1
|
Zhao H, Li H, Meng L, Du P, Mo X, Gong M, Chen J, Liao Y. Disrupting heroin-associated memory reconsolidation through actin polymerization inhibition in the nucleus accumbens core. Int J Neuropsychopharmacol 2024; 28:pyae065. [PMID: 39716383 DOI: 10.1093/ijnp/pyae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied. METHODS This study employed a rodent model of self-administered heroin to investigate the involvement of actin polymerization in the reconsolidation of heroin-associated memories. Rats underwent ten days of intravenous heroin self-administration paired with conditioned cues. Subsequently, a 10-day extinction phase aimed to reduce heroin-seeking behaviors. Following this, rats participated in a 15-minute retrieval trial with or without cues. Immediately post-retrieval, rats received bilateral injections of the actin polymerization inhibitor Latrunculin A (Lat A) into the nucleus accumbens core (NACc), a critical brain region for memory reconsolidation. RESULTS Immediate administration of Lat A into the NACc post-retrieval significantly reduced cue-induced and heroin-primed reinstatement of heroin-seeking behavior for at least 28 days. However, administering Lat A 6-hour post-retrieval or without a retrieval trial, as well as administering Jasplakionlide prior to memory reactivation did not affect heroin-seeking behaviors. CONCLUSIONS Inhibiting actin polymerization during the reconsolidation window disrupts heroin-associated memory reconsolidation, leading to decreased heroin-seeking behavior and prevention of relapse. These effects are contingent upon the presence of a retrieval trial and exhibit temporal specificity, shedding light on addiction mechanisms and potential therapeutic interventions.
Collapse
Affiliation(s)
- Haiting Zhao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyu Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Meng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Du
- Department of Neurosurgery, The Second Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqi Gong
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiaxin Chen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yiwei Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Radnai L, Young EJ, Kikuti C, Hafenbreidel M, Stremel RF, Lin L, Toth K, Pasetto P, Jin X, Patel A, Conlon M, Briggs S, Heidsieck L, Sweeney HL, Sellers J, Krieger-Burke T, Martin WH, Sisco J, Young S, Pearson P, Rumbaugh G, Araldi GL, Duddy SK, Cameron MD, Surman M, Houdusse A, Griffin PR, Kamenecka TM, Miller CA. Development of Clinically Viable Non-Muscle Myosin II Small Molecule Inhibitors with Broad Therapeutic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617018. [PMID: 39416074 PMCID: PMC11482808 DOI: 10.1101/2024.10.07.617018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Non-muscle myosin II (NMII), a molecular motor that regulates critical processes such as cytokinesis and neuronal synaptic plasticity, has substantial therapeutic potential. However, translating this potential to in vivo use has been hampered by the lack of selective tools. The most prototypical non-selective inhibitor, blebbistatin inactivates both NMII and cardiac myosin II (CMII), a key regulator of heart function. Using rational drug design, we developed a series of NMII inhibitors that improve tolerability by selectively targeting NMII over CMII, including MT-228, which has excellent properties such as high brain penetration and efficacy in preclinical models of stimulant use disorder, which has no current FDA-approved therapies. The structure of MT-228 bound to myosin II provides insight into its 17-fold selectivity for NMII over CMII. MT-228's broad therapeutic window opens the door to new disease treatments and provides valuable tools for the scientific community, along with promising leads for future medication development. Highlights Research suggests numerous indications, from axon regeneration and cancer, would benefit from a small molecule inhibitor of non-muscle myosin II, a molecular motor that regulates the actin cytoskeleton. Current chemical probe options are very limited and lack sufficient safety for in vivo studies, which we show is primarily due to potent inhibition of cardiac myosin II.Rational design that focused on improving target selectivity over the pan-myosin II inhibitor, blebbistatin, led to the identification of MT-228, a small molecule inhibitor with a wide therapeutic window.High-resolution structure of MT-228 bound to myosin II reveals that selectivity results from a different positioning compared to blebbistatin and an important sequence difference between cardiac and non-muscle myosin II in the inhibitor binding pocket.A single administration of MT-228 shows long-lasting efficacy in animal models of stimulant use disorder, a current unmet and rapidly escalating need with no FDA-approved treatments.
