1
|
Locus Coeruleus in Non-Mammalian Vertebrates. Brain Sci 2022; 12:brainsci12020134. [PMID: 35203898 PMCID: PMC8870555 DOI: 10.3390/brainsci12020134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/08/2022] [Accepted: 01/15/2022] [Indexed: 11/30/2022] Open
Abstract
The locus coeruleus (LC) is a vertebrate-specific nucleus and the primary source of norepinephrine (NE) in the brain. This nucleus has conserved properties across species: highly homogeneous cell types, a small number of cells but extensive axonal projections, and potent influence on brain states. Comparative studies on LC benefit greatly from its homogeneity in cell types and modularity in projection patterns, and thoroughly understanding the LC-NE system could shed new light on the organization principles of other more complex modulatory systems. Although studies on LC are mainly focused on mammals, many of the fundamental properties and functions of LC are readily observable in other vertebrate models and could inform mammalian studies. Here, we summarize anatomical and functional studies of LC in non-mammalian vertebrate classes, fish, amphibians, reptiles, and birds, on topics including axonal projections, gene expressions, homeostatic control, and modulation of sensorimotor transformation. Thus, this review complements mammalian studies on the role of LC in the brain.
Collapse
|
2
|
Subregion-specific rules govern the distribution of neuronal immediate-early gene induction. Proc Natl Acad Sci U S A 2019; 117:23304-23310. [PMID: 31636216 DOI: 10.1073/pnas.1913658116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The induction of immediate-early gene (IEG) expression in brain nuclei in response to an experience is necessary for the formation of long-term memories. Additionally, the rapid dynamics of IEG induction and decay motivates the common use of IEG expression as markers for identification of neuronal assemblies ("ensembles") encoding recent experience. However, major gaps remain in understanding the rules governing the distribution of IEGs within neuronal assemblies. Thus, the extent of correlation between coexpressed IEGs, the cell specificity of IEG expression, and the spatial distribution of IEG expression have not been comprehensively studied. To address these gaps, we utilized quantitative multiplexed single-molecule fluorescence in situ hybridization (smFISH) and measured the expression of IEGs (Arc, Egr2, and Nr4a1) within spiny projection neurons (SPNs) in the dorsal striatum of mice following acute exposure to cocaine. Exploring the relevance of our observations to other brain structures and stimuli, we also analyzed data from a study of single-cell RNA sequencing of mouse cortical neurons. We found that while IEG expression is graded, the expression of multiple IEGs is tightly correlated at the level of individual neurons. Interestingly, we observed that region-specific rules govern the induction of IEGs in SPN subtypes within striatal subdomains. We further observed that IEG-expressing assemblies form spatially defined clusters within which the extent of IEG expression correlates with cluster size. Together, our results suggest the existence of IEG-expressing neuronal "superensembles," which are associated in spatial clusters and characterized by coherent and robust expression of multiple IEGs.
Collapse
|
3
|
Smulders TV, Jarvis ED. Different mechanisms are responsible for dishabituation of electrophysiological auditory responses to a change in acoustic identity than to a change in stimulus location. Neurobiol Learn Mem 2013; 106:163-76. [PMID: 23999220 PMCID: PMC3986339 DOI: 10.1016/j.nlm.2013.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/09/2013] [Accepted: 08/22/2013] [Indexed: 01/03/2023]
Abstract
Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli.
Collapse
Affiliation(s)
- Tom V Smulders
- Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA; Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
| | | |
Collapse
|
4
|
Remage-Healey L, Dong SM, Chao A, Schlinger BA. Sex-specific, rapid neuroestrogen fluctuations and neurophysiological actions in the songbird auditory forebrain. J Neurophysiol 2011; 107:1621-31. [PMID: 22190616 DOI: 10.1152/jn.00749.2011] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recent evidence shows that brain-derived steroids such as estrogens ("neuroestrogens") are controlled in a manner very similar to traditional neurotransmitters. The advent of in vivo microdialysis for steroids in songbirds has provided new information about the spatial and temporal dynamics of neuroestrogen changes in a region of the auditory cortex, the caudomedial nidopallium (NCM). Here, experiments using in vivo microdialysis demonstrate that neuroestradiol (E(2)) fluctuations occur within the auditory NCM during presentation of naturalistic auditory and visual stimuli in males but only to the presentation of auditory stimuli in females. These changes are acute (within 30 min) and appear to be specific to the NCM, because similar treatments elicit no changes in E(2) in a nearby mesopallial region or in circulating plasma. Further experiments coupling in vivo steroid microdialysis with extracellular recordings in NCM show that neuroestrogens rapidly boost auditory responses to song stimuli in females, similar to recent observations in males. We also find that the rapid actions of estradiol on auditory responses are fully mimicked by the cell membrane-impermeable estrogen biotinylestradiol, consistent with acute estrogen actions at the neuronal membrane. Thus we conclude that local and acute E(2) flux is regulated by convergent multimodal sensory input, and that this regulation appears to be sex-specific. Second, rapid changes in local E(2) levels in NCM have consequences for the modulation of auditory processing in females and males. Finally, the rapid actions of neuroestrogens on NCM auditory processing appear to be mediated by a nonclassical, membrane-bound estrogen receptor.
