1
|
Birhanu AG. Mass spectrometry-based proteomics as an emerging tool in clinical laboratories. Clin Proteomics 2023; 20:32. [PMID: 37633929 PMCID: PMC10464495 DOI: 10.1186/s12014-023-09424-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/03/2023] [Indexed: 08/28/2023] Open
Abstract
Mass spectrometry (MS)-based proteomics have been increasingly implemented in various disciplines of laboratory medicine to identify and quantify biomolecules in a variety of biological specimens. MS-based proteomics is continuously expanding and widely applied in biomarker discovery for early detection, prognosis and markers for treatment response prediction and monitoring. Furthermore, making these advanced tests more accessible and affordable will have the greatest healthcare benefit.This review article highlights the new paradigms MS-based clinical proteomics has created in microbiology laboratories, cancer research and diagnosis of metabolic disorders. The technique is preferred over conventional methods in disease detection and therapy monitoring for its combined advantages in multiplexing capacity, remarkable analytical specificity and sensitivity and low turnaround time.Despite the achievements in the development and adoption of a number of MS-based clinical proteomics practices, more are expected to undergo transition from bench to bedside in the near future. The review provides insights from early trials and recent progresses (mainly covering literature from the NCBI database) in the application of proteomics in clinical laboratories.
Collapse
|
2
|
Li J, He C, Gong J, Wang X, Liu C, Deng A, Zhu L. Identification of a novel CNV at the APC gene in a Chinese family with familial adenomatous polyposis. Front Mol Biosci 2023; 10:1234296. [PMID: 37577746 PMCID: PMC10415011 DOI: 10.3389/fmolb.2023.1234296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Familial adenomatous polyposis (FAP) is the second most commonly inherited colorectal cancer (CRC) predisposition caused by germline mutations within the adenomatous polyposis coli (APC) gene. The molecular defects and clinical manifestations of two FAP families were analyzed, and individual prevention strategies suitable for mutation carriers in different families were proposed. Methods and results: The pathogenic gene mutations were identified among the two families using whole-exome sequencing and verified with Sanger sequencing or quantitative polymerase chain reaction (qPCR). One novel (GRCh37:Chr5: 112145676-112174368, del, 28,692 bp) and a known (c.C847T:p.R283X) mutation in the APC gene were pathogenic mutations for FAP, according to the sequencing data and tumorigenesis pattern among the family members. The two mutations led to a premature translational stop signal, synthesizing an absent or disrupted protein product. Conclusion: Our findings expand the known germline mutation spectrum of the APC gene among the Chinese population. This reaffirms the importance of genetic testing in FAP. Genetic consultation and regular follow-ups are necessary for the individualized treatment of cancer-afflicted families with APC expression deficiency. Additional work is required to develop safe and effective chemotherapy and immunotherapy for FAP based on the mutation type.
Collapse
Affiliation(s)
- Juyi Li
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengzhi He
- Department of Gastrointestinal Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Gong
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiufang Wang
- Department of Pain, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Aiping Deng
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Zhu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Abdul Razzaq EA, Bajbouj K, Bouzid A, Alkhayyal N, Hamoudi R, Bendardaf R. Transcriptomic Changes Associated with ERBB2 Overexpression in Colorectal Cancer Implicate a Potential Role of the Wnt Signaling Pathway in Tumorigenesis. Cancers (Basel) 2022; 15:130. [PMID: 36612126 PMCID: PMC9817785 DOI: 10.3390/cancers15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer mortality worldwide. Precision medicine using OMICs guided by transcriptomic profiling has improved disease diagnosis and prognosis by identifying many CRC targets. One such target that has been actively pursued is an erbb2 receptor tyrosine kinase 2 (ERBB2) (Human Epidermal Growth Factor Receptor 2 (HER2)), which is overexpressed in around 3-5% of patients with CRC worldwide. Despite targeted therapies against HER2 showing significant improvement in disease outcomes in multiple clinical trials, to date, no HER2-based treatment has been clinically approved for CRC. In this study we performed whole transcriptome ribonucleic acid (RNA) sequencing on 11 HER2+ and 3 HER2- CRC patients with advanced stages II, III and IV of the disease. In addition, transcriptomic profiling was carried out on CRC cell lines (HCT116 and HT29) and normal colon cell lines (CCD841 and CCD33), ectopically overexpressing ERBB2. Our analysis revealed transcriptomic changes involving many genes in both CRC cell lines overexpressing ERBB2 and in HER2+ patients, compared to normal colon cell lines and HER2- patients, respectively. Gene Set Enrichment Analysis indicated a role for HER2 in regulating CRC pathogenesis, with Wnt/β-catenin signaling being mediated via a HER2-dependent regulatory pathway impacting expression of the homeobox gene NK2 homeobox 5 (NKX2-5). Results from this study thus identified putative targets that are co-expressed with HER2 in CRC warranting further investigation into their role in CRC pathogenesis.