Collapse
|
3
|
Mitra A, Deats SP, Dickson PE, Zhu J, Gardin J, Nieman BJ, Henkelman RM, Tsai NP, Chesler EJ, Zhang ZW, Kumar V. Tmod2 Is a Regulator of Cocaine Responses through Control of Striatal and Cortical Excitability and Drug-Induced Plasticity. J Neurosci 2024; 44:e1389232024. [PMID: 38508714 PMCID: PMC11063827 DOI: 10.1523/jneurosci.1389-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024] Open
Abstract
Drugs of abuse induce neuroadaptations, including synaptic plasticity, that are critical for transition to addiction, and genes and pathways that regulate these neuroadaptations are potential therapeutic targets. Tropomodulin 2 (Tmod2) is an actin-regulating gene that plays an important role in synapse maturation and dendritic arborization and has been implicated in substance abuse and intellectual disability in humans. Here, we mine the KOMP2 data and find that Tmod2 knock-out mice show emotionality phenotypes that are predictive of addiction vulnerability. Detailed addiction phenotyping shows that Tmod2 deletion does not affect the acute locomotor response to cocaine administration. However, sensitized locomotor responses are highly attenuated in these knock-outs, indicating perturbed drug-induced plasticity. In addition, Tmod2 mutant animals do not self-administer cocaine indicating lack of hedonic responses to cocaine. Whole-brain MR imaging shows differences in brain volume across multiple regions, although transcriptomic experiments did not reveal perturbations in gene coexpression networks. Detailed electrophysiological characterization of Tmod2 KO neurons showed increased spontaneous firing rate of early postnatal and adult cortical and striatal neurons. Cocaine-induced synaptic plasticity that is critical for sensitization is either missing or reciprocal in Tmod2 KO nucleus accumbens shell medium spiny neurons, providing a mechanistic explanation of the cocaine response phenotypes. Combined, these data, collected from both males and females, provide compelling evidence that Tmod2 is a major regulator of plasticity in the mesolimbic system and regulates the reinforcing and addictive properties of cocaine.
Collapse
Affiliation(s)
| | | | | | - Jiuhe Zhu
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | - Brian J Nieman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - R Mark Henkelman
- Mouse Imaging Centre and Translational Medicine, Hospital for Sick Children; Ontario Institute for Cancer Research; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5T 3H7, Canada
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | - Vivek Kumar
- The Jackson Laboratory, Bar Harbor, Maine 04609
| |
Collapse
|
4
|
Pandey S, Miller CA. Targeting the cytoskeleton as a therapeutic approach to substance use disorders. Pharmacol Res 2024; 202:107143. [PMID: 38499081 PMCID: PMC11034636 DOI: 10.1016/j.phrs.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Substance use disorders (SUD) are chronic relapsing disorders governed by continually shifting cycles of positive drug reward experiences and drug withdrawal-induced negative experiences. A large body of research points to plasticity within systems regulating emotional, motivational, and cognitive processes as drivers of continued compulsive pursuit and consumption of substances despite negative consequences. This plasticity is observed at all levels of analysis from molecules to networks, providing multiple avenues for intervention in SUD. The cytoskeleton and its regulatory proteins within neurons and glia are fundamental to the structural and functional integrity of brain processes and are potentially the major drivers of the morphological and behavioral plasticity associated with substance use. In this review, we discuss preclinical studies that provide support for targeting the brain cytoskeleton as a therapeutic approach to SUD. We focus on the interplay between actin cytoskeleton dynamics and exposure to cocaine, methamphetamine, alcohol, opioids, and nicotine and highlight preclinical studies pointing to a wide range of potential therapeutic targets, such as nonmuscle myosin II, Rac1, cofilin, prosapip 1, and drebrin. These studies broaden our understanding of substance-induced plasticity driving behaviors associated with SUD and provide new research directions for the development of SUD therapeutics.
