1
|
Li Y, Izhar T, Kanekiyo T. HDAC3 as an Emerging Therapeutic Target for Alzheimer's Disease and other Neurological Disorders. Mol Neurobiol 2025:10.1007/s12035-025-04866-w. [PMID: 40126601 DOI: 10.1007/s12035-025-04866-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the aged population. Histone acetylation is a major epigenetic mechanism linked to memory formation and cognitive function. Histone deacetylases (HDACs) are responsible for the deacetylation of lysine residues in histone proteins. Although pan-HDAC inhibitors are effective in ameliorating AD phenotypes in preclinical models, they are associated with potential unfavorable adverse effects and barely translated into clinical trials. Therefore, the development of novel HDAC inhibitors with a well isoform-selectivity has been desired in AD drug discovery. Among various HDAC isoforms, HDAC3 is highly expressed in neurons and exhibits detrimental effects on synaptic plasticity and cognitive function. Moreover, HDAC3 provokes neuroinflammation and neurotoxicity and contributes to AD pathogenesis. In this review, we highlight HDAC3 as an attractive therapeutic target for disease-modifying therapy in AD. In addition, we discuss the therapeutic potential of HDAC3 inhibitors in other neurological disorders.
Collapse
Affiliation(s)
- Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Taha Izhar
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| |
Collapse
|
2
|
Keiser AA, Dong TN, Kramár EA, Butler CW, Chen S, Matheos DP, Rounds JS, Rodriguez A, Beardwood JH, Augustynski AS, Al-Shammari A, Alaghband Y, Alizo Vera V, Berchtold NC, Shanur S, Baldi P, Cotman CW, Wood MA. Specific exercise patterns generate an epigenetic molecular memory window that drives long-term memory formation and identifies ACVR1C as a bidirectional regulator of memory in mice. Nat Commun 2024; 15:3836. [PMID: 38714691 PMCID: PMC11076285 DOI: 10.1038/s41467-024-47996-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/15/2024] [Indexed: 05/10/2024] Open
Abstract
Exercise has beneficial effects on cognition throughout the lifespan. Here, we demonstrate that specific exercise patterns transform insufficient, subthreshold training into long-term memory in mice. Our findings reveal a potential molecular memory window such that subthreshold training within this window enables long-term memory formation. We performed RNA-seq on dorsal hippocampus and identify genes whose expression correlate with conditions in which exercise enables long-term memory formation. Among these genes we found Acvr1c, a member of the TGF ß family. We find that exercise, in any amount, alleviates epigenetic repression at the Acvr1c promoter during consolidation. Additionally, we find that ACVR1C can bidirectionally regulate synaptic plasticity and long-term memory in mice. Furthermore, Acvr1c expression is impaired in the aging human and mouse brain, as well as in the 5xFAD mouse model, and over-expression of Acvr1c enables learning and facilitates plasticity in mice. These data suggest that promoting ACVR1C may protect against cognitive impairment.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Tri N Dong
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Christopher W Butler
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Dina P Matheos
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Jacob S Rounds
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Alyssa Rodriguez
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Joy H Beardwood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Agatha S Augustynski
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Ameer Al-Shammari
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Yasaman Alaghband
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Vanessa Alizo Vera
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Nicole C Berchtold
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Sharmin Shanur
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, School of Information and Computer Science, University of California, Irvine, Irvine, CA, 92697, USA
| | - Carl W Cotman
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA
- Department of Neurology, University of California Irvine, Irvine, CA, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, 92697, USA.
- Center for the Neurobiology of Learning and Memory (CNLM), University of California, Irvine, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders (UCI MIND), University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Riemersma IW, Ike KGO, Sollie T, Meijer EL, Havekes R, Kas MJH. Suppression of Cofilin function in the somatosensory cortex alters social contact behavior in the BTBR mouse inbred line. Cereb Cortex 2024; 34:bhae136. [PMID: 38602737 PMCID: PMC11008688 DOI: 10.1093/cercor/bhae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/12/2024] Open
Abstract
Sensory differences are a core feature of autism spectrum disorders (ASD) and are predictive of other ASD core symptoms such as social difficulties. However, the neurobiological substrate underlying the functional relationship between sensory and social functioning is poorly understood. Here, we examined whether misregulation of structural plasticity in the somatosensory cortex modulates aberrant social functioning in BTBR mice, a mouse model for autism spectrum disorder-like phenotypes. By locally expressing a dominant-negative form of Cofilin (CofilinS3D; a key regulator of synaptic structure) in the somatosensory cortex, we tested whether somatosensory suppression of Cofilin activity alters social functioning in BTBR mice. Somatosensory Cofilin suppression altered social contact and nest-hide behavior of BTBR mice in a social colony, assessed for seven consecutive days. Subsequent behavioral testing revealed that altered social functioning is related to altered tactile sensory perception; CofilinS3D-treated BTBR mice showed a time-dependent difference in the sensory bedding preference task. These findings show that Cofilin suppression in the somatosensory cortex alters social functioning in BTBR mice and that this is associated with tactile sensory processing, a critical indicator of somatosensory functioning.