Collapse
Affiliation(s)
- Eman A. Abdul Razzaq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Khuloud Bajbouj
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Amal Bouzid
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Noura Alkhayyal
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates
| | - Rifat Hamoudi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London WC1E 6BT, UK
| | - Riyad Bendardaf
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Oncology Unit, University Hospital Sharjah, Sharjah P.O. Box 72772, United Arab Emirates
| |
Collapse
|
4
|
Ivanova M, Venetis K, Guerini-Rocco E, Bottiglieri L, Mastropasqua MG, Garrone O, Fusco N, Ghidini M. HER2 in Metastatic Colorectal Cancer: Pathology, Somatic Alterations, and Perspectives for Novel Therapeutic Schemes. Life (Basel) 2022; 12:1403. [PMID: 36143438 PMCID: PMC9502498 DOI: 10.3390/life12091403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
HER2 is an emerging biomarker in colorectal cancer (CRC). This oncogene plays an essential role in regulating cell proliferation, differentiation, migration, and, more in general, tumorigenesis and tumor progression. The most frequent types of HER2 alterations in CRC include gene amplification and missense mutations in 7-8% of CRC, often being mirrored by HER2 protein overexpression, representing founder events in solid tumors, including CRC. There are currently no approved HER2-targeted therapy guidelines for CRC; however, several studies have shown that HER2 can be effectively targeted in meta-static CRC settings. In this review, we discuss the current knowledge of HER2 testing in CRC and the immediate future perspectives for HER2 targeting in the metastatic setting.
Collapse
Affiliation(s)
- Mariia Ivanova
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Konstantinos Venetis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Luca Bottiglieri
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Mauro Giuseppe Mastropasqua
- Department of Emergency and Organ Transplantation, School of Medicine, University of Bari “Aldo Moro”, Piazza G Cesare, 11, 70124 Bari, Italy
| | - Ornella Garrone
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Nicola Fusco
- Division of Pathology, IEO, European Institute of Oncology IRCCS, University of Milan, Via Giuseppe Ripamonti 435, 20141 Milan, Italy
| | - Michele Ghidini
- Medical Oncology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
5
|
Gupta K, Jones JC, Farias VDA, Mackeyev Y, Singh PK, Quiñones-Hinojosa A, Krishnan S. Identification of Synergistic Drug Combinations to Target KRAS-Driven Chemoradioresistant Cancers Utilizing Tumoroid Models of Colorectal Adenocarcinoma and Recurrent Glioblastoma. Front Oncol 2022; 12:840241. [PMID: 35664781 PMCID: PMC9158132 DOI: 10.3389/fonc.2022.840241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/28/2022] [Indexed: 11/20/2022] Open
Abstract
Treatment resistance is observed in all advanced cancers. Colorectal cancer (CRC) presenting as colorectal adenocarcinoma (COAD) is the second leading cause of cancer deaths worldwide. Multimodality treatment includes surgery, chemotherapy, and targeted therapies with selective utilization of immunotherapy and radiation therapy. Despite the early success of anti-epidermal growth factor receptor (anti-EGFR) therapy, treatment resistance is common and often driven by mutations in APC, KRAS, RAF, and PI3K/mTOR and positive feedback between activated KRAS and WNT effectors. Challenges in the direct targeting of WNT regulators and KRAS have caused alternative actionable targets to gain recent attention. Utilizing an unbiased drug screen, we identified combinatorial targeting of DDR1/BCR-ABL signaling axis with small-molecule inhibitors of EGFR-ERBB2 to be potentially cytotoxic against multicellular spheroids obtained from WNT-activated and KRAS-mutant COAD lines (HCT116, DLD1, and SW480) independent of their KRAS mutation type. Based on the data-driven approach using available patient