1
|
Gyetvai BM, Vadasz C. Pleiotropic Effects of Grm7/ GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules 2025; 15:392. [PMID: 40149928 PMCID: PMC11940234 DOI: 10.3390/biom15030392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/29/2025] Open
Abstract
Natural gene variants of metabotropic glutamate receptor subtype 7 (Grm7), coding for mGluR7, affect individuals' alcohol-drinking preference. Psychopharmacological investigations have suggested that mGluR7 is also involved in responses to cocaine, morphine, and nicotine exposures. We review the pleiotropic effects of Grm7 and the principle of recombinant quantitative trait locus introgression (RQI), which led to the discovery of the first mammalian quantitative gene accounting for alcohol-drinking preference. Grm7/GRM7 can play important roles in mammalian ontogenesis, brain development, and predisposition to addiction. It is also involved in other behavioral phenotypes, including emotion, stress, motivated cognition, defensive behavior, and pain-related symptoms. This review identified pleiotropy and the modulation of neurobehavioral processes by variations in the gene Grm7/GRM7. Patterns of pleiotropic genes can form oligogenic architectures whosecombined additive and interaction effects can significantly predispose individuals to the expressions of disorders. Identifying and characterizing pleiotropic genes are necessary for understanding the expressions of complex traits. This requires tasks, such as discovering and identifying novel genetic elements of the genetic architecture, which are unsuitable for AI but require classical experimental genetics.
Collapse
Affiliation(s)
- Beatrix M. Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
| | - Csaba Vadasz
- Laboratory of Neurobehavior Genetics, Nathan S. Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Langone Medical Center, New York, NY 10016, USA
- Kalymma, Stony Point, New York, NY 10980, USA
| |
Collapse
|
2
|
Ingram R, Volianskis A. Promiscuous involvement of metabotropic glutamate receptors in the storage of N-methyl-d-aspartate receptor-dependent short-term potentiation. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230445. [PMID: 38853548 PMCID: PMC11343307 DOI: 10.1098/rstb.2023.0445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024] Open
Abstract
Short- and long-term forms of N-methyl-d-aspartate receptor (NMDAR)-dependent potentiation (most commonly termed short-term potentiation (STP) and long-term potentiation (LTP)) are co-induced in hippocampal slices by theta-burst stimulation, which mimics naturally occurring patterns of neuronal activity. While NMDAR-dependent LTP (NMDAR-LTP) is said to be the cellular correlate of long-term memory storage, NMDAR-dependent STP (NMDAR-STP) is thought to underlie the encoding of shorter-lasting memories. The mechanisms of NMDAR-LTP have been researched much more extensively than those of NMDAR-STP, which is characterized by its extreme stimulation dependence. Thus, in the absence of low-frequency test stimulation, which is used to test the magnitude of potentiation, NMDAR-STP does not decline until the stimulation is resumed. NMDAR-STP represents, therefore, an inverse variant of Hebbian synaptic plasticity, illustrating that inactive synapses can retain their strength unchanged until they become active again. The mechanisms, by which NMDAR-STP is stored in synapses without a decrement, are unknown and we report here that activation of metabotropic glutamate receptors may be critical in maintaining the potentiated state of synaptic transmission. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Rachael Ingram
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
| | - Arturas Volianskis
- Centre for Neuroscience, Surgery and Trauma, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, LondonE1 2AT, UK
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AX, UK
| |
Collapse
|
3
|
Kumar V, Lee KY, Acharya A, Babik MS, Christian-Hinman CA, Rhodes JS, Tsai NP. mGluR7 allosteric modulator AMN082 corrects protein synthesis and pathological phenotypes in FXS. EMBO Mol Med 2024; 16:506-522. [PMID: 38374465 PMCID: PMC10940663 DOI: 10.1038/s44321-024-00038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
Fragile X syndrome (FXS) is the leading cause of inherited autism and intellectual disabilities. Aberrant protein synthesis due to the loss of fragile X messenger ribonucleoprotein (FMRP) is the major defect in FXS, leading to a plethora of cellular and behavioral abnormalities. However, no treatments are available to date. In this study, we found that activation of metabotropic glutamate receptor 7 (mGluR7) using a positive allosteric modulator named AMN082 represses protein synthesis through ERK1/2 and eIF4E signaling in an FMRP-independent manner. We further demonstrated that treatment of AMN082 leads to a reduction in neuronal excitability, which in turn ameliorates audiogenic seizure susceptibility in Fmr1 KO mice, the FXS mouse model. When evaluating the animals' behavior, we showed that treatment of AMN082 reduces repetitive behavior and improves learning and memory in Fmr1 KO mice. This study uncovers novel functions of mGluR7 and AMN082 and suggests the activation of mGluR7 as a potential therapeutic approach for treating FXS.
Collapse
Affiliation(s)
- Vipendra Kumar
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Anirudh Acharya
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew S Babik
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Lei X, Hofmann CS, Rodriguez AL, Niswender CM. Differential Activity of Orthosteric Agonists and Allosteric Modulators at Metabotropic Glutamate Receptor 7. Mol Pharmacol 2023; 104:17-27. [PMID: 37105671 PMCID: PMC10289241 DOI: 10.1124/molpharm.123.000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Metabotropic glutamate receptor 7 (mGlu7) is a G protein coupled receptor that has demonstrated promise as a therapeutic target across a number of neurologic and psychiatric diseases. Compounds that modulate the activity of mGlu7, such as positive and negative allosteric modulators, may represent new therapeutic strategies to modulate receptor activity. The endogenous neurotransmitter associated with the mGlu receptor family, glutamate, exhibits low efficacy and potency in activating mGlu7, and surrogate agonists, such as the compound L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4), are often used for receptor activation and compound profiling. To understand the implications of the use of such agonists in the development of positive allosteric modulators (PAMs), we performed a systematic evaluation of receptor activation using a system in which mutations can be made in either protomer of the mGlu7 dimer; we employed mutations that prevent interaction with the orthosteric site as well as the G-protein coupling site of the receptor. We then measured increases in calcium levels downstream of a promiscuous G protein to assess the effects of mutations in one of the two protomers in the presence of two different agonists and three positive allosteric modulators. Our results reveal that distinct PAMs, for example N-[3-Chloro-4-[(5-chloro-2-pyridinyl)oxy]phenyl]-2-pyridinecarboxamide (VU0422288) and 3-(2,3-Difluoro-4-methoxyphenyl)-2,5-dimethyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine (VU6005649), do exhibit different maximal levels of potentiation with L-AP4 versus glutamate, but there appear to be common stable receptor conformations that are shared among all of the compounds examined here. SIGNIFICANCE STATEMENT: This manuscript describes the systematic evaluation of the mGlu7 agonists glutamate and L-(+)-2-Amino-4-phosphonobutyric acid (L-AP4) in the presence and absence of three distinct potentiators examining possible mechanistic differences. These findings demonstrate that mGlu7 potentiators display subtle variances in response to glutamate versus L-AP4.
Collapse
Affiliation(s)
- Xia Lei
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Christopher S Hofmann
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Alice L Rodriguez
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| | - Colleen M Niswender
- Department of Pharmacology (X.L., C.S.H., A.L.R., C.M.N.), Warren Center for Neuroscience Drug Discovery (X.L., A.L.R., C.M.N.), Vanderbilt Institute of Chemical Biology (C.M.N.), and Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennesee (C.M.N.); and Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee (C.M.N.)
| |
Collapse
|
5
|
Freitas GA, Niswender CM. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol Biochem Behav 2023; 225:173546. [PMID: 37003303 PMCID: PMC10192299 DOI: 10.1016/j.pbb.2023.173546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The metabotropic glutamate receptor 7 (mGlu7), encoded by the GRM7 gene in humans, is a presynaptic, G protein-coupled glutamate receptor that is essential for modulating neurotransmission. Mutations in or reduced expression of GRM7 have been identified in different genetic neurodevelopmental disorders (NDDs), and rare biallelic missense variants have been proposed to underlie a subset of NDDs. Clinical GRM7 variants have been associated with a range of symptoms consistent with neurodevelopmental molecular features, including hypomyelination, brain atrophy and defects in axon outgrowth. Here, we review the newest findings regarding the cellular and molecular defects caused by GRM7 variants in NDD patients.