Collapse
Affiliation(s)
- Iris W Riemersma
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Kevin G O Ike
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Thomas Sollie
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Elroy L Meijer
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, Neurobiology, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
4
|
Developmental and Epileptic Encephalopathy 76: Case Report and Review of Literature. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121967. [PMID: 36553410 PMCID: PMC9777507 DOI: 10.3390/children9121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Previous studies have suggested that the ACTL6B monoallelic variant is responsible for an autosomal dominant inherited intellectual developmental disorder with severe speech and ambulation deficits. The clinical phenotype of developmental and epileptic encephalopathy type 76 (DEE76) due to ACTL6B biallelic variants was first reported in 2019, with an autosomal recessive mode of inheritance. In this paper, we report on a child in China with DEE76 caused by a compound heterozygous variant of the ACTL6B gene, and we review the literature on ACTL6B gene variants causing DEE76 with complete clinical information. Including our case 1, the genotype and phenotypic characteristics of 18 children from 14 families are summarized. All 18 cases are autosomal recessive, including 12 with homozygous variants and six with compound heterozygous variants. A total of 17 variants have been reported so far, including 14 variants of the loss function. We summarize the clinical features using Human Phenotype Ontology (HPO) terms. We find that DEE76, caused by the ACTL6B biallelic variant, is an early-onset drug-refractory epilepsy with global developmental delayHP:0001263, hypertoniaHP:0001276, and microcephalyHP:0000252, and imaging is characterized by brain delayed myelinationHP:0012448. Our case of DEE76 had not been reported when the patient underwent genetic testing in 2018, and the diagnosis was clarified by the reanalysis of the data 2 years later, being the first reported Chinese patient and the only one in which the application of a ketogenic diet for antiepileptic treatment may have been effective.
Collapse
|
5
|
Qi Z, Li J, Li M, Du X, Zhang L, Wang S, Xu B, Liu W, Xu Z, Deng Y. The Essential Role of Epigenetic Modifications in Neurodegenerative Diseases with Dyskinesia. Cell Mol Neurobiol 2022; 42:2459-2472. [PMID: 34383231 PMCID: PMC11421617 DOI: 10.1007/s10571-021-01133-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/18/2021] [Indexed: 12/20/2022]
Abstract
Epigenetics play an essential role in the occurrence and improvement of many diseases. Evidence shows that epigenetic modifications are crucial to the regulation of gene expression. DNA methylation is closely linked to embryonic development in mammalian. In recent years, epigenetic drugs have shown unexpected therapeutic effects on neurological diseases, leading to the study of the epigenetic mechanism in neurodegenerative diseases. Unlike genetics, epigenetics modify the genome without changing the DNA sequence. Research shows that epigenetics is involved in all aspects of neurodegenerative diseases. The study of epigenetic will provide valuable insights into the molecular mechanism of neurodegenerative diseases, which may lead to new treatments and diagnoses. This article reviews the role of epigenetic modifications neurodegenerative diseases with dyskinesia, and discusses the therapeutic potential of epigenetic drugs in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhipeng Qi
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jiashuo Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Minghui Li
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xianchao Du
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Lei Zhang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Shuang Wang
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Bin Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Wei Liu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Zhaofa Xu
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Yu Deng
- Department of Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
6
|
