1
|
Heuer SE, Bloss EB, Howell GR. Strategies to dissect microglia-synaptic interactions during aging and in Alzheimer's disease. Neuropharmacology 2024; 254:109987. [PMID: 38705570 DOI: 10.1016/j.neuropharm.2024.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Age is the largest risk factor for developing Alzheimer's disease (AD), a neurodegenerative disorder that causes a progressive and severe dementia. The underlying cause of cognitive deficits seen in AD is thought to be the disconnection of neural circuits that control memory and executive functions. Insight into the mechanisms by which AD diverges from normal aging will require identifying precisely which cellular events are driven by aging and which are impacted by AD-related pathologies. Since microglia, the brain-resident macrophages, are known to have critical roles in the formation and maintenance of neural circuits through synaptic pruning, they are well-positioned to modulate synaptic connectivity in circuits sensitive to aging or AD. In this review, we provide an overview of the current state of the field and on emerging technologies being employed to elucidate microglia-synaptic interactions in aging and AD. We also discuss the importance of leveraging genetic diversity to study how these interactions are shaped across more realistic contexts. We propose that these approaches will be essential to define specific aging- and disease-relevant trajectories for more personalized therapeutics aimed at reducing the effects of age or AD pathologies on the brain. This article is part of the Special Issue on "Microglia".
Collapse
Affiliation(s)
- Sarah E Heuer
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Erik B Bloss
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA; Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, 04469, USA.
| |
Collapse
|
2
|
Wang C, Hei Y, Liu Y, Bajpai AK, Li Y, Guan Y, Xu F, Yao C. Systems genetics identifies methionine as a high risk factor for Alzheimer's disease. Front Neurosci 2024; 18:1381889. [PMID: 39081851 PMCID: PMC11286400 DOI: 10.3389/fnins.2024.1381889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
As a dietary strategy, methionine restriction has been reported to promote longevity and regulate metabolic disorders. However, the role and possible regulatory mechanisms underlying methionine in neurodegenerative diseases such as Alzheimer's disease (AD), remain unexplored. This study utilized the data from BXD recombinant inbred (RI) mice to establish a correlation between the AD phenotype in mice and methionine level. Gene enrichment analysis indicated that the genes associated with the concentration of methionine in the midbrain are involved in the dopaminergic synaptic signaling pathway. Protein interaction network analysis revealed that glycogen synthase kinase 3 beta (GSK-3β) was a key regulator of the dopaminergic synaptic pathway and its expression level was significantly correlated with the AD phenotype. Finally, in vitro experiments demonstrated that methionine deprivation could reduce the expression of Aβ and phosphorylated Tau, suggesting that lowering methionine levels in humans may be a preventive or therapeutic strategy for AD. In conclusion, our findings support that methionine is a high risk factor for AD. These findings predict potential regulatory network, theoretically supporting methionine restriction to prevent AD.
Collapse
Affiliation(s)
- Congmin Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Hei
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yu Liu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Akhilesh Kumar Bajpai
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Yuhe Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yawen Guan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Fuyi Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| | - Cuifang Yao
- School of Pharmacy, Binzhou Medical University, Yantai, China
- Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell KMS, Singh S, Murdy TJ, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. Commun Biol 2024; 7:605. [PMID: 38769398 PMCID: PMC11106287 DOI: 10.1038/s42003-024-06242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD) is broadly characterized by neurodegeneration, pathology accumulation, and cognitive decline. There is considerable variation in the progression of clinical symptoms and pathology in humans, highlighting the importance of genetic diversity in the study of AD. To address this, we analyze cell composition and amyloid-beta deposition of 6- and 14-month-old AD-BXD mouse brains. We utilize the analytical QUINT workflow- a suite of software designed to support atlas-based quantification, which we expand to deliver a highly effective method for registering and quantifying cell and pathology changes in diverse disease models. In applying the expanded QUINT workflow, we quantify near-global age-related increases in microglia, astrocytes, and amyloid-beta, and we identify strain-specific regional variation in neuron load. To understand how individual differences in cell composition affect the interpretation of bulk gene expression in AD, we combine hippocampal immunohistochemistry analyses with bulk RNA-sequencing data. This approach allows us to categorize genes whose expression changes in response to AD in a cell and/or pathology load-dependent manner. Ultimately, our study demonstrates the use of the QUINT workflow to standardize the quantification of immunohistochemistry data in diverse mice, - providing valuable insights into regional variation in cellular load and amyloid deposition in the AD-BXD model.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niran Hadad
- The Jackson Laboratory, Bar Harbor, ME, USA
- Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory, Bar Harbor, ME, USA
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA
| | - Surjeet Singh
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Catherine C Kaczorowski
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME, USA.