Collapse
Affiliation(s)
- Surya Pandey
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States; Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
5
|
Hafenbreidel M, Pandey S, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral amygdala corticotropin releasing factor receptor 2 interacts with nonmuscle myosin II to destabilize memory in males. Neurobiol Learn Mem 2023; 206:107865. [PMID: 37995804 DOI: 10.1016/j.nlm.2023.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
Preclinical studies show that inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory in male and female adult and adolescent rodents. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g., dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To understand the mechanisms responsible for drug specific selectivity we began by investigating, in male mice, the pharmacokinetic differences in METH and COC brain exposure . Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, we next assessed transcriptional differences. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotropin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility. Pretreatment with AS2B prevented the ability of Blebb to disrupt an established METH-associated memory. Alternatively, combining CRF2 overexpression and agonist treatment, urocortin 3 (UCN3), in the BLA during conditioning rendered COC-associated memory susceptible to disruption by NMII inhibition, mimicking the Blebb-induced, retrieval-independent memory disruption seen with METH. These results suggest that BLA CRF2 receptor activation during memory formation in male mice can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption by NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Surya Pandey
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, United States; Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, United States; The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL 33458, United States.
| |
Collapse
|
6
|
Charpentier ANH, Olekanma DI, Valade CT, Reeves CA, Cho BR, Arguello AA. Influence of reconsolidation in maintenance of cocaine-associated contextual memories formed during adolescence or adulthood. Sci Rep 2023; 13:13936. [PMID: 37626103 PMCID: PMC10457301 DOI: 10.1038/s41598-023-39949-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Adolescents are at increased risk to develop substance use disorders and suffer from relapse throughout life. Targeted weakening of drug-associated memories has been shown to reduce relapse-like behavior in adult rats, however this process has been understudied in adolescents. We aimed to examine whether adolescent-formed, cocaine-associated memories could be manipulated via reconsolidation mechanisms. To accomplish this objective, we used an abbreviated operant cocaine self-administration paradigm (ABRV Coc-SA). Adult and adolescent rats received jugular catheterization surgery followed by ABRV Coc-SA in a distinct context for 2 h, 2×/day over 5 days. Extinction training (EXT) occurred in a second context for 2 h, 2×/day over 4 days. To retrieve cocaine-context memories, rats were exposed to the cocaine-paired context for 15 min, followed by subcutaneous injection of vehicle or the protein synthesis inhibitor cycloheximide (2.5 mg/kg). Two additional EXT sessions were conducted before a 2 h reinstatement test in the cocaine-paired context to assess cocaine-seeking behavior. We find that both adult and adolescent cocaine-exposed rats show similar levels of cocaine-seeking behavior regardless of post-reactivation treatment. Our results suggest that systemic treatment with the protein synthesis inhibitor cycloheximide does not impair reconsolidation of cocaine-context memories and subsequent relapse during adulthood or adolescence.