Rowland ME, Jajarmi JM, Osborne TSM, Ciernia AV. Insights Into the Emerging Role of Baf53b in Autism Spectrum Disorder. Front Mol Neurosci 2022; 15:805158. [PMID: 35185468 PMCID: PMC8852769 DOI: 10.3389/fnmol.2022.805158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Accurate and precise regulation of gene expression is necessary to ensure proper brain development and plasticity across the lifespan. As an ATP-dependent chromatin-remodeling complex, the BAF (Brg1 Associated Factor) complex can alter histone-DNA interactions, facilitating dynamic changes in gene expression by controlling DNA accessibility to the transcriptional machinery. Mutations in 12 of the potential 29 subunit genes that compose the BAF nucleosome remodeling complex have been identified in several developmental disorders including Autism spectrum disorders (ASD) and intellectual disability. A novel, neuronal version of BAF (nBAF) has emerged as promising candidate in the development of ASD as its expression is tied to neuron differentiation and it’s hypothesized to coordinate expression of synaptic genes across brain development. Recently, mutations in BAF53B, one of the neuron specific subunits of the nBAF complex, have been identified in patients with ASD and Developmental and epileptic encephalopathy-76 (DEE76), indicating BAF53B is essential for proper brain development. Recent work in cultured neurons derived from patients with BAF53B mutations suggests links between loss of nBAF function and neuronal dendritic spine formation. Deletion of one or both copies of mouse Baf53b disrupts dendritic spine development, alters actin dynamics and results in fewer synapses in vitro. In the mouse, heterozygous loss of Baf53b severely impacts synaptic plasticity and long-term memory that is reversible with reintroduction of Baf53b or manipulations of the synaptic plasticity machinery. Furthermore, surviving Baf53b-null mice display ASD-related behaviors, including social impairments and repetitive behaviors. This review summarizes the emerging evidence linking deleterious variants of BAF53B identified in human neurodevelopmental disorders to abnormal transcriptional regulation that produces aberrant synapse development and behavior.
Collapse
|
7
|
Abstract
Actin is a highly conserved protein in mammals. The actin dynamics is regulated by actin-binding proteins and actin-related proteins. Nuclear actin and these regulatory proteins participate in multiple nuclear processes, including chromosome architecture organization, chromatin remodeling, transcription machinery regulation, and DNA repair. It is well known that the dysfunctions of these processes contribute to the development of cancer. Moreover, emerging evidence has shown that the deregulated actin dynamics is also related to cancer. This chapter discusses how the deregulation of nuclear actin dynamics contributes to tumorigenesis via such various nuclear events.
Collapse
Affiliation(s)
- Yuanjian Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shengzhe Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center and Health Science Center, Houston, TX, USA.
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
8
|
Epigenetic Mechanisms in Memory and Cognitive Decline Associated with Aging and Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222212280. [PMID: 34830163 PMCID: PMC8618067 DOI: 10.3390/ijms222212280] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022] Open
Abstract
Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.
Collapse
|
9
|
López AJ, Hecking JK, White AO. The Emerging Role of ATP-Dependent Chromatin Remodeling in Memory and Substance Use Disorders. Int J Mol Sci 2020; 21:E6816. [PMID: 32957495 PMCID: PMC7555352 DOI: 10.3390/ijms21186816] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Long-term memory formation requires coordinated regulation of gene expression and persistent changes in cell function. For decades, research has implicated histone modifications in regulating chromatin compaction necessary for experience-dependent changes to gene expression and cell function during memory formation. Recent evidence suggests that another epigenetic mechanism, ATP-dependent chromatin remodeling, works in concert with the histone-modifying enzymes to produce large-scale changes to chromatin structure. This review examines how histone-modifying enzymes and chromatin remodelers restructure chromatin to facilitate memory formation. We highlight the emerging evidence implicating ATP-dependent chromatin remodeling as an essential mechanism that mediates activity-dependent gene expression, plasticity, and cell function in developing and adult brains. Finally, we discuss how studies that target chromatin remodelers have expanded our understanding of the role that these complexes play in substance use disorders.