- Tufts University Graduate School of Biomedical Sciences, Medford, MA, USA.
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Xie X, Zhang X, Li S, Du W. Involvement of Fgf2-mediated tau protein phosphorylation in cognitive deficits induced by sevoflurane in aged rats. Mol Med 2024; 30:39. [PMID: 38493090 PMCID: PMC10943822 DOI: 10.1186/s10020-024-00784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.
Collapse
Affiliation(s)
- Xin Xie
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Songze Li
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China.
| |
Collapse
|
6
|
Saul MC, Litkowski EM, Hadad N, Dunn AR, Boas SM, Wilcox JAL, Robbins JE, Wu Y, Philip VM, Merrihew GE, Park J, De Jager PL, Bridges DE, Menon V, Bennett DA, Hohman TJ, MacCoss MJ, Kaczorowski CC. Hippocampus Glutathione S Reductase Potentially Confers Genetic Resilience to Cognitive Decline in the AD-BXD Mouse Population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574219. [PMID: 38260300 PMCID: PMC10802440 DOI: 10.1101/2024.01.09.574219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.
Collapse
|
7
|
Heuer SE, Keezer KJ, Hewes AA, Onos KD, Graham KC, Howell GR, Bloss EB. Control of hippocampal synaptic plasticity by microglia-dendrite interactions depends on genetic context in mouse models of Alzheimer's disease. Alzheimers Dement 2024; 20:601-614. [PMID: 37753835 PMCID: PMC10840883 DOI: 10.1002/alz.13440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Human data suggest susceptibility and resilience to features of Alzheimer's disease (AD) such as microglia activation and synaptic dysfunction are under genetic control. However, causal relationships between these processes, and how genomic diversity modulates them remain systemically underexplored in mouse models. METHODS AD-vulnerable hippocampal neurons were virally labeled in inbred (C57BL/6J) and wild-derived (PWK/PhJ) APP/PS1 and wild-type mice, and brain microglia depleted from 4 to 8 months of age. Dendrites were assessed for synapse plasticity changes by evaluating spine densities and morphologies. RESULTS In C57BL/6J, microglia depletion blocked amyloid-induced synaptic density and morphology changes. At a finer scale, synaptic morphology on individual branches was dependent on microglia-dendrite physical interactions. Conversely, synapses from PWK/PhJ mice showed remarkable stability in response to amyloid, and no evidence of microglia contact-dependent changes on dendrites. DISCUSSION These results demonstrate that microglia-dependent synaptic alterations in specific AD-vulnerable projection pathways are differentially controlled by genetic context.
Collapse
Affiliation(s)
- Sarah E. Heuer
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
| | | | | | | | | | - Gareth R. Howell
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| | - Erik B. Bloss
- The Jackson LaboratoryBar HarborMaineUSA
- Graduate School of Biomedical SciencesTufts UniversityBostonMassachusettsUSA
- Graduate School of Biomedical Sciences and EngineeringUniversity of MaineOronoMaineUSA
| |
Collapse
|
8
|
Heuer SE, Keezer KJ, Hewes AA, Onos KD, Graham KC, Howell GR, Bloss EB. Genetic context controls early microglia-synaptic interactions in mouse models of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.28.538728. [PMID: 37162819 PMCID: PMC10168315 DOI: 10.1101/2023.04.28.538728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Common features of Alzheimer's disease (AD) include amyloid pathology, microglia activation and synaptic dysfunction, however, the causal relationships amongst them remains unclear. Further, human data suggest susceptibility and resilience to AD neuropathology is controlled by genetic context, a factor underexplored in mouse models. To this end, we leveraged viral strategies to label an AD-vulnerable neuronal circuit in CA1 dendrites projecting to the frontal cortex in genetically diverse C57BL/6J (B6) and PWK/PhJ (PWK) APP/PS1 mouse strains and used PLX5622 to non-invasively deplete brain microglia. Reconstructions of labeled neurons revealed microglia-dependent changes in dendritic spine density and morphology in B6 wild-type (WT) and APP/PS1 yet a marked stability of spines across PWK mice. We further showed that synaptic changes depend on direct microglia-dendrite interactions in B6. APP/PS1 but not PWK. APP/PS1 mice. Collectively, these results demonstrate that microglia-dependent synaptic alterations in a specific AD-vulnerable projection pathway are differentially controlled by genetic context.