Collapse
Affiliation(s)
- André N Herrera Charpentier
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Doris I Olekanma
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christian T Valade
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Christopher A Reeves
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Bo Ram Cho
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA
| | - Amy A Arguello
- Department of Psychology, Behavioral Neuroscience, Michigan State University (MSU), Interdisciplinary Science and Technology Building, West Rm. 4010, 766 Service Rd., East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Hafenbreidel M, Briggs SB, Arza M, Bonthu S, Fisher C, Tiller A, Hall AB, Reed S, Mayorga N, Lin L, Khan S, Cameron MD, Rumbaugh G, Miller CA. Basolateral Amygdala Corticotrophin Releasing Factor Receptor 2 Interacts with Nonmuscle Myosin II to Destabilize Memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541732. [PMID: 37292925 PMCID: PMC10245849 DOI: 10.1101/2023.05.22.541732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inhibiting the actin motor ATPase nonmuscle myosin II (NMII) with blebbistatin (Blebb) in the basolateral amgydala (BLA) depolymerizes actin, resulting in an immediate, retrieval-independent disruption of methamphetamine (METH)-associated memory. The effect is highly selective, as NMII inhibition has no effect in other relevant brain regions (e.g. dorsal hippocampus [dPHC], nucleus accumbens [NAc]), nor does it interfere with associations for other aversive or appetitive stimuli, including cocaine (COC). To investigate a potential source of this specificity, pharmacokinetic differences in METH and COC brain exposure were examined. Replicating METH's longer half-life with COC did not render the COC association susceptible to disruption by NMII inhibition. Therefore, transcriptional differences were next assessed. Comparative RNA-seq profiling in the BLA, dHPC and NAc following METH or COC conditioning identified crhr2, which encodes the corticotrophin releasing factor receptor 2 (CRF2), as uniquely upregulated by METH in the BLA. CRF2 antagonism with Astressin-2B (AS2B) had no effect on METH-associated memory after consolidation, allowing for determination of CRF2 influences on NMII-based susceptibility after METH conditioning. Pretreatment with AS2B occluded the ability of Blebb to disrupt an established METH-associated memory. Alternatively, the Blebb-induced, retrieval-independent memory disruption seen with METH was mimicked for COC when combined with CRF2 overexpression in the BLA and its ligand, UCN3 during conditioning. These results indicate that BLA CRF2 receptor activation during learning can prevent stabilization of the actin-myosin cytoskeleton supporting the memory, rendering it vulnerable to disruption via NMII inhibition. CRF2 represents an interesting target for BLA-dependent memory destabilization via downstream effects on NMII.
Collapse
Affiliation(s)
- Madalyn Hafenbreidel
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Sherri B Briggs
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Meghana Arza
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shalakha Bonthu
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Cadence Fisher
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Annika Tiller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
- Present address: Department of Physiology and Neuroscience, Medical University of South Carolina, Charleston, SC, 29464
| | - Alice B Hall
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Shayna Reed
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Natasha Mayorga
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Li Lin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Susan Khan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Michael D Cameron
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| | - Courtney A Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, 33458
- Present address: Department of Molecular Medicine, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, 33458
- Present address: Department of Neuroscience, Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology Jupiter, FL, 33458
| |
Collapse
|
8
|
Oyigeya M. Reflex memory theory of acquired involuntary motor and sensory disorders. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2021. [DOI: 10.1186/s41983-021-00307-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Explicit and implicit memories are conserved but flexible biological tools that nature uses to regulate the daily behaviors of human beings. An aberrant form of the implicit memory is presumed to exist and may be contributory to the pathophysiology of disorders such as tardive syndromes, phantom phenomena, flashback, posttraumatic stress disorders (PTSD), and related disorders. These disorders have posed significant clinical problems for both patients and physicians for centuries. All extant pathophysiological theories of these disorders have failed to provide basis for effective treatment.
Objective
The objective of this article is to propose an alternative pathophysiological theory that will hopefully lead to new treatment approaches.
Methods
The author sourced over 60 journal articles that treated topics on memory, and involuntary motor and sensory disorders, from open access journals using Google Scholar, and reviewed them and this helped in the formulation of this theory.
Results
From the reviews, the author thinks physical or chemical insult to the nervous system can cause defective circuit remodeling, leading to generation of a variant of implicit (automatic) memory, herein called “reflex memory” and this is encoded interoceptively to contribute to these phenomena states.