Collapse
Affiliation(s)
- Alberto J. López
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Julia K. Hecking
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| | - André O. White
- Department of Biological Sciences, Mount Holyoke College, South Hadley, MA 01075, USA;
| |
Collapse
|
10
|
Zovkic IB. Epigenetics and memory: an expanded role for chromatin dynamics. Curr Opin Neurobiol 2020; 67:58-65. [PMID: 32905876 DOI: 10.1016/j.conb.2020.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/07/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
Abstract
Nearly two decades of research on epigenetic mechanisms in the brain have demonstrated that epigenetic marks that were once thought to be relatively static are dynamically and reversibly regulated in the brain during memory formation. Here, we focus on new research that has further expanded the dynamic nature of chromatin in memory formation through three key mechanisms. First, we discuss the emerging role of histone variants, which undergo learning-induced turnover or exchange, a process in which one histone type replaces another in chromatin. Next, we focus on chromatin remodeling complexes, which are tightly intertwined with all aspects of chromatin regulation and as such, can reposition or evict nucleosomes to promote transcriptional induction, and mediate histone variant exchange. Finally, we discuss how differential distribution of histone marks to localized narrow genomic regions and/or broadly distributed chromatin domains impact transcriptional outcomes and memory formation. Together, these studies mark a shift toward unraveling the complexity of chromatin function in memory and offer new strategies for fine tuning transcriptional outcomes to modify longevity, specificity and strength of memories.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
11
|
Lai R, Zhang W, He X, Liao X, Liu X, Fu W, Yang P, Wang J, Hu K, Yuan X, Zhang X, Jing H, Liu W. Prognostic role of ACTL10 in Cytogenetic Normal Acute Myeloid Leukemia. J Cancer 2020; 11:5150-5161. [PMID: 32742462 PMCID: PMC7378917 DOI: 10.7150/jca.39467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/14/2020] [Indexed: 01/01/2023] Open
Abstract
ACTL10 is a member of the actin family; however, despite previous studies suggesting that certain proteins in this family may be related to the pathogenesis of leukemia, to the best of our knowledge, no studies to date have demonstrated any association between ACTAL10 and leukemia. Thus, the present study aimed to determine the association between ACTL10 expression levels, DNA methylation levels and the clinical prognosis in cytogenic normal acute myeloid leukemia (CN-AML). Data from seventy-five patients with CN-AML and patients with AML treated with chemotherapy or allogeneic hematopoietic stem cell transplantation were obtained from The Cancer Genome Atlas (TCGA) dataset and were used to analyze the clinical prognosis of ACTL10 RNA expression levels and DNA methylation levels. In addition, the study also investigated the combined clinical prognosis of ACTL10 RNA expression levels and ACTL10 DNA methylation levels in 74 patients with CN-AML from the TCGA dataset. ACTL10 RNA expression levels were observed to be highly expressed in patients with CD34+/CD38+ AML (P<0.01). Both ACTL10 RNA expression levels and DNA methylation were found to be independent prognostic factors for patients with CN-AML; patients with CN-AML in the ACTL10 RNA-high expression group had an increased EFS (P=0.0016) and OS (P=0.014) and patients in ACTL10 DNA methylation-low group also demonstrated a long EFS (P<0.0001) and OS (P=0.004). Notably, integrating ACTL10 RNA expression levels and ACTL10 DNA methylation levels could more accurately predict the prognosis of patients with CN-AML (EFS and OS, P<0.0001). In conclusion, the findings of the present study suggested that the high RNA expression levels and low DNA methylation levels of ACTL10 may predict a good prognosis in patients with CN-AML.
Collapse
Affiliation(s)
- Rui Lai
- Department of the Respiratory medicine, The People's Hospital of Ruijin City, Ruijin, 342500, China
| | - Weilong Zhang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xue He
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050, China
| | - Xinhui Liao
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xiaoni Liu
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Wei Fu
- Peking University Third Hospital, Beijing, 100191, China
| | - Ping Yang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Jing Wang
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Kai Hu
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaoliang Yuan
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| | - Xiuru Zhang
- Department of Pathology, Beijing Tiantan Hospital Affiliated with Capital Medical University, No. 6 Tiantan Xili, Beijing, 100050, China
| | - Hongmei Jing
- Department of Hematology, Lymphoma Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Weiyou Liu
- Department of Respiratory medicine, First Affiliated Hospital Gannan Medical University, Ganzhou, 341000, China
| |
Collapse
|
12
|
Simon R, Wiegreffe C, Britsch S. Bcl11 Transcription Factors Regulate Cortical Development and Function. Front Mol Neurosci 2020; 13:51. [PMID: 32322190 PMCID: PMC7158892 DOI: 10.3389/fnmol.2020.00051] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Transcription factors regulate multiple processes during brain development and in the adult brain, from brain patterning to differentiation and maturation of highly specialized neurons as well as establishing and maintaining the functional neuronal connectivity. The members of the zinc-finger transcription factor family Bcl11 are mainly expressed in the hematopoietic and central nervous systems regulating the expression of numerous genes involved in a wide range of pathways. In the brain Bcl11 proteins are required to regulate progenitor cell proliferation as well as differentiation, migration, and functional integration of neural cells. Mutations of the human Bcl11 genes lead to anomalies in multiple systems including neurodevelopmental impairments like intellectual disabilities and autism spectrum disorders.