Collapse
Affiliation(s)
- Sarah E. Heuer
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | | | | | | | | | - Gareth R. Howell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| | - Erik B. Bloss
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| |
Collapse
|
9
|
Gurdon B, Yates SC, Csucs G, Groeneboom NE, Hadad N, Telpoukhovskaia M, Ouellette A, Ouellette T, O'Connell K, Singh S, Murdy T, Merchant E, Bjerke I, Kleven H, Schlegel U, Leergaard TB, Puchades MA, Bjaalie JG, Kaczorowski CC. Detecting the effect of genetic diversity on brain composition in an Alzheimer's disease mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530226. [PMID: 36909528 PMCID: PMC10002670 DOI: 10.1101/2023.02.27.530226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Alzheimer's disease (AD) is characterized by neurodegeneration, pathology accumulation, and progressive cognitive decline. There is significant variation in age at onset and severity of symptoms highlighting the importance of genetic diversity in the study of AD. To address this, we analyzed cell and pathology composition of 6- and 14-month-old AD-BXD mouse brains using the semi-automated workflow (QUINT); which we expanded to allow for nonlinear refinement of brain atlas-registration, and quality control assessment of atlas-registration and brain section integrity. Near global age-related increases in microglia, astrocyte, and amyloid-beta accumulation were measured, while regional variation in neuron load existed among strains. Furthermore, hippocampal immunohistochemistry analyses were combined with bulk RNA-sequencing results to demonstrate the relationship between cell composition and gene expression. Overall, the additional functionality of the QUINT workflow delivers a highly effective method for registering and quantifying cell and pathology changes in diverse disease models.
Collapse
Affiliation(s)
- Brianna Gurdon
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Sharon C Yates
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gergely Csucs
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Nicolaas E Groeneboom
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | - Andrew Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
| | - Tionna Ouellette
- The Jackson Laboratory, Bar Harbor, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | - Kristen O'Connell
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| | | | - Tom Murdy
- The Jackson Laboratory, Bar Harbor, ME
| | | | - Ingvild Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME
- The University of Maine Graduate School of Biomedical Sciences and Engineering, Orono, ME
- Tufts University Graduate School of Biomedical Sciences, Medford, MA
| |
Collapse
|
10
|
Welikovitch LA, Dujardin S, Dunn AR, Fernandes AR, Khasnavis A, Chibnik LB, Kaczorowski CC, Hyman BT. Rate of tau propagation is a heritable disease trait in genetically diverse mouse strains. iScience 2023; 26:105983. [PMID: 36756365 PMCID: PMC9900390 DOI: 10.1016/j.isci.2023.105983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines. The extent of tau propagation was measured by distinguishing hTau-producing cells from neurons that were recipients of tau transfer. Heritability calculation revealed that 43% of the variability in tau spread was due to genetic variants segregating across background strains. Strain differences in glial markers were also observed, but did not correlate with tau propagation. Identifying unique genetic variants that influence the progression of pathological tau may uncover novel molecular targets to prevent or slow the pace of tau spread and cognitive decline.
Collapse
Affiliation(s)
- Lindsay A. Welikovitch
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lori B. Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
11
|
Neuner SM, Telpoukhovskaia M, Menon V, O'Connell KMS, Hohman TJ, Kaczorowski CC. Translational approaches to understanding resilience to Alzheimer's disease. Trends Neurosci 2022; 45:369-383. [PMID: 35307206 PMCID: PMC9035083 DOI: 10.1016/j.tins.2022.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 10/18/2022]
Abstract
Individuals who maintain cognitive function despite high levels of Alzheimer's disease (AD)-associated pathology are said to be 'resilient' to AD. Identifying mechanisms underlying resilience represents an exciting therapeutic opportunity. Human studies have identified a number of molecular and genetic factors associated with resilience, but the complexity of these cohorts prohibits a complete understanding of which factors are causal or simply correlated with resilience. Genetically and phenotypically diverse mouse models of AD provide new and translationally relevant opportunities to identify and prioritize new resilience mechanisms for further cross-species investigation. This review will discuss insights into resilience gained from both human and animal studies and highlight future approaches that may help translate these insights into therapeutics designed to prevent or delay AD-related dementia.