Collapse
Affiliation(s)
- Geanne A Freitas
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America
| | - Colleen M Niswender
- Department of Pharmacology and Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37212, United States of America; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, United States of America.
| |
Collapse
|
6
|
Kalbfleisch JJ, Rodriguez AL, Lei X, Weiss K, Blobaum AL, Boutaud O, Niswender CM, Lindsley CW. Persistent challenges in the development of an mGlu 7 PAM in vivo tool compound: The discovery of VU6046980. Bioorg Med Chem Lett 2023; 80:129106. [PMID: 36528230 PMCID: PMC10201562 DOI: 10.1016/j.bmcl.2022.129106] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022]
Abstract
Herein, we report on the further chemical optimization of the first reported mGlu7 positive allosteric modulator (PAM), VU6027459. Replacement of the quinoline core by a cinnoline scaffold increased mGlu7 PAM potency by ∼ 10-fold, and concomitant introduction of a chiral tricyclic motif led to potent mGlu7 PAMs with enantioselective mGlu receptor selectivity profiles. Of these, VU6046980 emerged as a putative in vivo tool compound with excellent CNS penetration (Kp = 4.1; Kp,uu = 0.7) and efficacy in preclinical models. However, either off-target activity at the sigma-1 receptor or activity at a target not elucidated by large ancillary pharmacology panels led to sedation not driven by activation of mGlu7 (validated in Grm7 knockout mice). Thus, despite a significant advance, a viable mGlu7 PAM in vivo tool remains elusive.
Collapse
Affiliation(s)
- Jacob J Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Xia Lei
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Kelly Weiss
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Annie L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Olivier Boutaud
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
7
|
The mGlu 7 receptor in schizophrenia - An update and future perspectives. Pharmacol Biochem Behav 2022; 218:173430. [PMID: 35870668 DOI: 10.1016/j.pbb.2022.173430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
The mGlu7 receptor belongs to the III group of metabotropic glutamatergic (mGlu) receptors and physiologically serves as an "emergency" receptor that is activated by high, almost pathological, glutamate concentrations. Of all mGlu receptors, this receptor is most highly expressed in the brain. Additionally, relatively intense expression of the receptor was found at the periphery, for example in the bowels or in the reproductive system of male mice, but this review will be focused predominantly on its role in the brain. In the CNS, the receptor is expressed presynaptically, in the center of the synaptic cleft, at the terminals of both excitatory glutamatergic and inhibitory GABAergic neurons. Thus, it may regulate the release of both glutamate and GABA. Schizophrenia is thought to develop as a consequence of a disturbed glutamatergic-GABAergic balance in different parts of the brain. Thus, the mGlu7 receptor may be involved in the pathophysiology of schizophrenia and consequently constitute the target for antipsychotic drug discovery. In this review, we summarize the available data about mGlu7 receptor ligands and their activity in animal models of schizophrenia. At present, only a few ligands are available, and negative allosteric modulators (NAMs) appear to exert antipsychotic-like efficacy, indicating that the inhibition of the receptor could constitute a promising target in the search for novel drugs. Additionally, the data concerning the expression of the receptor in the CNS and putative mechanisms by which its inhibition may contribute to the treatment of schizophrenia will be discussed. Finally, the polymorphisms of genes encoding the receptor in schizophrenic patients will also be provided.
Collapse
|
8
|
Xu Y, Lin S, Tao J, Liu X, Zhou R, Chen S, Vyas P, Yang C, Chen B, Qian A, Wang M. Correlation research of susceptibility single nucleotide polymorphisms and the severity of clinical symptoms in attention deficit hyperactivity disorder. Front Psychiatry 2022; 13:1003542. [PMID: 36213906 PMCID: PMC9538111 DOI: 10.3389/fpsyt.2022.1003542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVE To analyze the correlation between susceptibility single nucleotide polymorphisms (SNPs) and the severity of clinical symptoms in children with attention deficit hyperactivity disorder (ADHD), so as to supplement the clinical significance of gene polymorphism and increase our understanding of the association between genetic mutations and ADHD phenotypes. METHODS 193 children with ADHD were included in our study from February 2017 to February 2020 in the Children's ADHD Clinic of the author's medical institution. 23 ADHD susceptibility SNPs were selected based on the literature, and multiple polymerase chain reaction (PCR) targeted capture sequencing technology was used for gene analysis. A series of ADHD-related questionnaires were used to reflect the severity of the disease, and the correlation between the SNPs of specific sites and the severity of clinical symptoms was evaluated. R software was used to search for independent risk factors by multivariate logistic regression and the "corplot" package was used for correlation analysis. RESULTS Among the 23 SNP loci of ADHD children, no mutation was detected in 6 loci, and 2 loci did not conform to Hardy-Weinberg equilibrium. Of the remaining 15 loci, there were 9 SNPs, rs2652511 (SLC6A3 locus), rs1410739 (OBI1-AS1 locus), rs3768046 (TIE1 locus), rs223508 (MANBA locus), rs2906457 (ST3GAL3 locus), rs4916723 (LINC00461 locus), rs9677504 (SPAG16 locus), rs1427829 (intron) and rs11210892 (intron), correlated with the severity of clinical symptoms of ADHD. Specifically, rs1410739 (OBI1-AS1 locus) was found to simultaneously affect conduct problems, control ability and abstract thinking ability of children with ADHD. CONCLUSION There were 9 SNPs significantly correlated with the severity of clinical symptoms in children with ADHD, and the rs1410739 (OBI1-AS1 locus) may provide a new direction for ADHD research. Our study builds on previous susceptibility research and further investigates the impact of a single SNP on the severity of clinical symptoms of ADHD. This can help improve the diagnosis, prognosis and treatment of ADHD.
Collapse
Affiliation(s)
- Yunyu Xu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangxiang Lin
- Department of Radiology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jiejie Tao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmiao Liu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ronghui Zhou
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuangli Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Punit Vyas
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Chuang Yang
- Department of Psychiatry, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, Zhejiang Provincial Top Key Discipline in Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Andan Qian
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Meihao Wang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
9
|
Zhang Q, Chen X, Li S, Yao T, Wu J. Association between the group III metabotropic glutamate receptor gene polymorphisms and attention-deficit/hyperactivity disorder and functional exploration of risk loci. J Psychiatr Res 2021; 132:65-71. [PMID: 33068816 DOI: 10.1016/j.jpsychires.2020.09.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023]
Abstract
Existing evidence suggests that the group III metabotropic glutamate receptor (mGluR) gene variations are involved in attention-deficit/hyperactivity disorder (ADHD), but few studies have fully explored this association. We conducted a case-control study with 617 cases and 636 controls to investigate the association between functional single-nucleotide polymorphisms (SNPs) from the group III mGluR gene polymorphisms (GRM4, GRM7, GRM8) and ADHD in the Chinese Han population and initially explored the function of positive SNPs. The GRM4 rs1906953 T genotype showed a significant association with a decreased risk of ADHD (TT:CC, OR = 0.55, 95% CI = 0.40-0.77; recessive model, OR = 0.58, 95% CI = 0.43-0.78). GRM7 rs9826579 C showed a significant association with an increased risk of ADHD (TC:TT, OR = 1.81, 95% CI = 1.39-2.36; dominant model, OR = 1.74, 95% CI = 1.35-2.24; additive model, OR = 1.56, 95% CI = 1.24-1.97). In addition, compared with subjects with the rs1906953 TT genotype, subjects with of the CC genotype showed more obvious attention deficit behaviours and hyperactivity/impulsive behaviours. Dual-luciferase reporter gene assays showed that a promoter reporter with the rs1906953 TT genotype significantly decreased luciferase activity compared with the CC genotype. According to electrophoretic mobility shift assays, the binding capacity of rs1906953 T probe with nucleoprotein was lower than that of the rs1906953 C probe. Our results revealed the association of GRM4 rs1906953 and GRM7 rs9826579 with ADHD. Moreover, we found that rs1906953 disturbs the transcriptional activity of GRM4.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xinzhen Chen
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shanyawen Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ting Yao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Wu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13, Hangkong Road, Wuhan, 430030, People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
10
|
Kalbfleisch JJ, Reed CW, Park C, Spearing PK, Quitalig MC, Jenkins MT, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Synthesis and SAR of a series of mGlu 7 NAMs based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinoline carboxylate core. Bioorg Med Chem Lett 2020; 30:127529. [PMID: 32890686 PMCID: PMC7686273 DOI: 10.1016/j.bmcl.2020.127529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
A High-Throughput Screening (HTS) campaign identified a fundamentally new mGlu7 NAM chemotype, based on an ethyl-8-methoxy-4-(4-phenylpiperazin-1-yl)quinolone carboxylate core. The initial hit, VU0226390, was a potent mGlu7 NAM (IC50 = 647 nM, 6% L-AP4 min) with selectivity versus the other group III mGlu receptors (>30 μM vs. mGlu4 and mGlu8). A multi-dimensional optimization effort surveyed all regions of this new chemotype, and found very steep SAR, reminiscent of allosteric modulators, and unexpected piperazine mimetics (whereas classical bioisosteres failed). While mGlu7 NAM potency could be improved (IC50s ~ 350 nM), the necessity of the ethyl ester moiety and poor physiochemical and DMPK properties precluded optimization towards in vivo tool compounds or clinical candidates. Still, this hit-to-lead campaign afforded key medicinal chemistry insights and new opportunities.