Collapse
Affiliation(s)
- Ruth Simon
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| | | | - Stefan Britsch
- Institute of Molecular and Cellular Anatomy, Ulm University, Germany
| |
Collapse
|
13
|
D'Mello SR. Regulation of Central Nervous System Development by Class I Histone Deacetylases. Dev Neurosci 2020; 41:149-165. [PMID: 31982872 PMCID: PMC7263453 DOI: 10.1159/000505535] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 12/18/2019] [Indexed: 12/15/2022] Open
Abstract
Neurodevelopment is a highly complex process composed of several carefully regulated events starting from the proliferation of neuroepithelial cells and culminating with and refining of neural networks and synaptic transmission. Improper regulation of any of these neurodevelopmental events often results in severe brain dysfunction. Accumulating evidence indicates that epigenetic modifications of chromatin play a key role in neurodevelopmental regulation. Among these modifications are histone acetylation and deacetylation, which control access of transcription factors to DNA, thereby regulating gene transcription. Histone deacetylation, which restricts access of transcription factor repressing gene transcription, involves the action of members of a family of 18 enzymes, the histone deacetylases (HDAC), which are subdivided in 4 subgroups. This review focuses on the Group 1 HDACs - HDAC 1, 2, 3, and 8. Although much of the evidence for HDAC involvement in neurodevelopment has come from the use of pharmacological inhibitors, because these agents are generally nonselective with regard to their effects on individual members of the HDAC family, this review is limited to evidence garnered from the use of molecular genetic approaches. Our review describes that Class I HDACs play essential roles in all phases of neurodevelopment. Modulation of the activity of individual HDACs could be an important therapeutic approach for neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, USA,
| |
Collapse
|
14
|
Navabpour S, Kwapis JL, Jarome TJ. A neuroscientist's guide to transgenic mice and other genetic tools. Neurosci Biobehav Rev 2020; 108:732-748. [PMID: 31843544 PMCID: PMC8049509 DOI: 10.1016/j.neubiorev.2019.12.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/05/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
The past decade has produced an explosion in the number and variety of genetic tools available to neuroscientists, resulting in an unprecedented ability to precisely manipulate the genome and epigenome in behaving animals. However, no single resource exists that describes all of the tools available to neuroscientists. Here, we review the genetic, transgenic, and viral techniques that are currently available to probe the complex relationship between genes and cognition. Topics covered include types of traditional transgenic mouse models (knockout, knock-in, reporter lines), inducible systems (Cre-loxP, Tet-On, Tet-Off) and cell- and circuit-specific systems (TetTag, TRAP, DIO-DREADD). Additionally, we provide details on virus-mediated and siRNA/shRNA approaches, as well as a comprehensive discussion of the myriad manipulations that can be made using the CRISPR-Cas9 system, including single base pair editing and spatially- and temporally-regulated gene-specific transcriptional control. Collectively, this review will serve as a guide to assist neuroscientists in identifying and choosing the appropriate genetic tools available to study the complex relationship between the brain and behavior.
Collapse
Affiliation(s)
- Shaghayegh Navabpour
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA
| | - Janine L Kwapis
- Department of Biology, Pennsylvania State University, College Park, PA, USA; Center for the Molecular Investigation of Neurological Disorders (CMIND), Pennsylvania State University, College Park, PA, USA.
| | - Timothy J Jarome
- Fralin Biomedical Research Institute, Translational Biology, Medicine and Health, Roanoke, VA, USA; Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
15
|
Abstract
In the past few decades, the field of neuroepigenetics has investigated how the brain encodes information to form long-lasting memories that lead to stable changes in behaviour. Activity-dependent molecular mechanisms, including, but not limited to, histone modification, DNA methylation and nucleosome remodelling, dynamically regulate the gene expression required for memory formation. Recently, the field has begun to examine how a learning experience is integrated at the level of both chromatin structure and synaptic physiology. Here, we provide an overview of key established epigenetic mechanisms that are important for memory formation. We explore how epigenetic mechanisms give rise to stable alterations in neuronal function by modifying synaptic structure and function, and highlight studies that demonstrate how manipulating epigenetic mechanisms may push the boundaries of memory.