datasets (The Cancer Genome Atlas (TCGA)), we constructed transcriptomic correlations between gene DDR1, with an expression of genes for EGFR, ERBB2-4, mitogen-activated protein kinase (MAPK) pathway intermediates, BCR, and ABL and genes for cancer stem cell reactivation, cell polarity, and adhesion; we identified a positive association of DDR1 with EGFR, ERBB2, BRAF, SOX9, and VANGL2 in Pan-Cancer. The evaluation of the pathway network using the STRING database and Pathway Commons database revealed DDR1 protein to relay its signaling via adaptor proteins (SHC1, GRB2, and SOS1) and BCR axis to contribute to the KRAS-PI3K-AKT signaling cascade, which was confirmed by Western blotting. We further confirmed the cytotoxic potential of our lead combination involving EGFR/ERBB2 inhibitor (lapatinib) with DDR1/BCR-ABL inhibitor (nilotinib) in radioresistant spheroids of HCT116 (COAD) and, in an additional devastating primary cancer model, glioblastoma (GBM). GBMs overexpress DDR1 and share some common genomic features with COAD like EGFR amplification and WNT activation. Moreover, genetic alterations in genes like NF1 make GBMs have an intrinsically high KRAS activity. We show the combination of nilotinib plus lapatinib to exhibit more potent cytotoxic efficacy than either of the drugs administered alone in tumoroids of patient-derived recurrent GBMs. Collectively, our findings suggest that combinatorial targeting of DDR1/BCR-ABL with EGFR-ERBB2 signaling may offer a therapeutic strategy against stem-like KRAS-driven chemoradioresistant tumors of COAD and GBM, widening the window for its applications in mainstream cancer therapeutics.
Collapse
Affiliation(s)
- Kshama Gupta
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Jeremy C Jones
- Department of Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Yuri Mackeyev
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Pankaj K Singh
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Alfredo Quiñones-Hinojosa
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States.,Department of Oncology, Mayo Clinic, Jacksonville, FL, United States.,Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
6
|
Tan ES, Knepper TC, Wang X, Permuth JB, Wang L, Fleming JB, Xie H. Copy Number Alterations as Novel Biomarkers and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2022; 14:2223. [PMID: 35565354 PMCID: PMC9101426 DOI: 10.3390/cancers14092223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
In colorectal cancer, somatic mutations have played an important role as prognostic and predictive biomarkers, with some also functioning as therapeutic targets. Another genetic aberration that has shown significance in colorectal cancer is copy number alterations (CNAs). CNAs occur when a change to the DNA structure propagates gain/amplification or loss/deletion in sections of DNA, which can often lead to changes in protein expression. Multiple techniques have been developed to detect CNAs, including comparative genomic hybridization with microarray, low pass whole genome sequencing, and digital droplet PCR. In this review, we summarize key findings in the literature regarding the role of CNAs in the pathogenesis of colorectal cancer, from adenoma to carcinoma to distant metastasis, and discuss the roles of CNAs as prognostic and predictive biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaine S. Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Todd C. Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12901 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| |
Collapse
|
7
|