Collapse
Affiliation(s)
- Jacob J Kalbfleisch
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Carson W Reed
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Charlotte Park
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Paul K Spearing
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Marc C Quitalig
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Matthew T Jenkins
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alice L Rodriguez
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Anna L Blobaum
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - P Jeffrey Conn
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Colleen M Niswender
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Craig W Lindsley
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Reed C, Kalbfleisch JJ, Wong MJ, Washecheck JP, Hunter A, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of VU6027459: A First-in-Class Selective and CNS Penetrant mGlu 7 Positive Allosteric Modulator Tool Compound. ACS Med Chem Lett 2020; 11:1773-1779. [PMID: 32944146 PMCID: PMC7488291 DOI: 10.1021/acsmedchemlett.0c00432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/20/2020] [Indexed: 01/07/2023] Open
Abstract
Herein, we report the discovery of the first selective and CNS penetrant mGlu7 PAM (VU6027459) derived from a "molecular switch" within a selective mGlu7 NAM chemotype. VU6027459 displayed CNS penetration in both mice (Kp = 2.74) and rats (Kp= 4.78), it was orally bioavailable in rats (%F = 69.5), and undesired activity at DAT was ablated.
Collapse
Affiliation(s)
- Carson
W. Reed
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jacob J. Kalbfleisch
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Madison J. Wong
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Jordan P. Washecheck
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ashton Hunter
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt
Kennedy Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department
of Pharmacology, Vanderbilt University School
of Medicine, Nashville, Tennessee 37232, United States
- Warren
Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| |
Collapse
|
12
|
Fisher NM, Gould RW, Gogliotti RG, McDonald AJ, Badivuku H, Chennareddy S, Buch AB, Moore AM, Jenkins MT, Robb WH, Lindsley CW, Jones CK, Conn PJ, Niswender CM. Phenotypic profiling of mGlu 7 knockout mice reveals new implications for neurodevelopmental disorders. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12654. [PMID: 32248644 PMCID: PMC8034495 DOI: 10.1111/gbb.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022]
Abstract
Neurodevelopmental disorders are characterized by deficits in communication, cognition, attention, social behavior and/or motor control. Previous studies have pointed to the involvement of genes that regulate synaptic structure and function in the pathogenesis of these disorders. One such gene, GRM7, encodes the metabotropic glutamate receptor 7 (mGlu7 ), a G protein-coupled receptor that regulates presynaptic neurotransmitter release. Mutations and polymorphisms in GRM7 have been associated with neurodevelopmental disorders in clinical populations; however, limited preclinical studies have evaluated mGlu7 in the context of this specific disease class. Here, we show that the absence of mGlu7 in mice is sufficient to alter phenotypes within the domains of social behavior, associative learning, motor function, epilepsy and sleep. Moreover, Grm7 knockout mice exhibit an attenuated response to amphetamine. These findings provide rationale for further investigation of mGlu7 as a potential therapeutic target for neurodevelopmental disorders such as idiopathic autism, attention deficit hyperactivity disorder and Rett syndrome.
Collapse
Affiliation(s)
- Nicole M. Fisher
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Robert W. Gould
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Rocco G. Gogliotti
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Annalise J. McDonald
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Hana Badivuku
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Susmita Chennareddy
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Aditi B. Buch
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Annah M. Moore
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
| | - Matthew T. Jenkins
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - W. Hudson Robb
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
13
|
Surveying heterocycles as amide bioisosteres within a series of mGlu7 NAMs: Discovery of VU6019278. Bioorg Med Chem Lett 2019; 29:1211-1214. [DOI: 10.1016/j.bmcl.2019.03.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/18/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
|
14
|
Girard B, Tuduri P, Moreno MP, Sakkaki S, Barboux C, Bouschet T, Varrault A, Vitre J, McCort-Tranchepain I, Dairou J, Acher F, Fagni L, Marchi N, Perroy J, Bertaso F. The mGlu7 receptor provides protective effects against epileptogenesis and epileptic seizures. Neurobiol Dis 2019; 129:13-28. [PMID: 31051234 DOI: 10.1016/j.nbd.2019.04.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/28/2019] [Accepted: 04/29/2019] [Indexed: 01/26/2023] Open
Abstract
Finding new targets to control or reduce seizure activity is essential to improve the management of epileptic patients. We hypothesized that activation of the pre-synaptic and inhibitory metabotropic glutamate receptor type 7 (mGlu7) reduces spontaneous seizures. We tested LSP2-9166, a recently developed mGlu7/4 agonist with unprecedented potency on mGlu7 receptors, in two paradigms of epileptogenesis. In a model of chemically induced epileptogenesis (pentylenetetrazole systemic injection), LSP2-9166 induces an anti-epileptogenic effect rarely observed in preclinical studies. In particular, we found a bidirectional modulation of seizure progression by mGlu4 and mGlu7 receptors, the latter preventing kindling. In the intra-hippocampal injection of kainic acid mouse model that mimics the human mesial temporal lobe epilepsy, we found that LSP2-9166 reduces seizure frequency and hippocampal sclerosis. LSP2-9166 also acts as an anti-seizure drug on established seizures in both models tested. Specific modulation of the mGlu7 receptor could represent a novel approach to reduce pathological network remodeling.
Collapse
Affiliation(s)
- Benoit Girard
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Pola Tuduri
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | - Sophie Sakkaki
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | - Annie Varrault
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Jihane Vitre
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | | | | | | - Laurent Fagni
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Nicola Marchi
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | - Julie Perroy
- IGF, CNRS, INSERM, Univ Montpellier, Montpellier, France
| | | |
Collapse
|
15
|
Reed CW, Yohn SE, Washecheck JP, Roenfanz HF, Quitalig MC, Luscombe VB, Jenkins MT, Rodriguez AL, Engers DW, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of an Orally Bioavailable and Central Nervous System (CNS) Penetrant mGlu 7 Negative Allosteric Modulator (NAM) in Vivo Tool Compound: N-(2-(1 H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)-4-(cyclopropylmethoxy)-3-methoxybenzamide (VU6012962). J Med Chem 2019; 62:1690-1695. [PMID: 30608678 DOI: 10.1021/acs.jmedchem.8b01810] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we report the discovery of a new, orally bioavailable and CNS-penetrant metabotropic glutamate receptor 7 (mGlu7) negative allosteric modulator (NAM) that achieves exposure in cerebral spinal fluid (CSF) 2.5× above the in vitro IC50 at minimum effective doses (MEDs) of 3 mg/kg in preclinical anxiety models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - P Jeffrey Conn
- Vanderbilt Kennedy Center , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | - Colleen M Niswender
- Vanderbilt Kennedy Center , Vanderbilt University School of Medicine , Nashville , Tennessee 37232 , United States
| | | |
Collapse
|
16
|
O’Connor RM, McCafferty CP, Bravo JA, Singewald N, Holmes A, Cryan JF. Increased amygdalar metabotropic glutamate receptor 7 mRNA in a genetic mouse model of impaired fear extinction. Psychopharmacology (Berl) 2019; 236:265-272. [PMID: 30215216 PMCID: PMC6739849 DOI: 10.1007/s00213-018-5031-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Post-traumatic stress disorder (PTSD) is a devastating anxiety-related disorder which develops subsequent to a severe psychologically traumatic event. Only ~ 9% of people who experience such a trauma develop PTSD. It is clear that a number of factors, including genetics, influence whether an individual will develop PTSD subsequent to a trauma. The 129S1/SvImJ (S1) inbred mouse strain displays poor fear extinction and may be useful to model this specific aspect of PTSD. The metabotropic glutamate receptor 7 (mGlu7 receptor) has previously been shown to be involved in cognitive processes and anxiety-like behaviour placing it in a key position to regulate fear extinction processes. We sought to compare mGlu7 receptor mRNA levels in the S1 strain with those in the robustly extinguishing C57BL/6J (B6) inbred strain using in situ hybridisation (ISH) in three brain regions associated with fear extinction: the amygdala, hippocampus and prefrontal cortex (PFC). RESULTS Compared to the B6 strain, S1 mice had increased mGlu7 receptor mRNA levels in the lateral amygdala (LA) and basolateral amygdala (BLA) subdivisions. An increase was also seen in the hippocampal CA1 and CA3 subregions of S1 mice. No difference in mGlu7 receptor levels were seen in the central nucleus (CeA) of the amygdala, dentate gyrus (DG) of the hippocampus or prefrontal cortex. CONCLUSIONS These data show altered mGlu7 receptor expression in key brain regions associated with fear extinction in two different inbred mouse strains which differ markedly in their fear extinction behaviour. Altered mGlu7 receptor levels may contribute to the deficit fear extinction processes seen in fear extinction in the S1 strain.