Collapse
Affiliation(s)
- L Remage-Healey
- Neuroscience and Behavior Program, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
5
|
Maney DL, Pinaud R, Pinaud R. Estradiol-dependent modulation of auditory processing and selectivity in songbirds. Front Neuroendocrinol 2011; 32:287-302. [PMID: 21146556 PMCID: PMC3119742 DOI: 10.1016/j.yfrne.2010.12.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/26/2010] [Accepted: 12/02/2010] [Indexed: 10/18/2022]
Abstract
The steroid hormone estradiol plays an important role in reproductive development and behavior and modulates a wide array of physiological and cognitive processes. Recently, reports from several research groups have converged to show that estradiol also powerfully modulates sensory processing, specifically, the physiology of central auditory circuits in songbirds. These investigators have discovered that (1) behaviorally-relevant auditory experience rapidly increases estradiol levels in the auditory forebrain; (2) estradiol instantaneously enhances the responsiveness and coding efficiency of auditory neurons; (3) these changes are mediated by a non-genomic effect of brain-generated estradiol on the strength of inhibitory neurotransmission; and (4) estradiol regulates biochemical cascades that induce the expression of genes involved in synaptic plasticity. Together, these findings have established estradiol as a central regulator of auditory function and intensified the need to consider brain-based mechanisms, in addition to peripheral organ dysfunction, in hearing pathologies associated with estrogen deficiency.
Collapse
Affiliation(s)
- Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | | |
Collapse
|
6
|
Matragrano LL, Sanford SE, Salvante KG, Sockman KW, Maney DL. Estradiol-dependent catecholaminergic innervation of auditory areas in a seasonally breeding songbird. Eur J Neurosci 2011; 34:416-25. [PMID: 21714815 DOI: 10.1111/j.1460-9568.2011.07751.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found that evidence of interhemispheric differences, both in immunoreactivity and catecholamine content that did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhanced catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.
Collapse
Affiliation(s)
- Lisa L Matragrano
- Department of Psychology, Emory University, 26 Eagle Row, Atlanta, GA, USA.
| | | | | | | | | |
Collapse
|
7
|
Castelino CB, Schmidt MF. What birdsong can teach us about the central noradrenergic system. J Chem Neuroanat 2009; 39:96-111. [PMID: 19686836 DOI: 10.1016/j.jchemneu.2009.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/31/2009] [Accepted: 08/04/2009] [Indexed: 01/23/2023]
Abstract
Increasing evidence indicates that the noradrenergic system plays a key role in biasing the nervous system towards producing behaviors that help animals adapt to constantly changing environments. Most of the studies investigating noradrenergic function are performed in animals that have a limited repertoire of tractable natural behaviors. Songbirds, in contrast, with their rich set of precisely quantifiable vocal behaviors, provide a unique model system to study the noradrenergic system. An additional advantage of this system is the existence of a well-defined neural circuit, known as the song system, that is necessary for the production, learning and perception of song and can be studied at many different levels. These include the ability to investigate the effect of norepinephrine on synaptic function using brain slices, identifying its influence on singing-related gene expression and monitoring its impact on the activity of single neurons recorded in awake behaving birds. In this review article, we describe the similarities and differences, both anatomical and functional, between the avian and mammalian noradrenergic system and its role in sensory processing, learning, attention and synaptic modulation. We also describe how the noradrenergic system influences motor production, an under-explored aspect of norepinephrine function in mammalian studies. We argue that the richness of behaviors observed in songbirds provides a unique opportunity to study the noradrenergic system in a highly integrative manner that will ultimately provide important insights into the role of this system in normal behavior and disease.
