenic mice, in cells, and in human brain tissues to identify tau as a direct modulator of ribosomal selectivity. First, we performed microarrays and nascent proteomics to measure changes in protein synthesis. Using regulatable rTg4510 tau transgenic mice, we determined that tau expression differentially shifts both the transcriptome and the nascent proteome, and that the synthesis of ribosomal proteins is reversibly dependent on tau levels. We further extended these results to human brains and found that tau pathologically interacts with ribosomal protein S6 (rpS6 or S6), a crucial regulator of translation. Consequently, protein synthesis under translational control of rpS6 was reduced under tauopathic conditions in Alzheimer's disease brains. Our data establish tau as a driver of RNA translation selectivity. Moreover, since regulation of protein synthesis is critical for learning and memory, aberrant tau-ribosome interactions in disease could explain the linkage between tauopathies and cognitive impairment.
Collapse
Affiliation(s)
- Shon A Koren
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BOX 100159, Gainesville, FL, 32610, USA
| | - Matthew J Hamm
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BOX 100159, Gainesville, FL, 32610, USA
| | - Shelby E Meier
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA
| | - Blaine E Weiss
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA
| | - Grant K Nation
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA
| | - Emad A Chishti
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA
| | - Juan Pablo Arango
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40513, USA
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40513, USA
| | - Eric M Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40513, USA
| | - Jose F Abisambra
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, University of Florida, 1275 Center Drive, BOX 100159, Gainesville, FL, 32610, USA.
- Sanders Brown Center on Aging, Department of Physiology, Spinal Cord and Brain Injury Research Center, and Epilepsy Center, University of Kentucky, Lexington, KY, 40513, USA.
| |
Collapse
|
20
|
Gallaher ZR, Steward O. Modest enhancement of sensory axon regeneration in the sciatic nerve with conditional co-deletion of PTEN and SOCS3 in the dorsal root ganglia of adult mice. Exp Neurol 2018; 303:120-133. [PMID: 29458059 DOI: 10.1016/j.expneurol.2018.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/09/2018] [Accepted: 02/15/2018] [Indexed: 11/25/2022]
Abstract
Axons within the peripheral nervous system are capable of regeneration, but full functional recovery is rare. Recent work has shown that conditional deletion of two key signaling inhibitors of the PI3K and Jak/Stat pathways-phosphatase and tensin homolog (PTEN) and suppressor of cytokine signaling-3 (SOCS3), respectively-promotes regeneration of normally non-regenerative central nervous system axons. Moreover, in studies of optic nerve regeneration, co-deletion of both PTEN and SOCS3 has an even greater effect. Here, we test the hypotheses (1) that PTEN deletion enhances axon regeneration following sciatic nerve crush and (2) that PTEN/SOCS3 co-deletion further promotes regeneration. PTENfl/fl and PTEN/SOCS3fl/fl mice received direct injections of AAV-Cre into the fourth and fifth lumbar dorsal root ganglia (DRG) two weeks prior to sciatic nerve crush. Western blot analysis of whole cell lysates from DRG using phospho-specific antibodies revealed that PTEN deletion did not enhance or prolong PI3K signaling following sciatic nerve crush. However, PTEN/SOCS3 co-deletion activated PI3K for at least 7 days post-injury in contrast to controls, where activation peaked at 3 days. Quantification of SCG10-expressing regenerating sensory axons in the sciatic nerve after crush injury revealed longer distance regeneration at 3 days post-injury with both PTEN and PTEN/SOCS3 co-deletion. Additionally, analysis of noxious thermosensation and mechanosensation with PTEN/SOCS3 co-deletion revealed enhanced sensation at 14 and 21 days after crush, respectively, after which all treatment groups reached the same functional plateau. These findings indicate that co-deletion of PTEN and SOCS3 results in modest but measureable enhancement of early regeneration of DRG axons following crush injury.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA.