Collapse
Affiliation(s)
- Richard M. O’Connor
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, S10-20 Hess CSM, 1470 Madison Avenue, New York, NY 10029, USA,Present address: Department of Neuroscience, Icahn School of Medicine, Mount Sinai Hospital, New York, NY, USA
| | - Cian P. McCafferty
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland,Present address: Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Javier A. Bravo
- Grupo de NeuroGastroBioquímica, Laboratorio e Química Biológica & Bioquímica de Sistemas, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, USA
| | - John F. Cryan
- Department of Anatomy and Neuroscience and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
17
|
Bossi S, Helleringer R, Galante M, Monlleó E, Trapero A, Rovira X, Daniel H, Llebaria A, McLean H. A Light-Controlled Allosteric Modulator Unveils a Role for mGlu 4 Receptors During Early Stages of Ischemia in the Rodent Cerebellar Cortex. Front Cell Neurosci 2018; 12:449. [PMID: 30542267 PMCID: PMC6277836 DOI: 10.3389/fncel.2018.00449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/07/2018] [Indexed: 01/15/2023] Open
Abstract
Metabotropic glutamate receptors (mGlus) are G Protein coupled-receptors that modulate synaptic transmission and plasticity in the central nervous system. Some act as autoreceptors to control neurotransmitter release at excitatory synapses and have become attractive targets for drug therapy to treat certain neurological disorders. However, the high degree of sequence conservation around the glutamate binding site makes the development of subtype-specific orthosteric ligands difficult to achieve. This problem can be circumvented by designing molecules that target specific less well conserved allosteric sites. One such allosteric drug, the photo-switchable compound OptoGluNAM4.1, has been recently employed to reversibly inhibit the activity of metabotropic glutamate 4 (mGlu4) receptors in cell cultures and in vivo. We studied OptoGluNAM4.1 as a negative modulator of neurotransmission in rodent cerebellar slices at the parallel fiber – Purkinje cell synapse. Our data show that OptoGluNAM4.1 antagonizes pharmacological activation of mGlu4 receptors in a fully reversible and photo-controllable manner. In addition, for the first time, this new allosteric modulator allowed us to demonstrate that, in brain slices from the rodent cerebellar cortex, mGlu4 receptors are endogenously activated in excitotoxic conditions, such as the early phases of simulated cerebellar ischemia, which is associated with elevated levels of extracellular glutamate. These findings support OptoGluNAM4.1 as a promising new tool for unraveling the role of mGlu4 receptors in the central nervous system in physio-pathological conditions.
Collapse
Affiliation(s)
- Simon Bossi
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Romain Helleringer
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Micaela Galante
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Ester Monlleó
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Ana Trapero
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Xavier Rovira
- Molecular Photopharmacology Research Group, The Tissue Repair and Regeneration Laboratory, University of Vic - Central University of Catalonia, Vic, Spain
| | - Hervé Daniel
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| | - Amadeu Llebaria
- MCS, Laboratory of Medicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Heather McLean
- Pharmacologie et Biochimie de la Synapse, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Université Paris-Sud - CNRS, UMR 9197, Orsay, France
| |
Collapse
|
18
|
Behavioral tagging: Plausible involvement of PKMζ, Arc and role of neurotransmitter receptor systems. Neurosci Biobehav Rev 2018; 94:210-218. [DOI: 10.1016/j.neubiorev.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 12/21/2022]
|
19
|
Fisher NM, Seto M, Lindsley CW, Niswender CM. Metabotropic Glutamate Receptor 7: A New Therapeutic Target in Neurodevelopmental Disorders. Front Mol Neurosci 2018; 11:387. [PMID: 30405350 PMCID: PMC6206046 DOI: 10.3389/fnmol.2018.00387] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by a wide range of symptoms including delayed speech, intellectual disability, motor dysfunction, social deficits, breathing problems, structural abnormalities, and epilepsy. Unfortunately, current treatment strategies are limited and innovative new approaches are sorely needed to address these complex diseases. The metabotropic glutamate receptors are a class of G protein-coupled receptors that act to modulate neurotransmission across many brain structures. They have shown great promise as drug targets for numerous neurological and psychiatric diseases. Moreover, the development of subtype-selective allosteric modulators has allowed detailed studies of each receptor subtype. Here, we focus on the metabotropic glutamate receptor 7 (mGlu7) as a potential therapeutic target for NDDs. mGlu7 is expressed widely throughout the brain in regions that correspond to the symptom domains listed above and has established roles in synaptic physiology and behavior. Single nucleotide polymorphisms and mutations in the GRM7 gene have been associated with idiopathic autism and other NDDs in patients. In rodent models, existing literature suggests that decreased mGlu7 expression and/or function may lead to symptoms that overlap with those of NDDs. Furthermore, potentiation of mGlu7 activity has shown efficacy in a mouse model of Rett syndrome. In this review, we summarize current findings that provide rationale for the continued development of mGlu7 modulators as potential therapeutics.
Collapse
Affiliation(s)
- Nicole M Fisher
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Mabel Seto
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States
| | - Craig W Lindsley
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.,Department of Chemistry, Vanderbilt University, Nashville, TN, United States
| | - Colleen M Niswender
- Department of Pharmacology and Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
20
|
Podkowa K, Pilc A, Podkowa A, Sałat K, Marciniak M, Pałucha-Poniewiera A. The potential antidepressant action and adverse effects profile of scopolamine co-administered with the mGlu7 receptor allosteric agonist AMN082 in mice. Neuropharmacology 2018; 141:214-222. [PMID: 30145321 DOI: 10.1016/j.neuropharm.2018.08.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/14/2018] [Accepted: 08/19/2018] [Indexed: 02/07/2023]
Abstract
Scopolamine, a muscarinic cholinergic receptor antagonist, exerts fast and prolonged antidepressant effects in the clinic. In contrast, the current treatments for major depressive disorder (MDD) require long-term drug administration. On the other hand, the sole use of scopolamine might be related to the high risk of adverse effects. Therefore, it may be preferable to reduce its therapeutic dose. A new approach might include the co-administration of low-dose scopolamine with selected ligands of metabotropic glutamate (mGlu) receptors, which are known to possess antidepressant-like activity in several rodent tests and models of depression. The aim of the present study was to evaluate the potential antidepressant activity of low-dose scopolamine combined with an allosteric agonist of mGlu7 receptors, AMN082 in C57BL/6 mice. It was found that the combination of scopolamine (0.1 mg/kg) and AMN082 (1 mg/kg) exerted significant antidepressant-like effects in the tail suspension test (TST), but these effects were not observed in the mGlu7-/- mice. Furthermore, low-dose AMN082 co-administered with low-doses scopolamine (0.03 and 0.1 mg/kg) induced antidepressant-like activity in the forced swim test (FST) in mice. The tested compounds did not affect locomotor activity and did not impair spatial memory in the Morris water maze (MWM) test or motor coordination in the rotarod test. The results strongly indicated that there is an enhanced antidepressant-like action of scopolamine by AMN082. Co-administration of scopolamine with AMN082 might be a new strategy with better efficacy and a lower risk of adverse effects compared with the sole use of scopolamine or AMN082.
Collapse
Affiliation(s)
- Karolina Podkowa
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Andrzej Pilc
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland; Jagiellonian University Medical College, Faculty of Health Sciences, Department of Drug Management, Grzegórzecka Street 20, 31-531, Kraków, Poland
| | - Adrian Podkowa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, 30-688, Krakow, Medyczna Street 9, Poland
| | - Kinga Sałat
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacodynamics, 30-688, Krakow, Medyczna Street 9, Poland
| | - Marcin Marciniak
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland
| | - Agnieszka Pałucha-Poniewiera
- Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 31-343, Kraków, Smętna Street 12, Poland.
| |
Collapse
|
21
|
Reed CW, McGowan KM, Spearing PK, Stansley BJ, Roenfanz HF, Engers DW, Rodriguez AL, Engelberg EM, Luscombe VB, Loch MT, Remke DH, Rook JM, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. VU6010608, a Novel mGlu 7 NAM from a Series of N-(2-(1 H-1,2,4-Triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamides. ACS Med Chem Lett 2017; 8:1326-1330. [PMID: 29259756 DOI: 10.1021/acsmedchemlett.7b00429] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
Herein, we report the structure-activity relationships within a series of mGlu7 NAMs based on an N-(2-(1H-1,2,4-triazol-1-yl)-5-(trifluoromethoxy)phenyl)benzamide core with excellent CNS penetration (Kp 1.9-5.8 and Kp,uu 0.4-1.4). Analogues in this series displayed steep SAR. Of these, VU6010608 (11a) emerged with robust efficacy in blocking high frequency stimulated long-term potentiation in electrophysiology studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - P. Jeffrey Conn
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Vanderbilt
Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | | |
Collapse
|
22
|
Abe M, Seto M, Gogliotti RG, Loch MT, Bollinger KA, Chang S, Engelberg EM, Luscombe VB, Harp JM, Bubser M, Engers DW, Jones CK, Rodriguez AL, Blobaum AL, Conn PJ, Niswender CM, Lindsley CW. Discovery of VU6005649, a CNS Penetrant mGlu 7/8 Receptor PAM Derived from a Series of Pyrazolo[1,5- a]pyrimidines. ACS Med Chem Lett 2017; 8:1110-1115. [PMID: 29057060 DOI: 10.1021/acsmedchemlett.7b00317] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Herein, we report the structure-activity relationships within a series of mGlu7 PAMs based on a pyrazolo[1,5-a]pyrimidine core with excellent CNS penetration (Kps > 1 and Kp,uus > 1). Analogues in this series proved to display a range of Group III mGlu receptor selectivity, but VU6005649 emerged as the first dual mGlu7/8 PAM, filling a void in the Group III mGlu receptor PAM toolbox and demonstrating in vivo efficacy in a mouse contextual fear conditioning model.