Conclusion
Acquired involuntary motor and sensory disorders are caused by defective circuit remodeling involving multiple neural mechanisms. Dysregulation of excitatory neurotransmitters, calcium overload, homeostatic failure, and neurotoxicity are implicated in the process. Sustained effects of these defective mechanisms are encoded interoceptively as abnormal memory in the neurons and the conscious manifestations are these disorders. Extant theories failed to recognize this possibility.
Collapse
|
9
|
Targeting the Reconsolidation of Licit Drug Memories to Prevent Relapse: Focus on Alcohol and Nicotine. Int J Mol Sci 2021; 22:ijms22084090. [PMID: 33920982 PMCID: PMC8071281 DOI: 10.3390/ijms22084090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol and nicotine are widely abused legal substances worldwide. Relapse to alcohol or tobacco seeking and consumption after abstinence is a major clinical challenge, and is often evoked by cue-induced craving. Therefore, disruption of the memory for the cue–drug association is expected to suppress relapse. Memories have been postulated to become labile shortly after their retrieval, during a “memory reconsolidation” process. Interference with the reconsolidation of drug-associated memories has been suggested as a possible strategy to reduce or even prevent cue-induced craving and relapse. Here, we surveyed the growing body of studies in animal models and in humans assessing the effectiveness of pharmacological or behavioral manipulations in reducing relapse by interfering with the reconsolidation of alcohol and nicotine/tobacco memories. Our review points to the potential of targeting the reconsolidation of these memories as a strategy to suppress relapse to alcohol drinking and tobacco smoking. However, we discuss several critical limitations and boundary conditions, which should be considered to improve the consistency and replicability in the field, and for development of an efficient reconsolidation-based relapse-prevention therapy.
Collapse
|
10
|
Gyimesi M, Rauscher AÁ, Suthar SK, Hamow KÁ, Oravecz K, Lőrincz I, Borhegyi Z, Déri MT, Kiss ÁF, Monostory K, Szabó PT, Nag S, Tomasic I, Krans J, Tierney PJ, Kovács M, Kornya L, Málnási-Csizmadia A. Improved Inhibitory and Absorption, Distribution, Metabolism, Excretion, and Toxicology (ADMET) Properties of Blebbistatin Derivatives Indicate That Blebbistatin Scaffold Is Ideal for drug Development Targeting Myosin-2. J Pharmacol Exp Ther 2021; 376:358-373. [PMID: 33468641 DOI: 10.1124/jpet.120.000167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Blebbistatin, para-nitroblebbistatin (NBleb), and para-aminoblebbistatin (AmBleb) are highly useful tool compounds as they selectively inhibit the ATPase activity of myosin-2 family proteins. Despite the medical importance of the myosin-2 family as drug targets, chemical optimization has not yet provided a promising lead for drug development because previous structure-activity-relationship studies were limited to a single myosin-2 isoform. Here we evaluated the potential of blebbistatin scaffold for drug development and found that D-ring substitutions can fine-tune isoform specificity, absorption-distribution-metabolism-excretion, and toxicological properties. We defined the inhibitory properties of NBleb and AmBleb on seven different myosin-2 isoforms, which revealed an unexpected potential for isoform specific inhibition. We also found that NBleb metabolizes six times slower than blebbistatin and AmBleb in rats, whereas AmBleb metabolizes two times slower than blebbistatin and NBleb in human, and that AmBleb accumulates in muscle tissues. Moreover, mutagenicity was also greatly reduced in case of AmBleb. These results demonstrate that small substitutions have beneficial functional and pharmacological consequences, which highlight the potential of the blebbistatin scaffold for drug development targeting myosin-2 family proteins and delineate a route for defining the chemical properties of further derivatives to be developed. SIGNIFICANCE STATEMENT: Small substitutions on the blebbistatin scaffold have beneficial functional and pharmacological consequences, highlighting their potential in drug development targeting myosin-2 family proteins.