Collapse
Affiliation(s)
- Christina B Castelino
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
8
|
Treplin S, Siegert R, Bleidorn C, Thompson HS, Fotso R, Tiedemann R. Molecular phylogeny of songbirds (Aves: Passeriformes) and the relative utility of common nuclear marker loci. Cladistics 2008. [DOI: 10.1111/j.1096-0031.2007.00178.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
9
|
Boumans T, Vignal C, Smolders A, Sijbers J, Verhoye M, Van Audekerke J, Mathevon N, Van der Linden A. Functional Magnetic Resonance Imaging in Zebra Finch Discerns the Neural Substrate Involved in Segregation of Conspecific Song From Background Noise. J Neurophysiol 2008; 99:931-8. [PMID: 17881485 DOI: 10.1152/jn.00483.2007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, fMRI was introduced in a well-documented animal model for vocal learning, the songbird. Using fMRI and conspecific signals mixed with different levels of broadband noise, we now demonstrate auditory-induced activation representing discriminatory properties of auditory forebrain regions in anesthetized male zebra finches ( Taeniopygia guttata). Earlier behavioral tests showed comparable calling responses to the original conspecific song stimulus heard outside and inside the magnet. A significant fMRI response was elicited by conspecific song in the primary auditory thalamo-recipient subfield L2a; in neighboring subareas L2b, L3, and L; and in the rostral part of the higher-order auditory area NCM (caudomedial nidopallium). Temporal BOLD response clustering revealed rostral and caudal clusters that we defined as “cluster Field L” and “cluster NCM”, respectively. However, because the actual border between caudal Field L subregions and NCM cannot be seen in the structural MR image and is not precisely reported elsewhere, the cluster NCM might also contain subregion L and the medial extremes of the subregions L2b and L3. Our results show that whereas in cluster Field L the response was not reduced by added noise, in cluster NCM the response was reduced and finally disappeared with increasing levels of noise added to the song stimulus. The activation in cluster NCM was significant for only two experimental stimuli that showed significantly more behavioral responses than the more degraded stimuli, suggesting that the first area within the auditory system where the ability to discern song from masking noise emerges is located in cluster NCM.
Collapse
Affiliation(s)
- Tiny Boumans
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zokoll MA, Naue N, Herrmann CS, Langemann U. Auditory memory: a comparison between humans and starlings. Brain Res 2008; 1220:33-46. [PMID: 18291352 DOI: 10.1016/j.brainres.2008.01.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 01/03/2008] [Accepted: 01/07/2008] [Indexed: 11/26/2022]
Abstract
In this study, we compare the processing of acoustic signals in European starlings (Sturnus vulgaris) and in human listeners by observing the decay of short-term auditory memory in delayed non-matching-to-sample experiments. A series of identical "sample" stimuli and a final "test" stimulus were separated by variable delays (1 to 180.1 s). Subjects had to classify sample and test stimuli as being either the same or different. Test stimuli were pure tones that differed in a single signal feature, i.e., frequency, and song motifs that differed in multiple signal characteristics. We have tested several predictions concerning the memory performance of starlings and humans and we obtained the following outcome: (1) In contrast to our expectation, signal complexity had no effect. The overall analysis of the starling data did not show differences in memory performance for signals differing in single or multiple signal features. (2) Starling and human data supported the hypothesis that auditory memory impairs with increasing delay. This was also seen when interfering noise was added to the delay periods in an additional series with human subjects. (3) The starling data showed that the repetition of sample stimuli improved memory performance, compared to only a single presentation. Human memory performance, however, was similar for a single and for the repeated presentation of signals. (4) Differences in salience between sample and test stimuli were positively related to memory performance only for tonal stimuli but not for song motifs. Results are discussed with respect to a model based on signal detection theory and to requirements for the analysis of natural communication signals.
Collapse
Affiliation(s)
- Melanie A Zokoll
- Zoophysiology and Behaviour Group, Institute for Biology and Environmental Science, Carl von Ossietzky University Oldenburg, Germany
| | | | | | | |
Collapse
|
11
|
Sockman KW, Salvante KG. The integration of song environment by catecholaminergic systems innervating the auditory telencephalon of adult female European starlings. Dev Neurobiol 2008; 68:656-68. [DOI: 10.1002/dneu.20611] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
12
|
Boumans T, Theunissen FE, Poirier C, Van Der Linden A. Neural representation of spectral and temporal features of song in the auditory forebrain of zebra finches as revealed by functional MRI. Eur J Neurosci 2007; 26:2613-26. [PMID: 17970728 PMCID: PMC2228391 DOI: 10.1111/j.1460-9568.2007.05865.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Song perception in songbirds, just as music and speech perception in humans, requires processing the spectral and temporal structure found in the succession of song-syllables. Using functional magnetic resonance imaging and synthetic songs that preserved exclusively either the temporal or the spectral structure of natural song, we investigated how vocalizations are processed in the avian forebrain. We found bilateral and equal activation of the primary auditory region, field L. The more ventral regions of field L showed depressed responses to the synthetic songs that lacked spectral structure. These ventral regions included subarea L3, medial-ventral subarea L and potentially the secondary auditory region caudal medial nidopallium. In addition, field L as a whole showed unexpected increased responses to the temporally filtered songs and this increase was the largest in the dorsal regions. These dorsal regions included L1 and the dorsal subareas L and L2b. Therefore, the ventral region of field L appears to be more sensitive to the preservation of both spectral and temporal information in the context of song processing. We did not find any differences in responses to playback of the bird's own song vs other familiar conspecific songs. We also investigated the effect of three commonly used anaesthetics on the blood oxygen level-dependent response: medetomidine, urethane and isoflurane. The extent of the area activated and the stimulus selectivity depended on the type of anaesthetic. We discuss these results in the context of what is known about the locus of action of the anaesthetics, and reports of neural activity measured in electrophysiological experiments.