Collapse
Affiliation(s)
- Rianne R Campbell
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Center for Addiction Neuroscience, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
| |
Collapse
|
16
|
Schoberleitner I, Mutti A, Sah A, Wille A, Gimeno-Valiente F, Piatti P, Kharitonova M, Torres L, López-Rodas G, Liu JJ, Singewald N, Schwarzer C, Lusser A. Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Front Mol Neurosci 2019; 12:3. [PMID: 30728766 PMCID: PMC6351481 DOI: 10.3389/fnmol.2019.00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/08/2019] [Indexed: 12/21/2022] Open
Abstract
Precise temporal and spatial regulation of gene expression in the brain is a prerequisite for cognitive processes such as learning and memory. Epigenetic mechanisms that modulate the chromatin structure have emerged as important regulators in this context. While posttranslational modification of histones or the modification of DNA bases have been examined in detail in many studies, the role of ATP-dependent chromatin remodeling factors (ChRFs) in learning- and memory-associated gene regulation has largely remained obscure. Here we present data that implicate the highly conserved chromatin assembly and remodeling factor Chd1 in memory formation and the control of immediate early gene (IEG) response in the hippocampus. We used various paradigms to assess short-and long-term memory in mice bearing a mutated Chd1 gene that gives rise to an N-terminally truncated protein. Our data demonstrate that the Chd1 mutation negatively affects long-term object recognition and short- and long-term spatial memory. We found that Chd1 regulates hippocampal expression of the IEG early growth response 1 (Egr1) and activity-regulated cytoskeleton-associated (Arc) but not cFos and brain derived neurotrophic factor (Bdnf), because the Chd1-mutation led to dysregulation of Egr1 and Arc expression in naive mice and in mice analyzed at different stages of object location memory (OLM) testing. Of note, Chd1 likely regulates Egr1 in a direct manner, because chromatin immunoprecipitation (ChIP) assays revealed enrichment of Chd1 upon stimulation at the Egr1 genomic locus in the hippocampus and in cultured cells. Together these data support a role for Chd1 as a critical regulator of molecular mechanisms governing memory-related processes, and they show that this function involves the N-terminal serine-rich region of the protein.
Collapse
Affiliation(s)
- Ines Schoberleitner
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Anna Mutti
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Anupam Sah
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Alexandra Wille
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Francisco Gimeno-Valiente
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Paolo Piatti
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Maria Kharitonova
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Luis Torres
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Gerardo López-Rodas
- Institute of Health Research, INCLIVA, and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Jeffrey J. Liu
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Munich, Germany
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Centre for Molecular Biosciences (CMBI), Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Lusser
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
17
|
Fichera M, Failla P, Saccuzzo L, Miceli M, Salvo E, Castiglia L, Galesi O, Grillo L, Calì F, Greco D, Amato C, Romano C, Elia M. Mutations in ACTL6B, coding for a subunit of the neuron-specific chromatin remodeling complex nBAF, cause early onset severe developmental and epileptic encephalopathy with brain hypomyelination and cerebellar atrophy. Hum Genet 2019; 138:187-198. [PMID: 30656450 DOI: 10.1007/s00439-019-01972-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/04/2019] [Indexed: 12/16/2022]
Abstract
Developmental and epileptic encephalopathies (DEEs) are genetically heterogenous conditions, often characterized by early onset, EEG interictal epileptiform abnormalities, polymorphous and drug-resistant seizures, and neurodevelopmental impairments. In this study, we investigated the genetic defects in two siblings who presented with severe DEE, microcephaly, spastic tetraplegia, diffuse brain hypomyelination, cerebellar atrophy, short stature, and kyphoscoliosis. Whole exome next-generation sequencing (WES) identified in both siblings a homozygous non-sense variant in the ACTL6B gene (NM_016188:c.820C>T;p.Gln274*) coding for a subunit of the neuron-specific chromatin remodeling complex nBAF. To further support these findings, a targeted ACTL6B sequencing assay was performed on a cohort of 85 unrelated DEE individuals, leading to the identification of a homozygous missense variant (NM_016188:c.1045G>A;p.Gly349Ser) in a patient. This variant did not segregate in the unaffected siblings in this family and was classified as deleterious by several prediction softwares. Interestingly, in both families, homozygous patients shared a rather homogeneous phenotype. Very few patients with ACTL6B gene variants have been sporadically reported in WES cohort studies of patients with neurodevelopmental disorders and/or congenital brain malformations. However, the limited number of patients with incomplete clinical information yet reported in the literature did not allow to establish a strong gene-disease association. Here, we provide additional genetic and clinical data on three new cases that support the pathogenic role of ACTL6B gene mutation in a syndromic form of DEE.