Collapse
Affiliation(s)
- Masahito Abe
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Mabel Seto
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Rocco G. Gogliotti
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Matthew T. Loch
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Katrina A. Bollinger
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Sichen Chang
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Eileen M. Engelberg
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Vincent B. Luscombe
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Joel M. Harp
- Department
of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Michael Bubser
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Darren W. Engers
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Carrie K. Jones
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Alice L. Rodriguez
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - Anna L. Blobaum
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
| | - P. Jeffrey Conn
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Colleen M. Niswender
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Craig W. Lindsley
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, United States
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
23
|
Senter RK, Ghoshal A, Walker AG, Xiang Z, Niswender CM, Conn PJ. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies. Curr Neuropharmacol 2017; 14:455-73. [PMID: 27296640 PMCID: PMC4983746 DOI: 10.2174/1570159x13666150421003225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/18/2015] [Accepted: 04/09/2015] [Indexed: 11/22/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SCCA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - P Jeffrey Conn
- Department of Pharmacology, Faculty of Vanderbilt University Medical Center, 1205 Light Hall, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Metabotropic Glutamate Receptor 7: From Synaptic Function to Therapeutic Implications. Curr Neuropharmacol 2017; 14:504-13. [PMID: 27306064 PMCID: PMC4983754 DOI: 10.2174/1570159x13666150716165323] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/20/2015] [Accepted: 07/14/2015] [Indexed: 11/22/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is localized presynaptically at the active zone of neurotransmitter release. Unlike mGluR4 and mGluR8, which share mGluR7's presynaptic location, mGluR7 shows low affinity for glutamate and is activated only by high glutamate concentrations. Its wide distribution in the central nervous system (CNS) and evolutionary conservation across species suggest that mGluR7 plays a primary role in controlling excitatory synapse function. High mGluR7 expression has been observed in several brain regions that are critical for CNS functioning and are involved in neurological and psychiatric disorder development. Until the recent discovery of selective ligands for mGluR7, techniques to elucidate its role in neural function were limited to the use of knockout mice and gene silencing. Studies using these two techniques have revealed that mGluR7 modulates emotionality, stress and fear responses. N,N`-dibenzhydrylethane-1,2-diamine dihydrochloride (AMN082) was reported as the first selective mGluR7 allosteric agonist. Pharmacological effects of AMN082 have not completely confirmed the mGluR7-knockout mouse phenotype; this has been attributed to rapid receptor internalization after drug treatment and to the drug's apparent lack of in vivo selectivity. Therefore, the more recently developed mGluR7 negative allosteric modulators (NAMs) are crucial for understanding mGluR7 function and for exploiting its potential as a target for therapeutic interventions. This review presents the main findings regarding mGluR7's effect on modulation of synaptic function and its role in normal CNS function and in models of neurologic and psychiatric disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138 Naples, Italy.
| | | | | | | | | |
Collapse
|
25
|
Ramyead A, Studerus E, Kometer M, Heitz U, Gschwandtner U, Fuhr P, Riecher-Rössler A. Neural oscillations in antipsychotic-naïve patients with a first psychotic episode. World J Biol Psychiatry 2016; 17:296-307. [PMID: 26899507 DOI: 10.3109/15622975.2016.1156742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES In chronic schizophrenic psychoses, oscillatory abnormalities predominantly occur in prefrontal cortical regions and are associated with reduced communication across cortical areas. Nevertheless, it remains unclear whether similar alterations can be observed in patients with a first episode of psychosis (FEP), a state characterised by pathological features occurring in both late prodromal patients and initial phases of frank schizophrenic psychoses. METHODS We assessed resting-state electroencephalographic data of 31 antipsychotic-naïve FEP patients and 29 healthy controls (HC). We investigated the three-dimensional (3D) current source density (CSD) distribution and lagged phase synchronisation (LPS) of oscillations across small-scale and large-scale brain networks. We additionally investigated LPS relationships with clinical symptoms using linear mixed-effects models. RESULTS Compared to HC, FEP patients demonstrated abnormal CSD distributions in frontal areas of the brain; while decreased oscillations were found in the low frequencies, an increase was reported in the high frequencies (P < 0.01). Patients also exhibited deviant LPS in the high frequencies, whose dynamics changed over increasing 3D cortico-cortical distances and increasing psychotic symptoms. CONCLUSIONS These results indicate that in addition to prefrontal cortical abnormalities, altered synchronised neural oscillations are also present, suggesting possible disruptions in cortico-cortical communications. These findings provide new insights into the pathophysiological mechanisms of emerging schizophrenic psychoses.
Collapse
Affiliation(s)
- Avinash Ramyead
- a University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection , Basel , Switzerland
| | - Erich Studerus
- a University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection , Basel , Switzerland
| | - Michael Kometer
- b Neuropsychopharmacology and Brain Imaging Research Unit, Department of Psychiatry, Psychotherapy and Psychosomatics , Hospital of Psychiatry, University of Zurich , Switzerland
| | - Ulrike Heitz
- a University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection , Basel , Switzerland
| | - Ute Gschwandtner
- c Department of Neurology , University Hospital Basel , Basel , Switzerland
| | - Peter Fuhr
- c Department of Neurology , University Hospital Basel , Basel , Switzerland
| | - Anita Riecher-Rössler
- a University of Basel Psychiatric Clinics, Center for Gender Research and Early Detection , Basel , Switzerland
| |
Collapse
|
26
|
Activation of Metabotropic Glutamate Receptor 7 Is Required for Induction of Long-Term Potentiation at SC-CA1 Synapses in the Hippocampus. J Neurosci 2015; 35:7600-15. [PMID: 25972184 DOI: 10.1523/jneurosci.4543-14.2015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Of the eight metabotropic glutamate (mGlu) receptor subtypes, only mGlu7 is expressed presynaptically at the Schaffer collateral (SC)-CA1 synapse in the hippocampus in adult animals. Coupled with the inhibitory effects of Group III mGlu receptor agonists on transmission at this synapse, mGlu7 is thought to be the predominant autoreceptor responsible for regulating glutamate release at SC terminals. However, the lack of mGlu7-selective pharmacological tools has hampered direct testing of this hypothesis. We used a novel, selective mGlu7-negative allosteric modulator (NAM), ADX71743, and a newly described Group III mGlu receptor agonist, LSP4-2022, to elucidate the role of mGlu7 in modulating transmission in hippocampal area CA1 in adult C57BL/6J male mice. Interestingly, although mGlu7 agonists inhibit SC-CA1 EPSPs, we found no evidence for activation of mGlu7 by stimulation of SC-CA1 afferents. However, LSP4-2022 also reduced evoked monosynaptic IPSCs in CA1 pyramidal cells and, in contrast to its effect on SC-CA1 EPSPs, ADX71743 reversed the ability of high-frequency stimulation of SC afferents to reduce IPSC amplitudes. Furthermore, blockade of mGlu7 prevented induction of LTP at the SC-CA1 synapse and activation of mGlu7 potentiated submaximal LTP. Together, these data suggest that mGlu7 serves as a heteroreceptor at inhibitory synapses in area CA1 and that the predominant effect of activation of mGlu7 by stimulation of glutamatergic afferents is disinhibition, rather than reduced excitatory transmission. Furthermore, this mGlu7-mediated disinhibition is required for induction of LTP at the SC-CA1 synapse, suggesting that mGlu7 could serve as a novel therapeutic target for treatment of cognitive disorders.
Collapse
|
27
|
Mercier MS, Lodge D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem Res 2014; 39:1876-94. [PMID: 25146900 DOI: 10.1007/s11064-014-1415-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 01/14/2023]
Abstract
Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I-III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson's disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.