Plavec TV, Mitrović A, Perišić Nanut M, Štrukelj B, Kos J, Berlec A. Targeting of fluorescent Lactococcus lactis to colorectal cancer cells through surface display of tumour-antigen binding proteins. Microb Biotechnol 2021; 14:2227-2240. [PMID: 34347360 PMCID: PMC8449671 DOI: 10.1111/1751-7915.13907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Development of targeted treatment for colorectal cancer is crucial to avoid side effects. To harness the possibilities offered by microbiome engineering, we prepared safe multifunctional cancer cell-targeting bacteria Lactococcus lactis. They displayed, on their surface, binding proteins for cancer-associated transmembrane receptors epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2) and co-expressed an infrared fluorescent protein for imaging. Binding of engineered L. lactis to tumour antigens EpCAM and HER2 was confirmed and characterised in vitro using soluble receptors. The proof-of-principle of targeting was demonstrated on human cell lines HEK293, HT-29 and Caco-2 with fluorescent microscopy and flow cytometry. The highest L. lactis adhesion was seen for the HEK293 cells with the overexpressed tumour antigens, where colocalisation with their tumour antigens was seen for 39% and 67% of EpCAM-targeting and HER2-targeting bacteria, respectively. On the other hand, no binding was observed to HEK293 cells without tumour antigens, confirming the selectivity of the engineered L. lactis. Apart from cell targeting in static conditions, targeting ability of engineered L. lactis was also shown in conditions of constant flow of bacterial suspension over the HEK293 cells. Successful targeting by engineered L. lactis support the future use of these bacteria in biopharmaceutical delivery for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Ana Mitrović
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
| | | | - Borut Štrukelj
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Janko Kos
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Aleš Berlec
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| |
Collapse
|
8
|
Abdul Razzaq EA, Venkatachalam T, Bajbouj K, Rahmani M, Mahdami A, Rawat S, Mansuri N, Alhashemi H, Hamoudi RA, Bendardaf R. HER2 overexpression is a putative diagnostic and prognostic biomarker for late-stage colorectal cancer in North African patients. Libyan J Med 2021; 16:1955462. [PMID: 34319852 PMCID: PMC8330780 DOI: 10.1080/19932820.2021.1955462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Colorectal cancer (CRC) is one of the leading cancers in the world. Even though its mortality and pathophysiology are well documented in the US and the European countries, it is seldom studied in North African population. Recent studies have shown link of HER2 overexpression in oesophageal and gastric cancers. The aim of this study is to assess the HER2 protein and mRNA expression and its correlation with tumor pathogenesis in Libyan CRC patients. Methodology: A total of 17 FFPE tissue blocks were collected from patients with primary CRC. The HER2 protein expression was assessed by immunohistochemistry and the mRNA expression was assessed using qRT-PCR. Survival analysis of the role of HER2 overexpression on rectal adenocarcinoma was carried out on additional 165 patients. Results: From the CRC cohort, adenocarcinoma was found to be more frequent accounting for 88.2%, and 11.8% for mucinous adenocarcinomas. Almost 47% of the cases were positive for HER2 (score ≥ 2+) and about 50% adenocarcinoma cases with tumor grade II were positive for HER2. Moreover, 57.4% adenocarcinoma patients with grade-II tumor had undergone right hemicolectomy. Furthermore, significant correlation (p = 0.03) between the HER2 mRNA expression with the tumor grade was observed. In addition, poor overall all survival was observed with high HER2 expression in rectum adenocarcinoma. Conclusion: To our knowledge, this is the first study that HER2 overexpression correlates with more aggressive colorectal cancer in North African population. Our study shows that HER2 overexpression associates with right colon surgeries. Also, the correlation of mRNA and protein expression could warrant the implementation of a nationwide screening program for HER2 positivity in CRC patients. Taken together, stratifying patients according to HER2 expression can help in the diagnosis and prognosis of CRC patients from North African origin.