Collapse
Affiliation(s)
- Marco Fichera
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy. .,Oasi Research Institute-IRCCS, Troina, Italy.
| | | | - Lucia Saccuzzo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Martina Miceli
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | - Eliana Salvo
- Medical Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 87, 95123, Catania, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Alaghband Y, Kramár E, Kwapis JL, Kim ES, Hemstedt TJ, López AJ, White AO, Al-Kachak A, Aimiuwu OV, Bodinayake KK, Oparaugo NC, Han J, Lattal KM, Wood MA. CREST in the Nucleus Accumbens Core Regulates Cocaine Conditioned Place Preference, Cocaine-Seeking Behavior, and Synaptic Plasticity. J Neurosci 2018; 38:9514-9526. [PMID: 30228227 PMCID: PMC6209848 DOI: 10.1523/jneurosci.2911-17.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
Epigenetic mechanisms result in persistent changes at the cellular level that can lead to long-lasting behavioral adaptations. Nucleosome remodeling is a major epigenetic mechanism that has not been well explored with regards to drug-seeking behaviors. Nucleosome remodeling is performed by multi-subunit complexes that interact with DNA or chromatin structure and possess an ATP-dependent enzyme to disrupt nucleosome-DNA contacts and ultimately regulate gene expression. Calcium responsive transactivator (CREST) is a transcriptional activator that interacts with enzymes involved in both histone acetylation and nucleosome remodeling. Here, we examined the effects of knocking down CREST in the nucleus accumbens (NAc) core on drug-seeking behavior and synaptic plasticity in male mice as well as drug-seeking in male rats. Knocking down CREST in the NAc core results in impaired cocaine-induced conditioned place preference (CPP) as well as theta-induced long-term potentiation in the NAc core. Further, similar to the CPP findings, using a self-administration procedure, we found that CREST knockdown in the NAc core of male rats had no effect on instrumental responding for cocaine itself on a first-order schedule, but did significantly attenuate responding on a second-order chain schedule, in which responding has a weaker association with cocaine. Together, these results suggest that CREST in the NAc core is required for cocaine-induced CPP, synaptic plasticity, as well as cocaine-seeking behavior.SIGNIFICANCE STATEMENT This study demonstrates a key role for the role of Calcium responsive transactivator (CREST), a transcriptional activator, in the nucleus accumbens (NAc) core with regard to cocaine-induced conditioned place preference (CPP), self-administration (SA), and synaptic plasticity. CREST is a unique transcriptional regulator that can recruit enzymes from two different major epigenetic mechanisms: histone acetylation and nucleosome remodeling. In this study we also found that the level of potentiation in the NAc core correlated with whether or not animals formed a CPP. Together the results indicate that CREST is a key downstream regulator of cocaine action in the NAc.
Collapse
Affiliation(s)
- Yasaman Alaghband
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Irvine Center for Addiction Neuroscience
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Enikö Kramár
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Janine L Kwapis
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Earnest S Kim
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Thekla J Hemstedt
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Alberto J López
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Irvine Center for Addiction Neuroscience
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - André O White
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Irvine Center for Addiction Neuroscience
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Amni Al-Kachak
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Osasumwen V Aimiuwu
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Kasuni K Bodinayake
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Nicole C Oparaugo
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - Joseph Han
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| | - K Matthew Lattal
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory,
- Irvine Center for Addiction Neuroscience
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, California 92697
- Center for the Neurobiology of Learning and Memory, Irvine, California, 92697, and
| |
Collapse
|
19
|
Hornix BE, Havekes R, Kas MJH. Multisensory cortical processing and dysfunction across the neuropsychiatric spectrum. Neurosci Biobehav Rev 2018; 97:138-151. [PMID: 29496479 DOI: 10.1016/j.neubiorev.2018.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 11/25/2022]
Abstract
Sensory processing is affected in multiple neuropsychiatric disorders like schizophrenia and autism spectrum disorders. Genetic and environmental factors guide the formation and fine-tuning of brain circuitry necessary to receive, organize, and respond to sensory input in order to behave in a meaningful and consistent manner. During certain developmental stages the brain is sensitive to intrinsic and external factors. For example, disturbed expression levels of certain risk genes during critical neurodevelopmental periods may lead to exaggerated brain plasticity processes within the sensory circuits, and sensory stimulation immediately after birth contributes to fine-tuning of these circuits. Here, the neurodevelopmental trajectory of sensory circuit development will be described and related to some example risk gene mutations that are found in neuropsychiatric disorders. Subsequently, the flow of sensory information through these circuits and the relationship to synaptic plasticity will be described. Research focusing on the combined analyses of neural circuit development and functioning are necessary to expand our understanding of sensory processing and behavioral deficits that are relevant across the neuropsychiatric spectrum.