Collapse
Affiliation(s)
- Máté Gyimesi
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Anna Á Rauscher
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Sharad Kumar Suthar
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Kamirán Á Hamow
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Kinga Oravecz
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - István Lőrincz
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Zsolt Borhegyi
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Máté T Déri
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Ádám F Kiss
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Katalin Monostory
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Pál Tamás Szabó
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Suman Nag
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Ivan Tomasic
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Jacob Krans
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Patrick J Tierney
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - Mihály Kovács
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - László Kornya
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| | - András Málnási-Csizmadia
- Department of Biochemistry, Eötvös Loránd University, Budapest and Martonvásár, Hungary (M.G., K.O., I.L., Z.B., M.K., A.M.-C.); MTA-ELTE Motor Pharmacology Research Group, Budapest, Hungary (M.G., M.K., A.M.-C.); Motorharma Ltd., Budapest, Hungary (A.Á.R.); Printnet Ltd., Budapest, Hungary (S.K.S., I.L.); Plant Protection Institute, Centre for Agricultural Research, Martonvásár, Hungary (K.Á.H.); Metabolic Drug Interactions Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary (M.T.D., Á.F.K., K.M.); Research Centre for Natural Sciences, Instrumentation Center, MS Metabolomic Research Laboratory, Budapest, Hungary (P.T.S.); Department of Biology, MyoKardia Inc., Brisbane, California (S.N., I.T.); Department of Neuroscience, Western New England University, Springfield, Massachusetts (J.K., P.J.T.); and Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary (L.K.)
| |
Collapse
|
11
|
Alexander CJ, Barzik M, Fujiwara I, Remmert K, Wang YX, Petralia RS, Friedman TB, Hammer JA. Myosin 18Aα targets the guanine nucleotide exchange factor β-Pix to the dendritic spines of cerebellar Purkinje neurons and promotes spine maturation. FASEB J 2021; 35:e21092. [PMID: 33378124 PMCID: PMC8357457 DOI: 10.1096/fj.202001449r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Myosin 18Aα is a myosin 2-like protein containing unique N- and C-terminal protein interaction domains that co-assembles with myosin 2. One protein known to bind to myosin 18Aα is β-Pix, a guanine nucleotide exchange factor (GEF) for Rac1 and Cdc42 that has been shown to promote dendritic spine maturation by activating the assembly of actin and myosin filaments in spines. Here, we show that myosin 18A⍺ concentrates in the spines of cerebellar Purkinje neurons via co-assembly with myosin 2 and through an actin binding site in its N-terminal extension. miRNA-mediated knockdown of myosin 18A⍺ results in a significant defect in spine maturation that is rescued by an RNAi-immune version of myosin 18A⍺. Importantly, β-Pix co-localizes with myosin 18A⍺ in spines, and its spine localization is lost upon myosin 18A⍺ knockdown or when its myosin 18A⍺ binding site is deleted. Finally, we show that the spines of myosin 18A⍺ knockdown Purkinje neurons contain significantly less F-actin and myosin 2. Together, these data argue that mixed filaments of myosin 2 and myosin 18A⍺ form a complex with β-Pix in Purkinje neuron spines that promotes spine maturation by enhancing the assembly of actin and myosin filaments downstream of β-Pix's GEF activity.