| | - Oswald Steward
- Reeve-Irvine Research Center, Department of Anatomy and Neurobiology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, Department of Neurosurgery, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
21
|
Puighermanal E, Biever A, Pascoli V, Melser S, Pratlong M, Cutando L, Rialle S, Severac D, Boubaker-Vitre J, Meyuhas O, Marsicano G, Lüscher C, Valjent E. Ribosomal Protein S6 Phosphorylation Is Involved in Novelty-Induced Locomotion, Synaptic Plasticity and mRNA Translation. Front Mol Neurosci 2017; 10:419. [PMID: 29311811 PMCID: PMC5742586 DOI: 10.3389/fnmol.2017.00419] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
The phosphorylation of the ribosomal protein S6 (rpS6) is widely used to track neuronal activity. Although it is generally assumed that rpS6 phosphorylation has a stimulatory effect on global protein synthesis in neurons, its exact biological function remains unknown. By using a phospho-deficient rpS6 knockin mouse model, we directly tested the role of phospho-rpS6 in mRNA translation, plasticity and behavior. The analysis of multiple brain areas shows for the first time that, in neurons, phospho-rpS6 is dispensable for overall protein synthesis. Instead, we found that phospho-rpS6 controls the translation of a subset of mRNAs in a specific brain region, the nucleus accumbens (Acb), but not in the dorsal striatum. We further show that rpS6 phospho-mutant mice display altered long-term potentiation (LTP) in the Acb and enhanced novelty-induced locomotion. Collectively, our findings suggest a previously unappreciated role of phospho-rpS6 in the physiology of the Acb, through the translation of a selective subclass of mRNAs, rather than the regulation of general protein synthesis.
Collapse
Affiliation(s)
| | - Anne Biever
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Su Melser
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| | - Marine Pratlong
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Laura Cutando
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Stephanie Rialle
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | - Dany Severac
- Montpellier GenomiX, BioCampus Montpellier, CNRS, INSERM, University of Montpellier, Montpellier, France
| | | | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Giovanni Marsicano
- INSERM U1215, Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland.,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Emmanuel Valjent
- IGF, CNRS, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
22
|
Hou G, Zhang ZW. NMDA Receptors Regulate the Development of Neuronal Intrinsic Excitability through Cell-Autonomous Mechanisms. Front Cell Neurosci 2017; 11:353. [PMID: 29163060 PMCID: PMC5674002 DOI: 10.3389/fncel.2017.00353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/24/2017] [Indexed: 01/30/2023] Open
Abstract
Maturation of neuronal and synaptic functions during early life is essential for the development of neuronal circuits and behaviors. In newborns synaptic transmission at excitatory synapses is primarily mediated by N-methyl-D-aspartate receptors (NMDARs), and NMDAR-mediated signaling plays an important role in synaptic maturation. Concomitant with synapse development, the intrinsic properties of neurons undergo dramatic changes during early life. However, little is known about the role of NMDARs in the development of intrinsic excitability. By using mosaic deletion of the obligatory GluN1 subunit of NMDARs in the thalamus of newborn mice, we showed that NMDARs regulate neuronal excitability during postnatal development. Compared with neighboring control neurons, neurons lacking NMDARs exhibit hyperexcitability and this effect is present throughout early life. Morphological analyses show that thalamic neurons without NMDARs have smaller soma size and fewer dendritic branches. Deletion of NMDARs causes a reduction of hyperpolarization-activated cation (HCN) channel function in thalamic neurons, and pharmacologically blocking HCN channels in wild type neurons mimics the effects of GluN1 deletion on intrinsic excitability. Deletion of GluN1 down-regulated mechanistic target of rapamycin (mTOR) signaling in thalamic neurons, and mosaic deletion of mTOR recapitulated the effects of GluN1 deletion. Our results demonstrate that NMDARs regulate intrinsic excitability and morphology of thalamic neurons through cell autonomous mechanisms that implicate mTOR signaling.