Collapse
Affiliation(s)
- Betty E Hornix
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Robbert Havekes
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Martien J H Kas
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
20
|
Sungur AÖ, Stemmler L, Wöhr M, Rust MB. Impaired Object Recognition but Normal Social Behavior and Ultrasonic Communication in Cofilin1 Mutant Mice. Front Behav Neurosci 2018. [PMID: 29515378 PMCID: PMC5825895 DOI: 10.3389/fnbeh.2018.00025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD), schizophrenia (SCZ) and intellectual disability (ID) show a remarkable overlap in symptoms, including impairments in cognition, social behavior and communication. Human genetic studies revealed an enrichment of mutations in actin-related genes for these disorders, and some of the strongest candidate genes control actin dynamics. These findings led to the hypotheses: (i) that ASD, SCZ and ID share common disease mechanisms; and (ii) that, at least in a subgroup of affected individuals, defects in the actin cytoskeleton cause or contribute to their pathologies. Cofilin1 emerged as a key regulator of actin dynamics and we previously demonstrated its critical role for synaptic plasticity and associative learning. Notably, recent studies revealed an over-activation of cofilin1 in mutant mice displaying ASD- or SCZ-like behavioral phenotypes, suggesting that dysregulated cofilin1-dependent actin dynamics contribute to their behavioral abnormalities, such as deficits in social behavior. These findings let us hypothesize: (i) that, apart from cognitive impairments, cofilin1 mutants display additional behavioral deficits with relevance to ASD or SCZ; and (ii) that our cofilin1 mutants represent a valuable tool to study the underlying disease mechanisms. To test our hypotheses, we compared social behavior and ultrasonic communication of juvenile mutants to control littermates, and we did not obtain evidence for impaired direct reciprocal social interaction, social approach or social memory. Moreover, concomitant emission of ultrasonic vocalizations was not affected and time-locked to social activity, supporting the notion that ultrasonic vocalizations serve a pro-social communicative function as social contact calls maintaining social proximity. Finally, cofilin1 mutants did not display abnormal repetitive behaviors. Instead, they performed weaker in novel object recognition, thereby demonstrating that cofilin1 is relevant not only for associative learning, but also for “non-matching-to-sample” learning. Here we report the absence of an ASD- or a SCZ-like phenotype in cofilin1 mutants, and we conclude that cofilin1 is relevant specifically for non-social cognition.
Collapse
Affiliation(s)
- A Özge Sungur
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Lea Stemmler
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany
| | - Markus Wöhr
- Department of Behavioral Neuroscience, Experimental and Biological Psychology, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, Marburg, Germany.,Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University of Marburg, Marburg, Germany.,DFG Research Training Group-Membrane Plasticity in Tissue Development and Remodeling, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
21
|
Shu G, Kramár EA, López AJ, Huynh G, Wood MA, Kwapis JL. Deleting HDAC3 rescues long-term memory impairments induced by disruption of the neuron-specific chromatin remodeling subunit BAF53b. ACTA ACUST UNITED AC 2018; 25:109-114. [PMID: 29449454 PMCID: PMC5817283 DOI: 10.1101/lm.046920.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific chromatin remodeling subunit BAF53b impairs long-term memory. Here, we show that deleting HDAC3 can ameliorate the impairments in both long-term memory and synaptic plasticity caused by BAF53b mutation. This suggests a dynamic interplay exists between histone acetylation/deacetylation and nucleosome remodeling mechanisms in the regulation of memory formation.
Collapse
Affiliation(s)
- Guanhua Shu
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Alberto J López
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Grace Huynh
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| | - Janine L Kwapis
- Department of Neurobiology and Behavior, University of California, Irvine, California, 92697, USA.,Center for Neurobiology of Learning and Memory, Irvine, California, 92697, USA
| |
Collapse
|