Collapse
Affiliation(s)
- Tiny Boumans
- Bio-Imaging Laboratory, University of Antwerp, Belgium
| | | | | | | |
Collapse
|
13
|
Li J, Zeng SJ, Zhang XW, Zuo MX. The distribution of substance P and met-enkephalin in vocal control nuclei among oscine species and its relation to song complexity. Behav Brain Res 2006; 172:202-11. [PMID: 16806516 DOI: 10.1016/j.bbr.2006.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 04/14/2006] [Accepted: 04/21/2006] [Indexed: 10/24/2022]
Abstract
Substance P (SP) and methionine-enkephalin (ENK) have been reported to appear in song control nuclei of oscine species. However, it remains unknown whether or not SP and ENK location in song control nuclei is correlated with song behavior. To address this issue, the present study first measured two variables for song complexity, i.e., song repertoire sizes, and syllable repertoire sizes in 11 oscine species. Then, we examined the distribution of SP and ENK in four control nuclei, two in the motor pathway, i.e., HVC and the robust nucleus of arcopallium (RA), and the other two in the forebrain pathway, i.e., Area X and the lateral magnocellular nucleus of the anterior nidopallium (LMAN). Finally, we measured the relative amounts of immunoreactivity for SP and ENK in song control nuclei, and tested whether they were correlated with song complexity. Our results showed that: (1) SP and ENK were broadly distributed in the song control nuclei of studied species. However, SP immunohistochemistry was more robust in comparison with ENK, and SP is generally more abundant in the two song learning nuclei than those in the two song producing ones; (2) SP and ENK staining patterns in song control nuclei did not show any obvious phylogenetic relationship among studied oscine species; (3) there was a significant correlation between the relative amounts of immunoreactivity for SP and the song and syllable repertoire sizes. Our results suggest that SP or ENK might be involved in song behavior, such as birdsong learning or memory.
Collapse
Affiliation(s)
- Jia Li
- College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | | | | | | |
Collapse
|
14
|
A Neuroethological Approach to Song Behavior and Perception in European Starlings: Interrelationships Among Testosterone, Neuroanatomy, Immediate Early Gene Expression, and Immune Function. ADVANCES IN THE STUDY OF BEHAVIOR 2006. [DOI: 10.1016/s0065-3454(06)36002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
15
|
Cheng HY, Clayton DF. Activation and habituation of extracellular signal-regulated kinase phosphorylation in zebra finch auditory forebrain during song presentation. J Neurosci 2005; 24:7503-13. [PMID: 15329397 PMCID: PMC6729643 DOI: 10.1523/jneurosci.1405-04.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The sound of tape-recorded birdsong triggers a set of behavioral and physiological responses in zebra finches, including transcriptional activation of the zenk gene in the auditory forebrain. Song repetition leads to the stimulus-specific habituation of these responses. To gain insight into the mechanisms that couple auditory experience to gene regulation, we monitored the phosphorylation of the zebra finch extracellular signal-regulated kinase (ERK) protein by immunoblotting. Initial presentations of novel song (but not tones or noise) resulted in a rapid increase in ERK phosphorylation, followed by a return to basal levels within 5 min. This response was localized to the auditory forebrain where the zenk gene is activated. Sustained repetition of one song caused a selective habituation of the ERK response: a different song triggered another cycle of ERK phosphorylation without altering the habituated response to the first. To test directly for a role of ERK in experience-dependent zenk gene regulation, we infused an inhibitor of mitogen-activated and extracellular-regulated protein kinase kinase (MEK-1; the enzyme responsible for ERK activation) unilaterally into one auditory lobule just before song stimulation. The song-induced increase in zenk mRNA was blocked on the side of the injection, but not on the contralateral (uninfused) side. These results show that ERK phosphorylation is necessary for the initiation of the zenk gene response to novel song and identify ERK as a plausible site of signal integration underlying the selective habituation of genomic responses to a repeated song.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Department of Cell and Structural Biology and Beckman Institute, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
16
|
Appeltants D, Ball GF, Balthazart J. Catecholaminergic inputs to aromatase cells in the canary auditory forebrain. Neuroreport 2004; 15:1727-30. [PMID: 15257136 DOI: 10.1097/01.wnr.0000135920.75925.1e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The caudomedial nidopallium in songbirds is a specialized forebrain auditory region involved in the processing of species-typical vocalizations. It receives a prominent catecholaminergic projection with many fibers forming basket-like structures around non-immunoreactive cells. We investigated in male canaries the anatomical relationship between tyrosine hydroxylase and cells immunoreactive for the steroid metabolizing enzyme, aromatase, in the caudomedial nidopallium using double-label immunocytochemistry. Fibers immunoreactive for tyrosine hydroxylase established numerous close contacts with aromatase-immunoreactive cells and often encircled these cells to form basket-like structures. Aromatase containing cells in the caudomedial nidopallium are therefore a major target of catecholaminergic inputs in canary. Interactions between catecholaminergic systems and aromatase in the caudomedial nidopallium may provide one mechanism for the regulation of estrogens involved in song perception and memorization.