Collapse
Affiliation(s)
- Sarah M Neuner
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Kristen M S O'Connell
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University, School of Medicine, Graduate School of Biomedical Sciences, Boston, MA 02111, USA; The University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME 04469, USA
| | - Timothy J Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Catherine C Kaczorowski
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Tufts University, School of Medicine, Graduate School of Biomedical Sciences, Boston, MA 02111, USA; The University of Maine, Graduate School of Biomedical Science and Engineering, Orono, ME 04469, USA.
| |
Collapse
|
12
|
Lewandowski CT, Laham MS, Thatcher GR. Remembering your A, B, C's: Alzheimer's disease and ABCA1. Acta Pharm Sin B 2022; 12:995-1018. [PMID: 35530134 PMCID: PMC9072248 DOI: 10.1016/j.apsb.2022.01.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
The function of ATP binding cassette protein A1 (ABCA1) is central to cholesterol mobilization. Reduced ABCA1 expression or activity is implicated in Alzheimer's disease (AD) and other disorders. Therapeutic approaches to boost ABCA1 activity have yet to be translated successfully to the clinic. The risk factors for AD development and progression, including comorbid disorders such as type 2 diabetes and cardiovascular disease, highlight the intersection of cholesterol transport and inflammation. Upregulation of ABCA1 can positively impact APOE lipidation, insulin sensitivity, peripheral vascular and blood–brain barrier integrity, and anti-inflammatory signaling. Various strategies towards ABCA1-boosting compounds have been described, with a bias toward nuclear hormone receptor (NHR) agonists. These agonists display beneficial preclinical effects; however, important side effects have limited development. In particular, ligands that bind liver X receptor (LXR), the primary NHR that controls ABCA1 expression, have shown positive effects in AD mouse models; however, lipogenesis and unwanted increases in triglyceride production are often observed. The longstanding approach, focusing on LXRβ vs. LXRα selectivity, is over-simplistic and has failed. Novel approaches such as phenotypic screening may lead to small molecule NHR modulators that elevate ABCA1 function without inducing lipogenesis and are clinically translatable.
Collapse
|
13
|
Dietrich P, Alli S, Mulligan MK, Cox R, Ashbrook DG, Williams RW, Dragatsis I. Identification of cyclin D1 as a major modulator of 3-nitropropionic acid-induced striatal neurodegeneration. Neurobiol Dis 2022; 162:105581. [PMID: 34871739 PMCID: PMC8717869 DOI: 10.1016/j.nbd.2021.105581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.
Collapse
Affiliation(s)
- Paula Dietrich
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| | - Shanta Alli
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Rachel Cox
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,The University of Tennessee, Knoxville, TN 37996, USA
| | - David G. Ashbrook
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee, Health Science Center, Memphis, TN 38163, USA
| | - Ioannis Dragatsis
- Department of Physiology, The University of Tennessee, Health Science Center, Memphis, TN 38163, USA,Corresponding authors: ,
| |
Collapse
|
14
|
Magusali N, Graham AC, Piers TM, Panichnantakul P, Yaman U, Shoai M, Reynolds RH, Botia JA, Brookes KJ, Guetta-Baranes T, Bellou E, Bayram S, Sokolova D, Ryten M, Sala Frigerio C, Escott-Price V, Morgan K, Pocock JM, Hardy J, Salih DA. A genetic link between risk for Alzheimer's disease and severe COVID-19 outcomes via the OAS1 gene. Brain 2021; 144:3727-3741. [PMID: 34619763 PMCID: PMC8500089 DOI: 10.1093/brain/awab337] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 01/12/2023] Open
Abstract
Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.