Collapse
Affiliation(s)
| | - Zhong-Wei Zhang
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States
| |
Collapse
|
23
|
Pirbhoy PS, Farris S, Steward O. Synaptically driven phosphorylation of ribosomal protein S6 is differentially regulated at active synapses versus dendrites and cell bodies by MAPK and PI3K/mTOR signaling pathways. ACTA ACUST UNITED AC 2017; 24:341-357. [PMID: 28716954 PMCID: PMC5516686 DOI: 10.1101/lm.044974.117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/18/2017] [Indexed: 12/04/2022]
Abstract
High-frequency stimulation of the medial perforant path triggers robust phosphorylation of ribosomal protein S6 (rpS6) in activated dendritic domains and granule cell bodies. Here we dissect the signaling pathways responsible for synaptically driven rpS6 phosphorylation in the dentate gyrus using pharmacological agents to inhibit PI3-kinase/mTOR and MAPK/ERK-dependent kinases. Using phospho-specific antibodies for rpS6 at different sites (ser235/236 versus ser240/244), we show that delivery of the PI3-kinase inhibitor, wortmannin, decreased rpS6 phosphorylation throughout the somatodendritic compartment (granule cell layer, inner molecular layer, outer molecular layer), especially in granule cell bodies while sparing phosphorylation at activated synapses (middle molecular layer). In contrast, delivery of U0126, an MEK inhibitor, attenuated rpS6 phosphorylation specifically in the dendritic laminae leaving phosphorylation in the granule cell bodies intact. Delivery of the mTOR inhibitor, rapamycin, abolished activation of rpS6 phosphorylation in granule cell bodies and dendrites, whereas delivery of a selective S6K1 inhibitor, PF4708671, or RSK inhibitor, SL0101-1, attenuated rpS6 phosphorylation throughout the postsynaptic cell. These results reveal that MAPK/ERK-dependent signaling is predominately responsible for the selective induction of rpS6 phosphorylation at active synapses. In contrast, PI3-kinase/mTOR-dependent signaling induces rpS6 phosphorylation throughout the somatodendritic compartment but plays a minimal role at active synapses. Collectively, these results suggest a potential mechanism by which PI3-kinase/mTOR and MAPK/ERK pathways regulate translation at specific subcellular compartments in response to synaptic activity.
Collapse
Affiliation(s)
- Patricia Salgado Pirbhoy
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697, USA
| | - Shannon Farris
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Anatomy and Neurobiology
| | - Oswald Steward
- Reeve-Irvine Research Center, University of California, Irvine, California 92697, USA.,Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92697, USA.,Department of Anatomy and Neurobiology.,Department of Neurosurgery, University of California, Irvine, California 92697, USA
| |
Collapse
|
24
|
Wang WJ, Zheng KL, Gong XD, Xu JL, Huang JR, Lin DZ, Dong YJ. The rice TCD11 encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:1-11. [PMID: 28483049 DOI: 10.1016/j.plantsci.2017.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 05/20/2023]
Abstract
Plastid ribosome proteins (PRPs) are important components for chloroplast biogenesis and early chloroplast development. Although it has been known that chloroplast ribosomes are similar to bacterial ones, the precise molecular function of ribosomal proteins remains to be elucidated in rice. Here, we identified a novel rice mutant, designated tcd11 (thermo-sensitive chlorophyll-deficient mutant 11), characterized by the albino phenotype until it died at 20°C, while displaying normal phenotype at 32°C. The alteration of leaf color in tcd11 mutants was aligned with chlorophyll (Chl) content and chloroplast development. The map-based cloning and molecular complementation showed that TCD11 encodes the ribosomal small subunit protein S6 in chloroplasts (RPS6). TCD11 was abundantly expressed in leaves, suggesting its different expressions in tissues. In addition, the disruption of TCD11 greatly reduced the transcript levels of certain chloroplasts-associated genes and prevented the assembly of ribosome in chloroplasts at low temperature (20°C), whereas they recovered to nearly normal levels at high temperature (32°C). Thus, our data indicate that TCD11 plays an important role in chloroplast development at low temperature. Upon our knowledge, the observations from this study provide a first glimpse into the importance of RPS6 function in rice chloroplast development.
Collapse
Affiliation(s)
- Wen-Juan Wang
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Kai-Lun Zheng
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiao-Di Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China; Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 10010, China
| | - Jian-Long Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing 100081, China; Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ji-Rong Huang
- Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dong-Zhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Yan-Jun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
25
|
Synaptic plasticity in dendrites: complications and coping strategies. Curr Opin Neurobiol 2017; 43:177-186. [PMID: 28453975 DOI: 10.1016/j.conb.2017.03.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/20/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022]
Abstract
The elaborate morphology, nonlinear membrane mechanisms and spatiotemporally varying synaptic activation patterns of dendrites complicate the expression, compartmentalization and modulation of synaptic plasticity. To grapple with this complexity, we start with the observation that neurons in different brain areas face markedly different learning problems, and dendrites of different neuron types contribute to the cell's input-output function in markedly different ways. By committing to specific assumptions regarding a neuron's learning problem and its input-output function, specific inferences can be drawn regarding the synaptic plasticity mechanisms and outcomes that we 'ought' to expect for that neuron. Exploiting this assumption-driven approach can help both in interpreting existing experimental data and designing future experiments aimed at understanding the brain's myriad learning processes.
Collapse
|