Collapse
Affiliation(s)
- Didier Appeltants
- University of Liège, Center for Cellular and Molecular Neurobiology, Research Group in Behavioral Neuroendocrinology, 17 place Delcour, B-4020 Liège, Belgium
| | | | | |
Collapse
|
17
|
WADA KAZUHIRO, SAKAGUCHI HIRONOBU, JARVIS ERICHD, HAGIWARA MASATOSHI. Differential expression of glutamate receptors in avian neural pathways for learned vocalization. J Comp Neurol 2004; 476:44-64. [PMID: 15236466 PMCID: PMC2517240 DOI: 10.1002/cne.20201] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Learned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds-parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas.
Collapse
MESH Headings
- Alternative Splicing/genetics
- Animals
- Birds/anatomy & histology
- Birds/growth & development
- Birds/metabolism
- Brain/cytology
- Brain/growth & development
- Brain/metabolism
- Cell Differentiation/genetics
- Gene Expression Regulation, Developmental/genetics
- Learning/physiology
- Male
- Neural Pathways/cytology
- Neural Pathways/growth & development
- Neural Pathways/metabolism
- Neuronal Plasticity/genetics
- Parrots/anatomy & histology
- Parrots/growth & development
- Parrots/metabolism
- Phylogeny
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Receptors, AMPA/genetics
- Receptors, AMPA/metabolism
- Receptors, Glutamate/metabolism
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/metabolism
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Receptors, N-Methyl-D-Aspartate/genetics
- Receptors, N-Methyl-D-Aspartate/metabolism
- Songbirds/anatomy & histology
- Songbirds/growth & development
- Songbirds/metabolism
- Synaptic Transmission/genetics
- Telencephalon/cytology
- Telencephalon/growth & development
- Telencephalon/metabolism
- Vocalization, Animal/physiology
Collapse
Affiliation(s)
- KAZUHIRO WADA
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
- Correspondence to: Erich D. Jarvis and/or Kazuhiro Wada Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710. E-mail: and/or
| | - HIRONOBU SAKAGUCHI
- Department of Physiology, Dokkyou University, School of Medicine, Mibu, Tochigi 321-0293, Japan
| | - ERICH D. JARVIS
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710
- Correspondence to: Erich D. Jarvis and/or Kazuhiro Wada Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710. E-mail: and/or
| | - MASATOSHI HAGIWARA
- Department of Functional Genomics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8519, Japan
| |
Collapse
|
18
|
Pinaud R, Velho TAF, Jeong JK, Tremere LA, Leão RM, von Gersdorff H, Mello CV. GABAergic neurons participate in the brain's response to birdsong auditory stimulation. Eur J Neurosci 2004; 20:1318-30. [PMID: 15341603 DOI: 10.1111/j.1460-9568.2004.03585.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Birdsong is a learned vocal behaviour that requires intact hearing for its development in juveniles and for its maintenance during adulthood. However, the functional organization of the brain circuits involved in the perceptual processing of song has remained obscure. Here we provide evidence that GABAergic mechanisms are an important component of these circuits and participate in the auditory processing of birdsong. We first cloned a zebra finch homologue of the gene encoding the 65-kDa isoform of glutamic acid decarboxylase (zGAD-65), a specific GABAergic marker, and conducted an expression analysis by in situ hybridization to identify GABAergic cells and to map their distribution throughout auditory telencephalic areas. The results showed that field L2, the caudomedial nidopallium (NCM) and the caudomedial mesopallium (CMM) contain a high number of GABAergic cells. Using patch-clamp brain slice recordings, we found abundant GABAergic mIPSCs in NCM. Pharmacological antagonism of mIPSCs induced large EPSC bursts, suggesting that tonic inhibition helps to stabilize NCM against runaway excitation via activation of GABA-A receptors. Next, using double fluorescence in situ hybridization and double immunocytochemical labelling, we demonstrated that large numbers of GABAergic cells in NCM and CMM show inducible expression of the transcriptional regulator ZENK in response to song auditory stimulation. These data provide direct evidence that GABAergic neurons in auditory brain regions are activated by song stimulation. Altogether, our results suggest that GABAergic mechanisms participate in auditory processing and perception, and might contribute to the memorization of birdsong.