Collapse
Affiliation(s)
- Naciye Magusali
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Andrew C Graham
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Thomas M Piers
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | | | - Umran Yaman
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Maryam Shoai
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Regina H Reynolds
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | - Juan A Botia
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- Department of Information and Communications Engineering, Universidad de Murcia, 30100 Murcia, Spain
| | - Keeley J Brookes
- Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG8 11NS, UK
| | - Tamar Guetta-Baranes
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eftychia Bellou
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Sevinc Bayram
- Hitachi Rail Europe Ltd, New Ludgate, London EC4M 7HX, UK
| | - Dimitra Sokolova
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| | - Mina Ryten
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, UCL, London WC1N 1EH, UK
- Great Ormond Street Institute of Child Health, Genetics and Genomic Medicine, UCL, London WC1N 1EH, UK
| | | | - Valentina Escott-Price
- Dementia Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff CF24 4HQ, UK
| | - Kevin Morgan
- Genetics, School of Life Sciences, Life Sciences Building, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Jennifer M Pocock
- Department of Neuroinflammation, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - John Hardy
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
- Department of Neurodegenerative Diseases, Queen Square Institute of Neurology, UCL, London WC1N 1PJ, UK
| | - Dervis A Salih
- UK Dementia Research Institute at UCL, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
15
|
Pursuit of precision medicine: Systems biology approaches in Alzheimer's disease mouse models. Neurobiol Dis 2021; 161:105558. [PMID: 34767943 PMCID: PMC10112395 DOI: 10.1016/j.nbd.2021.105558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is a complex disease that is mediated by numerous factors and manifests in various forms. A systems biology approach to studying AD involves analyses of various body systems, biological scales, environmental elements, and clinical outcomes to understand the genotype to phenotype relationship that potentially drives AD development. Currently, there are many research investigations probing how modifiable and nonmodifiable factors impact AD symptom presentation. This review specifically focuses on how imaging modalities can be integrated into systems biology approaches using model mouse populations to link brain level functional and structural changes to disease onset and progression. Combining imaging and omics data promotes the classification of AD into subtypes and paves the way for precision medicine solutions to prevent and treat AD.
Collapse
|
16
|
Preuss C, Pandey R, Piazza E, Fine A, Uyar A, Perumal T, Garceau D, Kotredes KP, Williams H, Mangravite LM, Lamb BT, Oblak AL, Howell GR, Sasner M, Logsdon BA, Carter GW. A novel systems biology approach to evaluate mouse models of late-onset Alzheimer's disease. Mol Neurodegener 2020; 15:67. [PMID: 33172468 PMCID: PMC7656729 DOI: 10.1186/s13024-020-00412-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Late-onset Alzheimer's disease (LOAD) is the most common form of dementia worldwide. To date, animal models of Alzheimer's have focused on rare familial mutations, due to a lack of frank neuropathology from models based on common disease genes. Recent multi-cohort studies of postmortem human brain transcriptomes have identified a set of 30 gene co-expression modules associated with LOAD, providing a molecular catalog of relevant endophenotypes. RESULTS This resource enables precise gene-based alignment between new animal models and human molecular signatures of disease. Here, we describe a new resource to efficiently screen mouse models for LOAD relevance. A new NanoString nCounter® Mouse AD panel was designed to correlate key human disease processes and pathways with mRNA from mouse brains. Analysis of the 5xFAD mouse, a widely used amyloid pathology model, and three mouse models based on LOAD genetics carrying APOE4 and TREM2*R47H alleles demonstrated overlaps with distinct human AD modules that, in turn, were functionally enriched in key disease-associated pathways. Comprehensive comparison with full transcriptome data from same-sample RNA-Seq showed strong correlation between gene expression changes independent of experimental platform. CONCLUSIONS Taken together, we show that the nCounter Mouse AD panel offers a rapid, cost-effective and highly reproducible approach to assess disease relevance of potential LOAD mouse models.
Collapse
Affiliation(s)
| | - Ravi Pandey
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Erin Piazza
- NanoString Technologies, Seattle, WA 98109 USA
| | | | - Asli Uyar
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | | | | | | | | | | | - Bruce T. Lamb
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Adrian L. Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | | | | | | - the MODEL-AD Consortium
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
- NanoString Technologies, Seattle, WA 98109 USA
- Sage Bionetworks, Seattle, WA 98121 USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | | |
Collapse
|