Collapse
Affiliation(s)
- Christopher J Alexander
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| | - Melanie Barzik
- Laboratory of Molecular Genetics, NIDCD, NIH, Bethesda, MD, USA
| | - Ikuko Fujiwara
- Graduate School of Science, Osaka City University, Osaka, Japan
| | | | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD, NIH, Betheda, MD, USA
| | | | | | - John A Hammer
- Molecular Cell Biology Laboratory, Cell and Developmental Biology Center, NHLBI, NIH, Bethesda, MD, USA
| |
Collapse
|
12
|
Crummy EA, O'Neal TJ, Baskin BM, Ferguson SM. One Is Not Enough: Understanding and Modeling Polysubstance Use. Front Neurosci 2020; 14:569. [PMID: 32612502 PMCID: PMC7309369 DOI: 10.3389/fnins.2020.00569] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
Substance use disorder (SUD) is a chronic, relapsing disease with a highly multifaceted pathology that includes (but is not limited to) sensitivity to drug-associated cues, negative affect, and motivation to maintain drug consumption. SUDs are highly prevalent, with 35 million people meeting criteria for SUD. While drug use and addiction are highly studied, most investigations of SUDs examine drug use in isolation, rather than in the more prevalent context of comorbid substance histories. Indeed, 11.3% of individuals diagnosed with a SUD have concurrent alcohol and illicit drug use disorders. Furthermore, having a SUD with one substance increases susceptibility to developing dependence on additional substances. For example, the increased risk of developing heroin dependence is twofold for alcohol misusers, threefold for cannabis users, 15-fold for cocaine users, and 40-fold for prescription misusers. Given the prevalence and risk associated with polysubstance use and current public health crises, examining these disorders through the lens of co-use is essential for translatability and improved treatment efficacy. The escalating economic and social costs and continued rise in drug use has spurred interest in developing preclinical models that effectively model this phenomenon. Here, we review the current state of the field in understanding the behavioral and neural circuitry in the context of co-use with common pairings of alcohol, nicotine, cannabis, and other addictive substances. Moreover, we outline key considerations when developing polysubstance models, including challenges to developing preclinical models to provide insights and improve treatment outcomes.
Collapse
Affiliation(s)
- Elizabeth A Crummy
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Timothy J O'Neal
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Britahny M Baskin
- Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Susan M Ferguson
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA, United States.,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, United States.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, United States.,Alcohol and Drug Abuse Institute, University of Washington, Seattle, WA, United States
| |
Collapse
|
13
|
Methamphetamine Learning Induces Persistent and Selective Nonmuscle Myosin II-Dependent Spine Motility in the Basolateral Amygdala. J Neurosci 2020; 40:2695-2707. [PMID: 32066582 DOI: 10.1523/jneurosci.2182-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Nonmuscle myosin II inhibition (NMIIi) in the basolateral amygdala (BLA), but not dorsal hippocampus (CA1), selectively disrupts memories associated with methamphetamine (METH) days after learning, without retrieval. However, the molecular mechanisms underlying this selective vulnerability remain poorly understood. A known function of NMII is to transiently activate synaptic actin dynamics with learning. Therefore, we hypothesized that METH-associated learning perpetuates NMII-driven actin dynamics in synapses, leading to an extended window of vulnerability for memory disruption. We used time-lapse two-photon imaging of dendritic spine motility in acutely prepared brain slices from female and male mice following METH-associated learning as a readout of actin-myosin dynamics. Spine motility was persistently increased in the BLA, but not in CA1. Consistent with the memory disrupting effect of intra-BLA NMII inhibition, METH-induced changes to BLA spine dynamics were reversed by a single systemic injection of an NMII inhibitor. Intra-CA1 NMII inhibition, on the other hand, did not disrupt METH-associated memory. Thus, we report identification of a previously unknown ability for spine actin dynamics to persist days after stimulation and that this is under the control of NMII. Further, these perpetual NMII-driven spine actin dynamics in BLA neurons may contribute to the unique susceptibility of METH-associated memories.SIGNIFICANCE STATEMENT There are no Food and Drug Administration-approved pharmacotherapies to prevent relapse to the use of stimulants, such as methamphetamine (METH). Environmental cues become associated with drug use, such that the memories can elicit strong motivation to seek the drug during abstinence. We previously reported that the storage of METH-associated memories is uniquely vulnerable to immediate, retrieval-independent, and lasting disruption by direct actin depolymerization or by inhibiting the actin driver nonmuscle myosin II (NMII) in the BLA or systemically. Here we report a potential structural mechanism responsible for the unique vulnerability of METH-associated memories and METH-seeking behavior to NMII inhibition within the BLA.
Collapse
|