Collapse
Affiliation(s)
- Raphael Pinaud
- Neurological Sciences Institute, Oregon Health & Science University, Portland 94006, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
The biology of songbirds poses fundamental questions about the interplay between gene, brain, and behavior. New tools of genomic analysis will be invaluable in pursuing answers to these questions. This review begins with a summary of the broad properties of the songbird genome and how songbird brain gene expression has been measured in past studies. Four key problems in songbird biology are then considered from a genomics perspective: What role does differential gene expression play in the development, maintenance, and functional organization of the song control circuit? Does gene regulation set boundaries on the process of juvenile song learning? What is the purpose of song-induced gene activity in the adult brain? How does the genome underlie the profound sexual differentiation of the song control circuit? Finally, the range of genomic technologies currently or soon to be available to songbird researchers is briefly reviewed. These technologies include online databases of expressed genes ("expressed sequence tags" or ESTs); a complete library of the zebra finch genome maintained as a bacterial artificial chromosome (BAC) library; DNA microarrays for simultaneous measurement of many genes in a single experiment; and techniques for gene manipulation in the organism. Collectively, these questions and techniques define the field of songbird neurogenomics.
Collapse
Affiliation(s)
- David F Clayton
- Cell & Structural Biology, Neuroscience and Bioengineering, Beckman Institute, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Chubb AL. Nuclear corroboration of DNA-DNA hybridization in deep phylogenies of hummingbirds, swifts, and passerines: the phylogenetic utility of ZENK (ii). Mol Phylogenet Evol 2004; 30:128-39. [PMID: 15022764 DOI: 10.1016/s1055-7903(03)00160-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper documents the phylogenetic utility of ZENK at the avian intra-ordinal level using hummingbirds, swifts, and passerines as case studies. ZENK sequences (1.7 kb) were used to reconstruct separate gene trees containing the major lineages of each group, and the three trees were examined for congruence with existing DNA-DNA hybridization trees. The results indicate both that ZENK is an appropriate nuclear marker for resolving relationships deep in the avian tree, and that many relationships within these three particular groups are congruent among the different datasets. Specifically, within hummingbirds there was topological agreement that the major hummingbird lineages diverged in a graded manner from the "hermits," to the "mangoes," to the "coquettes," to the "emeralds," and finally to a sister relationship between the "mountain-gems" and the "bees." Concerning swifts, the deepest divergences were congruent: treeswifts (Hemiprocnidae) were sister to the typical swifts (Apodidae), and the subfamily Apodinae was monophyletic relative to Cypseloidinae. Within Apodinae, however, were short, unresolved branches among the swiftlets, spinetails, and more typical swifts; a finding which coincides with other datasets. Within passerine birds, there was congruent support for monophyly of sub-oscines and oscines, and within sub-oscines, for monophyly of New World groups relative to the Old World lineages. New World sub-oscines split into superfamilies Furnaroidea and Tyrannoidea, with the Tyrannoid relationships completely congruent among ZENK and DNA-DNA hybridization trees. Within Furnaroidea, however, there was some incongruence regarding the positions of Thamnophilidae and Formicariidae. Concerning oscine passerines, both datasets showed a split between Corvida and Passerida and confirmed the traditional membership of passerid superfamilies Muscicapoidea and Passeroidea. Monophyly of Sylvioidea, however, remained uncertain, as did the relationships among the superfamiles themselves. These results are strikingly similar to other recent findings and indicative of continuing uncertainty about the higher level relationships of oscine passerines.
Collapse
Affiliation(s)
- Alison L Chubb
- Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
21
|
Chubb AL. New nuclear evidence for the oldest divergence among neognath birds: the phylogenetic utility of ZENK (i). Mol Phylogenet Evol 2004; 30:140-51. [PMID: 15022765 DOI: 10.1016/s1055-7903(03)00159-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
To date, there is little consensus concerning the phylogenetic relationships among neognath orders, which include all extant birds except ratites and tinamous. Different data sets, both molecular and morphologic, have yielded radically different and often unresolved ordinal topologies, especially within the neoaves clade. This lack of resolution and ongoing conflict indicates a need for additional phylogenetic characters to be applied to the question of higher-level avian phylogeny. In this study, sequences of a single-copy nuclear gene, ZENK, were used to reconstruct an ordinal-level phylogeny of neognath birds. Strong support was indicated for the oldest divergence within Neognathae; the chicken- and duck-like birds formed a clade that was sister to all other modern birds. In addition, many families of traditional taxonomic orders clustered together in the ZENK tree, indicating the gene's general phylogenetic reliability. However, within the neoaves clade, there was little support for relationships among orders, which is a result similar to all other recent molecular studies of higher-level avian phylogeny. This similarity among studies suggests the possibility of a rapid radiation of the major neoaves lineages. Despite the ongoing lack of neoaves resolution, ZENK's sequence divergence and base composition patterns indicate its general utility as a new phylogenetic marker for higher-level avian systematics.