Collapse
Affiliation(s)
- Marion S Mercier
- Centre for Synaptic Plasticity, School of Physiology and Pharmacology, Dorothy Hodgkin Building, University of Bristol, Bristol, BS1 3NY, UK,
| | | |
Collapse
|
28
|
Mukherjee S, Manahan-Vaughan D. Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 2013; 66:65-81. [DOI: 10.1016/j.neuropharm.2012.06.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/27/2022]
|
29
|
Abstract
AIMS The presence of genetic variants for autism spectrum disorders (ASDs) was investigated for the metabotropic glutamate receptor 7 (GRM7) gene in a case-control study. MAIN METHODS Employing Affymetrix SNP microarrays, 297 single nucleotide polymorphisms (SNPs) covering the GRM7 gene were selected and analyzed in ASD patients (n=22), non-ASD patients [n=14, including seven patients with development delay (DD)/mental retardation (MR), four patients with language delay (LD), and three patients with attention deficit hyperactivity disorder (ADHD)] and normal control subjects (n=18). KEY FINDINGS Twenty-one statistically significant SNPs with different inheritance models (recessive, dominant and allele) were demonstrated in three groups (ASDs vs. combined controls, ASDs vs. normal controls, ASDs vs. non-ASD patients). Associations of rs779867 and rs6782011 with ASDs were significant in all three groups and independent associations of rs779867 and rs6782011 with ASDs were found in the ASD vs. combined controls group, which are in modest linkage disequilibrium (D'>0.5). Further haplotype analysis showed that rs6782011/rs779867 (T-C) was statistically significantly related to ASDs in both the ASD vs. combined controls and ASD vs. normal controls groups (bootstrap P value=0.013, permutation P value=0.013 for the former group and bootstrap P value=0.002, permutation P value=0.020 for the latter). SIGNIFICANCE These findings support a role for genetic variants within the GRM7 gene in 3p26.1 in ASDs.
Collapse
|
30
|
Li J, Chen C, Lei X, Wang Y, Chen C, He Q, Moyzis RK, Xue G, Zhu B, Cao Z, Dong Q. The NTSR1 gene modulates the association between hippocampal structure and working memory performance. Neuroimage 2012; 75:79-86. [PMID: 23110888 DOI: 10.1016/j.neuroimage.2012.09.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 09/28/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic and neural basis of working memory (WM) has been extensively studied. Many dopamine (DA) related genes, including the NTSR1 gene (a DA modulator gene), have been reported to be associated with WM performance. The NTSR1 protein is predominantly expressed in the cerebral cortex and the hippocampus, the latter of which is closely involved in WM processing based on both lesion and fMRI studies. Thus far, however, no study has examined the joint effects of NTSR1 gene polymorphism and hippocampal morphology on WM performance. Participants of the current study were 330 healthy Chinese college students. WM performance was measured with a 2-back WM paradigm. Structural MRI data were acquired and then analyzed using an automated procedure with atlas-based FreeSurfer segmentation software (v 4.5.0) package. Linear regression analyses were conducted with a NTSR1 C/T polymorphism which was previously reported to be associated with WM (rs4334545), hippocampal volume, and their interaction as predictors of WM performance, with gender and intracranial volume (ICV) as covariates. Results showed a significant interaction between NTSR1 genotype and hippocampal volume (p<.05 for both the left and right hippocampi). Further analysis showed that the correlation between hippocampal volume and WM scores was significant for carriers of the NTSR1 T-allele (p<.05 for both hippocampi), but not for CC homozygotes. These results indicate that the association between hippocampal structure and WM performance was modulated by variation in the NTSR1 gene, and suggest that further studies of brain-behavior associations should take genetic background information into account.
Collapse
Affiliation(s)
- Jin Li
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chuansheng Chen
- Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA.
| | - Xuemei Lei
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology and Social Behavior, University of California, Irvine, CA 92697, USA
| | - Yunxin Wang
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Chunhui Chen
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qinghua He
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert K Moyzis
- Department of Biological Chemistry and Institute of Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | - Gui Xue
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China; Department of Psychology, University of Southern California, Los Angeles, CA 90089, USA
| | - Bi Zhu
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Zhongyu Cao
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China
| | - Qi Dong
- National Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, PR China.
| |
Collapse
|
31
|
Hovelsø N, Sotty F, Montezinho LP, Pinheiro PS, Herrik KF, Mørk A. Therapeutic potential of metabotropic glutamate receptor modulators. Curr Neuropharmacol 2012; 10:12-48. [PMID: 22942876 PMCID: PMC3286844 DOI: 10.2174/157015912799362805] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2010] [Revised: 01/10/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system (CNS) and is a major player in complex brain functions. Glutamatergic transmission is primarily mediated by ionotropic glutamate receptors, which include NMDA, AMPA and kainate receptors. However, glutamate exerts modulatory actions through a family of metabotropic G-protein-coupled glutamate receptors (mGluRs). Dysfunctions of glutamatergic neurotransmission have been implicated in the etiology of several diseases. Therefore, pharmacological modulation of ionotropic glutamate receptors has been widely investigated as a potential therapeutic strategy for the treatment of several disorders associated with glutamatergic dysfunction. However, blockade of ionotropic glutamate receptors might be accompanied by severe side effects due to their vital role in many important physiological functions. A different strategy aimed at pharmacologically interfering with mGluR function has recently gained interest. Many subtype selective agonists and antagonists have been identified and widely used in preclinical studies as an attempt to elucidate the role of specific mGluRs subtypes in glutamatergic transmission. These studies have allowed linkage between specific subtypes and various physiological functions and more importantly to pathological states. This article reviews the currently available knowledge regarding the therapeutic potential of targeting mGluRs in the treatment of several CNS disorders, including schizophrenia, addiction, major depressive disorder and anxiety, Fragile X Syndrome, Parkinson’s disease, Alzheimer’s disease and pain.
Collapse
Affiliation(s)
- N Hovelsø
- Department of Neurophysiology, H. Lundbeck A/S, Ottiliavej 9, 2500 Copenhagen-Valby, Denmark
| | | | | | | | | | | |
Collapse
|
32
|
Herman EJ, Bubser M, Conn PJ, Jones CK. Metabotropic glutamate receptors for new treatments in schizophrenia. Handb Exp Pharmacol 2012:297-365. [PMID: 23027420 DOI: 10.1007/978-3-642-25758-2_11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Metabotropic glutamate receptors (mGluRs) represent exciting targets for the development of novel therapeutic agents for schizophrenia. Recent studies indicate that selective activation of specific mGluR subtypes may provide potential benefits for not only the positive symptoms, but also the negative symptoms and cognitive impairments observed in individuals with schizophrenia. Although optimization of traditional orthosteric agonists may still offer a feasible approach for the activation of mGluRs, important progress has been made in the discovery of novel subtype-selective allosteric ligands, including positive allosteric modulators (PAMs) of mGluR2 and mGluR5. These allosteric mGluR ligands have improved properties for clinical development and have served as key preclinical tools for a more in-depth understanding of the potential roles of these different mGluR subtypes for the treatment of schizophrenia.
Collapse
Affiliation(s)
- E J Herman
- Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
33
|
Bahi A. RETRACTED: The pre-synaptic metabotropic glutamate receptor 7 “mGluR7” is a critical modulator of ethanol sensitivity in mice. Neuroscience 2011; 199:13-23. [DOI: 10.1016/j.neuroscience.2011.10.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Revised: 10/16/2011] [Accepted: 10/17/2011] [Indexed: 10/15/2022]
|
34
|
Gyetvai B, Simonyi A, Oros M, Saito M, Smiley J, Vadász C. mGluR7 genetics and alcohol: intersection yields clues for addiction. Neurochem Res 2011; 36:1087-100. [PMID: 21448595 DOI: 10.1007/s11064-011-0452-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2011] [Indexed: 12/19/2022]
Abstract
Development of addiction to alcohol or other substances can be attributed in part to exposure-dependent modifications at synaptic efficacy leading to an organism which functions at an altered homeostatic setpoint. Genetic factors may also influence setpoints and the stability of the homeostatic system of an organism. Quantitative genetic analysis of voluntary alcohol drinking, and mapping of the involved genes in the quasi-congenic Recombinant QTL Introgression strain system, identified Eac2 as a Quantitative Trait Locus (QTL) on mouse chromosome 6 which explained 18% of the variance with an effect size of 2.09 g/kg/day alcohol consumption, and Grm7 as a quantitative trait gene underlying Eac2 [Vadasz et al. in Neurochem Res 32:1099-1112, 100, Genomics 90:690-702, 102]. In earlier studies, the product of Grm7 mGluR7, a G protein-coupled receptor, has been implicated in stress systems [Mitsukawa et al. in Proc Natl Acad Sci USA 102:18712-18717, 63], anxiety-like behaviors [Cryan et al. in Eur J Neurosci 17:2409-2417, 14], memory [Holscher et al. in Learn Mem 12:450-455, 26], and psychiatric disorders (e.g., [Mick et al. in Am J Med Genet B Neuropsychiatr Genet 147B:1412-1418, 61; Ohtsuki et al. in Schizophr Res 101:9-16, 72; Pergadia et al. in Paper presented at the 38th Annual Meeting of the Behavior Genetics Association, Louisville, Kentucky, USA, 76]. Here, in experiments with mice, we show that (1) Grm7 knockout mice express increased alcohol consumption, (2) sub-congenic, and congenic mice carrying a Grm7 variant characterized by higher Grm7 mRNA drink less alcohol, and show a tendency for higher circadian dark phase motor activity in a wheel running paradigm, respectively, and (3) there are significant genetic differences in Grm7 mRNA abundance in the mouse brain between congenic and background mice identifying brain areas whose function is implicated in addiction related processes. We hypothesize that metabotropic glutamate receptors may function as regulators of homeostasis, and Grm7 (mGluR7) is involved in multiple processes (including stress, circadian activity, reward control, memory, etc.) which interact with substance use and the development of addiction. In conclusion, we suggest that mGluR7 is a significant new therapeutic target in addiction and related neurobehavioral disorders.