Collapse
Affiliation(s)
- Alison L Chubb
- Museum of Vertebrate Zoology, University of California, 3101 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| |
Collapse
|
22
|
Whitney O, Soderstrom K, Johnson F. CB1 cannabinoid receptor activation inhibits a neural correlate of song recognition in an auditory/perceptual region of the zebra finch telencephalon. JOURNAL OF NEUROBIOLOGY 2003; 56:266-74. [PMID: 12884265 PMCID: PMC4264579 DOI: 10.1002/neu.10233] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A notable consequence of CB1 cannabinoid receptor activation in vertebrates is an impairment of cognitive function related to learning and short-term memory. The mechanisms of this impairment remain unclear, but one possibility is that cannabinoids influence encoding of stimuli at sensory and/or perceptual levels. Here, by treating zebra finches with the cannabinoid agonist WIN55212-2 and then measuring expression of the transcription factor zenk following presentation of novel zebra finch song, we show that cannabinoid receptor activation differentially influences zenk expression in sensory versus perceptual regions of the songbird auditory telencephalon. That is, WIN55212-2 dose-dependently inhibited zenk expression in a region for auditory perception (NCM, the caudomedial neostriatum), but had no effect on zenk expression in the primary auditory area, the Field L complex. The inhibitory effects of WIN55212-2 on zenk expression in NCM were reversed by coadministration of the CB1-selective antagonist SR141716A. Moreover, we found that the habituation of the NCM zenk response to repeated presentation of the same song, a well-established neural correlate of song recognition, was blocked when birds were treated with WIN55212-2 during habituation trials. Our data suggest that activation of CB1 cannabinoid receptors can selectively influence perceptual and mnemonic aspects of auditory experience.
Collapse
Affiliation(s)
- Osceola Whitney
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-1270, USA.
| | | | | |
Collapse
|
23
|
Stripling R, Milewski L, Kruse AA, Clayton DF. Rapidly learned song-discrimination without behavioral reinforcement in adult male zebra finches (Taeniopygia guttata). Neurobiol Learn Mem 2003; 79:41-50. [PMID: 12482678 DOI: 10.1016/s1074-7427(02)00005-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Zebra finches communicate via several distinct vocalizations, of which song is the most studied. Behavioral observations indicate that adults are able to discriminate among the songs of different conspecific individuals. In the wild, zebra finches live in structured but mobile colonies, and encounter new individuals on a frequent basis. Thus it seems plausible that adult finches might have the capacity to recognize and remember new songs they encounter on a single day, but this has never been directly tested. Here we devised a simple observational assay to determine whether adult male zebra finches show recognition of a song they have heard repeatedly from taped playbacks, over a single three hour period the day before. We quantified the rate of production of six discrete behaviors (short calls, contact calls, singing, short hops, long hops, and beak swipes) made by adult male zebra finches as they listened to the playbacks. At the onset of song playback, all birds suspended these behaviors and sat silently-occasionally moving their heads. Then, after a measurable period ("response latency"), the birds resumed these activities. We observed that the response latency was long (approximately 10 min) when birds were hearing a particular song for the first time. The response latency was much shorter (approximately 1-2 min) when the birds had heard the same song the day before. Thus, functional song memories must result from as little as 3 h of passive song-exposure. These results suggest that ongoing song learning may play a natural role in the daily life of adult zebra finches, and provide a behavioral reference point for studies of molecular and physiological plasticity in the adult auditory system.
Collapse
Affiliation(s)
- Roy Stripling
- Beckman Institute, University of Illinois, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
24
|
Pinaud R, Tremere LA, Penner MR, Hess FF, Robertson HA, Currie RW. Complexity of sensory environment drives the expression of candidate-plasticity gene, nerve growth factor induced-A. Neuroscience 2002; 112:573-82. [PMID: 12074899 DOI: 10.1016/s0306-4522(02)00094-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of animals to an enriched environment triggers widespread modifications in brain circuitry and function. While this paradigm leads to marked plasticity in animals chronically or acutely exposed to the enriched environment, the molecular mechanisms that enable or regulate such modifications require further characterization. To this end, we have investigated the expression profiles of both mRNA and protein products of a candidate-plasticity gene, nerve growth factor induced-A (NGFI-A), in the brains of rats exposed to increased environmental complexity. We found that NGFI-A mRNA is markedly up-regulated throughout the brains of animals exposed to the enriched environment, but not in the brains of either handled-only or undisturbed control groups. The most pronounced effects were observed in the somatosensory and visual cortices, in layers III and V, while more modest increases were observed in all other cortical layers, with the exception of layer I. A striking NGFI-A mRNA up-regulation was also observed in the striatum and hippocampal formation, notably in the CA1 subfield, of animals exposed to the enriched environment paradigm. Immunocytochemistry was also used to investigate the distribution of NGFI-A protein in response to the environmental enrichment protocol. A marked increase in the number of NGFI-A positive nuclei was identified in the enriched environment condition, as compared to undisturbed and handled-only controls, throughout the rat brain. While the greatest number of NGFI-A immunolabeled neurons was found in cortical layers III and V, up-regulation of NGFI-A protein was also detectable in layers II, IV and VI, in both the somatosensory and visual cortices. NGFI-A immunopositive neurons were also more numerous in the CA1 subfield of the hippocampal formation of animals exposed to the enriched environment, but remained at basal levels in both control groups. Our results implicate NGFI-A as one of the possible early genetic signals that ultimately lead to plastic changes in the CNS.
Collapse
Affiliation(s)
- R Pinaud
- Laboratory of Molecular Neurobiology, Department of Anatomy and Neurobiology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kraus M, Schicknick H, Wetzel W, Ohl F, Staak S, Tischmeyer W. Memory consolidation for the discrimination of frequency-modulated tones in mongolian gerbils is sensitive to protein-synthesis inhibitors applied to the auditory cortex. Learn Mem 2002; 9:293-303. [PMID: 12359838 PMCID: PMC187117 DOI: 10.1101/lm.47502] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Differential conditioning of Mongolian gerbils to linearly frequency-modulated tones (FM) has recently received experimental attention. In the study of the role of cerebral protein synthesis for FM discrimination memory, gerbils received post-training bilateral injections of anisomycin into the auditory cortex under light halothane anesthesia. Compared with saline-treated controls, anisomycin-treated gerbils showed a discrimination decrement during the subsequent three days of training. They markedly improved their performance within training sessions, but started each session at low levels. When repeatedly trained gerbils received post-session injections of anisomycin, discrimination performance during subsequent sessions was similar to the pre-injection performance, indicating that retention, retrieval, reconsolidation, and expression of the established reaction were not affected. However, the improvement of a partially established discrimination reaction was impaired after this treatment. Intracortical injections of emetine confirmed this finding. Neither drug affected FM discrimination learning when given several days before the initial training. Our results suggest that protein-synthesis inhibitors applied to the auditory cortex of gerbils during the post-acquisition phase interfered with learning and memory-related aspects of FM processing. The resulting deficit was evident for a number of post-injection training days. This effect was probably due to impaired consolidation, i.e., processes required for long-term stabilization or retrieval of the memory trace while leaving short-term memory intact.
Collapse
Affiliation(s)
- Michaela Kraus
- Leibniz Institute for Neurobiology, D-39008 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268. J Neurosci 2002. [PMID: 11739581 DOI: 10.1523/jneurosci.21-24-09724.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuronal activity elicits a rapid increase in the expression of several immediate early genes (IEGs). To clarify a role for IEG response in activity-dependent development, we examined the contribution of the egr1/zif268 gene during visual cortical processing and plasticity in mice. We first analyzed the expression of egr1 mRNA in wild-type (WT) mice using Northern blot hybridization. In the visual cortex, expression of egr1 mRNA increased dramatically after eye opening, systemic injection of kainate, or 30 min of photostimulation after a brief (5 d) period of dark adaptation. Thus, the expression of egr1 is regulated by synaptic activity in the mouse visual cortex, as it is in other species (e.g., monkeys, cats, and rats). To evaluate whether this transcription factor is directly involved in activity-dependent plasticity, mice lacking Egr1 were deprived of the use of one eye during the developmental critical period [postnatal day 24 (P24)-P34]. Extracellular in vivo single-unit recordings from the binocular zone of the visual cortex revealed that visual responses developed normally in egr1 knock-out (KO) mice. Moreover, a similarly significant shift of responsiveness in favor of the open eye was produced in both KO and WT mice by either brief (4 d) or long-term (>2 weeks) occlusion of one eye. There was no apparent compensation among egr2, egr3, or c-fos mRNA and protein expression in the visual cortex of egr1 KO mice. Taken together, these results indicate that egr1 is a useful marker of sensory input in mice but is not intrinsically necessary for the experience-dependent plasticity of the visual cortex. Our findings underscore a mechanistic distinction between sensory plasticity and long-lasting forms of synaptic potentiation in the hippocampus, for which egr1/zif268 was recently found to be essential.
Collapse
|
27
|
Chapter IV Immediate-early gene (IEG) expression mapping of vocal communication areas in the avian brain. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|