Collapse
Affiliation(s)
- Beatrix Gyetvai
- Laboratory of Neurobehavior Genetics, Nathan S Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd., Orangeburg, NY 10962, USA
| | | | | | | | | | | |
Collapse
|
35
|
Sheffler DJ, Gregory KJ, Rook JM, Conn PJ. Allosteric modulation of metabotropic glutamate receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 62:37-77. [PMID: 21907906 DOI: 10.1016/b978-0-12-385952-5.00010-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson's disease, and Fragile X syndrome.
Collapse
Affiliation(s)
- Douglas J Sheffler
- Department of Pharmacology, Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
36
|
Effects of a novel metabotropic glutamate receptor 7 negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H)-one (MMPIP), on the central nervous system in rodents. Eur J Pharmacol 2010; 639:106-14. [PMID: 20371227 DOI: 10.1016/j.ejphar.2009.08.047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 08/21/2009] [Accepted: 08/26/2009] [Indexed: 11/23/2022]
Abstract
We recently identified 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), the first allosteric metabotropic glutamate (mGlu) 7 receptor-selective negative allosteric modulator. In this study, we examined the in vivo pharmacological effects of MMPIP on the central nervous system. MMPIP was distributed into the brain after systemic administration in both mice and rats. Pharmacokinetic study revealed that the half-life of MMPIP in circulation was about 1h in rats. Results of various behavioral studies revealed that MMPIP impaired non-spatial and spatial cognitive performances in the object recognition test and the object location test in mice, respectively. In rats, MMPIP increased time to complete the task in the 8-arm radial maze test without increasing error. In addition to impairing cognition, MMPIP decreased social interaction with reduction of line crossing in rats, while MMPIP had no effects on locomotor activity in rats and mice, rota-rod performance in mice, prepulse inhibition in rats, maternal separation-induced ultrasonic vocalization in rat pups, stress-induced hyperthermia in mice, or the tail suspension test in mice. No analgesic effects of MMPIP were detected in either the tail immersion test or formalin test in mice. MMPIP did not alter the threshold for induction of seizures by electrical shock or pentylenetetrazole in mice. These findings suggest that blockade of mGlu(7) receptors by MMPIP may modulate both non-spatial and spatial cognitive functions without non-selective inhibitory effects on the central nervous system.
Collapse
|
37
|
Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 2010; 50:295-322. [PMID: 20055706 DOI: 10.1146/annurev.pharmtox.011008.145533] [Citation(s) in RCA: 1389] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The metabotropic glutamate receptors (mGluRs) are family C G-protein-coupled receptors that participate in the modulation of synaptic transmission and neuronal excitability throughout the central nervous system. The mGluRs bind glutamate within a large extracellular domain and transmit signals through the receptor protein to intracellular signaling partners. A great deal of progress has been made in determining the mechanisms by which mGluRs are activated, proteins with which they interact, and orthosteric and allosteric ligands that can modulate receptor activity. The widespread expression of mGluRs makes these receptors particularly attractive drug targets, and recent studies continue to validate the therapeutic utility of mGluR ligands in neurological and psychiatric disorders such as Alzheimer's disease, Parkinson's disease, anxiety, depression, and schizophrenia.
Collapse
Affiliation(s)
- Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37212, USA.
| | | |
Collapse
|
38
|
Spooren W, Lesage A, Lavreysen H, Gasparini F, Steckler T. Metabotropic glutamate receptors: their therapeutic potential in anxiety. Curr Top Behav Neurosci 2010; 2:391-413. [PMID: 21309118 DOI: 10.1007/7854_2010_36] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Psychiatric and neurological disorders are linked to changes in synaptic excitatory processes with a key role for glutamate, that is, the most abundant excitatory amino-acid. Molecular cloning of the metabotropic glutamate (mGlu) receptors has led to the identification of eight mGlu receptors, which, in contrast to ligand-gated ion channels (responsible for fast excitatory transmission), modulate and fine-tune the efficacy of synaptic transmission. mGlu receptors are G protein-coupled and constitute a new group of "drugable" targets for the treatment of various CNS disorders. The recent discovery of small molecules that selectively bind to receptors of Groups I (mGlu1 and mGlu5) and II (mGlu2 and mGlu3) allowed significant advances in our understanding of the roles of these receptors in brain function and dysfunction including anxiety. Although investigation of the role of the Group III (mGlu4, 6, 7, and 8) receptors is less advanced, the generation of genetically manipulated animals and recent advances in the identification of subtype-selective compounds have revealed some first insights into the therapeutic potential of this group of receptors.
Collapse
Affiliation(s)
- Will Spooren
- CNS Disease Biology Area, pRED, Building 74/3W308, Basel CH-4070, Switzerland.
| | | | | | | | | |
Collapse
|
39
|
Need AC, Attix DK, McEvoy JM, Cirulli ET, Linney KL, Hunt P, Ge D, Heinzen EL, Maia JM, Shianna KV, Weale ME, Cherkas LF, Clement G, Spector TD, Gibson G, Goldstein DB. A genome-wide study of common SNPs and CNVs in cognitive performance in the CANTAB. Hum Mol Genet 2009; 18:4650-61. [PMID: 19734545 DOI: 10.1093/hmg/ddp413] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Psychiatric disorders such as schizophrenia are commonly accompanied by cognitive impairments that are treatment resistant and crucial to functional outcome. There has been great interest in studying cognitive measures as endophenotypes for psychiatric disorders, with the hope that their genetic basis will be clearer. To investigate this, we performed a genome-wide association study involving 11 cognitive phenotypes from the Cambridge Neuropsychological Test Automated Battery. We showed these measures to be heritable by comparing the correlation in 100 monozygotic and 100 dizygotic twin pairs. The full battery was tested in approximately 750 subjects, and for spatial and verbal recognition memory, we investigated a further 500 individuals to search for smaller genetic effects. We were unable to find any genome-wide significant associations with either SNPs or common copy number variants. Nor could we formally replicate any polymorphism that has been previously associated with cognition, although we found a weak signal of lower than expected P-values for variants in a set of 10 candidate genes. We additionally investigated SNPs in genomic loci that have been shown to harbor rare variants that associate with neuropsychiatric disorders, to see if they showed any suggestion of association when considered as a separate set. Only NRXN1 showed evidence of significant association with cognition. These results suggest that common genetic variation does not strongly influence cognition in healthy subjects and that cognitive measures do not represent a more tractable genetic trait than clinical endpoints such as schizophrenia. We discuss a possible role for rare variation in cognitive genomics.
Collapse
Affiliation(s)
- Anna C Need
- Center for Human Genome Variation, Institute for Genome Sciences and Policy, Duke University, 450 Research Drive, Box 91009, Durham, NC 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Volianskis A, Køstner R, Mølgaard M, Hass S, Jensen MS. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1δE9-deleted transgenic mice model of ß-amyloidosis. Neurobiol Aging 2008; 31:1173-87. [PMID: 18790549 DOI: 10.1016/j.neurobiolaging.2008.08.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 08/04/2008] [Accepted: 08/05/2008] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory impairment and the formation of amyloid plaques in the brain. Dysfunctional excitatory synaptic transmission and synaptic plasticity are generally accepted as primary events in the development of AD, and beta-amyloid is intimately involved. Here we describe age related differences in learning, memory, synaptic transmission and long-term potentiation (LTP) in wild type and APPswe/PS1DeltaE9 mice, which produce increasing amounts of Abeta1-42 with age. The mice have both age related and age-independent deficits in radial arm water maze performance. Blind studies of hippocampal slices from transgenic and wild type mice demonstrate that transgenic mice have impaired transient LTP and that the degree of impairment is not related to age from 3 to 12 months. The deficiencies in transient LTP may be related to the behavioral deficits that did not progress with age. The accumulation of beta-amyloid and the episodic memory deficits, both of which increased with age, were not accompanied by an alteration in synaptic transmission or sustained LTP in the in vitro hippocampal slices.
Collapse
|
41
|
Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008; 9:423-36. [PMID: 18464791 DOI: 10.1038/nrn2379] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.
Collapse
Affiliation(s)
- Paulo S Pinheiro
- Laboratoire Physiologie Cellulaire de la Synapse, Centre National de la Recherche Scientifique Unite mixte de recherche 5091, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux, France
| | | |
Collapse
|
42
|
Goddyn H, Callaerts-Vegh Z, Stroobants S, Dirikx T, Vansteenwegen D, Hermans D, van der Putten H, D'Hooge R. Deficits in acquisition and extinction of conditioned responses in mGluR7 knockout mice. Neurobiol Learn Mem 2008; 90:103-11. [PMID: 18289889 DOI: 10.1016/j.nlm.2008.01.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/25/2007] [Accepted: 01/08/2008] [Indexed: 11/16/2022]
Abstract
Metabotropic glutamate receptor 7 (mGluR7) is expressed in brain regions implicated in emotional learning and working memory, and previous behavioral experiments indicated contributions of mGluR7 to various complex behaviors. In the present study, we investigated the specific effects of mGluR7 deletion on a variety of conditioning paradigms that model crucial neurocognitive and psychopathological behavioral phenomena. Null-mutant mGluR7(-/-) mice displayed defects during scheduled appetitive conditioning, acquisition and extinction of appetitive odor conditioning, extinction of response suppression-based conditioned emotional responding (CER), acquisition of discriminative CER, and contextual fear conditioning. mGluR7(-/-) animals were slower to acquire the association between a conditioned stimulus and a positive or negative reinforcer, but eventually reached similar performance levels to their wildtype littermates. Notably, extinction learning of conditioned responses was slower in mGluR7(-/-) compared to wildtype animals. The observed delays in the acquisition of complicated stimulus associations across conditioning procedures may suggest a critical role for mGluR7 in neurocognitive functions and psychopathology.
Collapse
Affiliation(s)
- Hannelore Goddyn
- Laboratory of Biological Psychology, Department of Psychology, University of Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Altinbilek B, Manahan-Vaughan D. Antagonism of group III metabotropic glutamate receptors results in impairment of LTD but not LTP in the hippocampal CA1 region, and prevents long-term spatial memory. Eur J Neurosci 2007; 26:1166-72. [PMID: 17767495 DOI: 10.1111/j.1460-9568.2007.05742.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently it has emerged that hippocampal long-term depression (LTD) may play an important role in the acquisition and storage of spatial memories. This form of synaptic plasticity is tightly regulated by metabotropic glutamate receptors (mGluRs) that negatively couple to adenylyl cyclase. Activation of group III mGluRs is necessary for persistent hippocampal LTD, but is not required for depotentiation or long-term potentiation (LTP) in the dentate gyrus in vivo. In the CA1 region antagonism of group III mGluRs prevents LTD in vivo. Effects on LTP in vivo are as yet unknown. We investigated the effects of group III mGluR antagonism on LTP and LTD at Schaffer collateral-CA1 synapses, and on spatial learning in the eight-arm radial maze. Daily application of the group III mGluR antagonist (R,S)-alpha-cyclopropyl-4-phosphonophenylglycine (CPPG) resulted in impairment of long-term (reference) memory, with effects becoming apparent 4 days after training and drug treatment began. Short-term (working) memory was unaffected throughout the 10-day study. Application of CPPG prevented LTD, but not LTP, in the CA1 region. These data suggest that activation of group III mGluRs is required for the establishment of spatial long-term memory. Their exclusive role in mediating hippocampal LTD provides correlational evidence for a role for LTD in the type of spatial learning studied.
Collapse
Affiliation(s)
- Bengi Altinbilek
- Learning and Memory Research, Medical Faculty, Ruhr University Bochum, Germany
| | | |
Collapse
|
44
|
Suzuki G, Tsukamoto N, Fushiki H, Kawagishi A, Nakamura M, Kurihara H, Mitsuya M, Ohkubo M, Ohta H. In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther 2007; 323:147-56. [PMID: 17609420 DOI: 10.1124/jpet.107.124701] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Novel isoxazolopyridone derivatives that are metabotropic glutamate receptor (mGluR) 7 antagonists were discovered and pharmacologically characterized. 5-Methyl-3,6-diphenylisoxazolo[4,5-c]pyridin-4(5H)-one (MDIP) was identified by random screening, and 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP) was produced by chemical modification of MDIP. MDIP and MMPIP inhibited L-(+)-2-amino-4-phosphonobutyric acid (L-AP4)-induced intracellular Ca2+ mobilization in Chinese hamster ovary (CHO) cells coexpressing rat mGluR7 with Galpha(15) (IC50 = 20 and 26 nM). The maximal response in agonist concentration-response curves was reduced in the presence of MMPIP, and its antagonism is reversible. MMPIP did not displace [3H](2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) bound to mGluR7. These results suggested that these isoxazolopyridone derivatives are allosteric antagonists. In CHO cells expressing rat mGluR7, MDIP and MMPIP inhibited l-AP4-induced inhibition of forskolin-stimulated cAMP accumulation (IC50 = 99 and 220 nM). In CHO cells coexpressing human mGluR7 with Galpha(15), MDIP and MMPIP also inhibited the l-AP4-induced cAMP response. The maximal degree of inhibition by MMPIP was higher than that by MDIP in a cAMP assay. MMPIP was able to antagonize an allosteric agonist, the N,N'-dibenzhydryl-ethane-1,2-diamine dihydrochloride (AMN082)-induced inhibition of cAMP accumulation. In the absence of these agonists, MMPIP caused a further increase in forskolin-stimulated cAMP levels in CHO cells expressing mGluR7, whereas a competitive antagonist, LY341495, did not. This result indicates that MMPIP has an inverse agonistic activity. The intrinsic activity of MMPIP was pertussis toxin-sensitive and mGluR7-dependent. MMPIP at concentrations of at least 1 microM had no significant effect on mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, and mGluR8. MMPIP is the first allosteric mGluR7-selective antagonist that could potentially be useful as a pharmacological tool for elucidating the roles of mGluR7 on central nervous system functions.
Collapse
Affiliation(s)
- Gentaroh Suzuki
- Tsukuba Research Institute, Banyu Pharmaceutical Co., Ltd., 3 Okubo, Tsukuba, Ibaraki 300-2611, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Callaerts-Vegh Z, Beckers T, Ball SM, Baeyens F, Callaerts PF, F. Cryan J, Molnar E, D'Hooge R. Concomitant deficits in working memory and fear extinction are functionally dissociated from reduced anxiety in metabotropic glutamate receptor 7-deficient mice. J Neurosci 2006; 26:6573-82. [PMID: 16775145 PMCID: PMC6674050 DOI: 10.1523/jneurosci.1497-06.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 04/25/2006] [Indexed: 11/21/2022] Open
Abstract
Metabotropic glutamate receptor 7 (mGluR7), a receptor with a distinct brain distribution and a putative role in anxiety, emotional responding, and spatial working memory, could be an interesting therapeutic target for fear and anxiety disorders. mGluR7-deficient (mGluR7-/-) mice showed essentially normal performance in tests for neuromotor and exploratory activity and passive avoidance learning but prominent anxiolytic behavior in two anxiety tests. They showed a delayed learning curve during the acquisition of the hidden-platform water maze, and three interspersed probe trials indicated that mGluR7-/- mice were slower to acquire spatial information. Working memory in the water maze task and the radial arm maze was impaired in mGluR7-/- mice compared with mGluR7+/+. mGluR7-/- mice also displayed a higher resistance to extinction of fear-elicited response suppression in a conditioned emotional response protocol. In a non-fear-based water maze protocol, mGluR7-/- mice displayed similar delayed extinction. These observed behavioral changes are probably not attributable to changes in AMPA or NMDA receptor function because expression levels of AMPA and NMDA receptors were unaltered. Extinction of conditioned fear is an active and context-dependent form of inhibitory learning and an experimental model for therapeutic fear reduction. It appears to depend on glutamatergic and higher-level brain functions similar to those involved in spatial working memory but functionally dissociated from those that mediate constitutional responses in anxiety tests.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Anxiety/physiopathology
- Avoidance Learning/physiology
- Behavior, Animal
- Conditioning, Operant/physiology
- Disease Models, Animal
- Evoked Potentials, Visual/physiology
- Exploratory Behavior/physiology
- Extinction, Psychological/physiology
- Fear/psychology
- Female
- Gene Expression/physiology
- Immunohistochemistry
- Interpersonal Relations
- Male
- Maze Learning/physiology
- Memory, Short-Term/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Motor Activity/genetics
- Psychomotor Performance/physiology
- Receptors, AMPA/metabolism
- Receptors, Metabotropic Glutamate/deficiency
- Receptors, N-Methyl-D-Aspartate/metabolism
Collapse
|