Collapse
Affiliation(s)
- Eman A Abdul Razzaq
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Thenmozhi Venkatachalam
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohamed Rahmani
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Amena Mahdami
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | - Surendra Rawat
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
| | | | | | - Rifat Akram Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.,Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Riyad Bendardaf
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates.,Oncology Unit, University Hospital Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Sun Z, Liu Y, Ouyang Q, Liu Z, Liu Y. Research progress of omics technology in the field of tumor resistance: From single -omics to multi -omics combination application. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2021; 46:620-627. [PMID: 34275931 PMCID: PMC10930197 DOI: 10.11817/j.issn.1672-7347.2021.200561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 11/03/2022]
Abstract
Drug resistance is the main obstacle in the treatment of many cancers. It is of great clinical significance to study the mechanism of drug resistance and find new targets. Multi-omics mainly includes genomics, epigenomics, transcriptomics, proteomics, metabolomics, and radiomics. In recent years, the research of tumor resistance has made rapid development, which has significantly accelerated the discovery of new targets.
Collapse
Affiliation(s)
- Ze'en Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| | - Yujie Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Qianying Ouyang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| | - Yingzi Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008.
- Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, China.
| |
Collapse
|
10
|
Topham JT, Karasinska JM, Lee MKC, Csizmok V, Williamson LM, Jang GH, Denroche RE, Tsang ES, Kalloger SE, Wong HL, O'Kane GM, Moore RA, Mungall AJ, Notta F, Loree JM, Wilson JM, Bathe O, Tang PA, Goodwin R, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Renouf DJ, Schaeffer DF. Subtype-Discordant Pancreatic Ductal Adenocarcinoma Tumors Show Intermediate Clinical and Molecular Characteristics. Clin Cancer Res 2021; 27:150-157. [PMID: 33051307 DOI: 10.1158/1078-0432.ccr-20-2831] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/09/2020] [Accepted: 10/09/2020] [Indexed: 01/03/2023]
Abstract
PURPOSE RNA-sequencing-based subtyping of pancreatic ductal adenocarcinoma (PDAC) has been reported by multiple research groups, each using different methodologies and patient cohorts. "Classical" and "basal-like" PDAC subtypes are associated with survival differences, with basal-like tumors associated with worse prognosis. We amalgamated various PDAC subtyping tools to evaluate the potential of such tools to be reliable in clinical practice. EXPERIMENTAL DESIGN Sequencing data for 574 PDAC tumors was obtained from prospective trials and retrospective public databases. Six published PDAC subtyping strategies (Moffitt regression tools, clustering-based Moffitt, Collisson, Bailey, and Karasinska subtypes) were used on each sample, and results were tested for subtype call consistency and association with survival. RESULTS Basal-like and classical subtype calls were concordant in 88% of patient samples, and survival outcomes were significantly different (P < 0.05) between prognostic subtypes. Twelve percent of tumors had subtype-discordant calls across the different methods, showing intermediate survival in univariate and multivariate survival analyses. Transcriptional profiles compatible with that of a hybrid subtype signature were observed for subtype-discordant tumors, in which classical and basal-like genes were concomitantly expressed. Subtype-discordant tumors showed intermediate molecular characteristics, including subtyping gene expression (P < 0.0001) and mutant KRAS allelic imbalance (P < 0.001). CONCLUSIONS Nearly 1 in 6 patients with PDAC have tumors that fail to reliably fall into the classical or basal-like PDAC subtype categories, based on two regression tools aimed toward clinical practice. Rather, these patient tumors show intermediate prognostic and molecular traits. We propose close consideration of the non-binary nature of PDAC subtypes for future incorporation of subtyping into clinical practice.
Collapse
Affiliation(s)
| | | | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Veronika Csizmok
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Erica S Tsang
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | | | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jonathan M Loree
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Oliver Bathe
- The University of Calgary, Calgary, Alberta, Canada
| | | | - Rachel Goodwin
- The Ottawa Hospital Cancer Centre, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Janessa Laskin
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17:17. [PMID: 32489335 PMCID: PMC7247207 DOI: 10.1186/s12014-020-09283-w] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.
Collapse
Affiliation(s)
- Andrew Macklin
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Shahbaz Khan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
12
|
Qawoogha SS, Shahiwala A. Identification of potential anticancer phytochemicals against colorectal cancer by structure-based docking studies. J Recept Signal Transduct Res 2020; 40:67-76. [PMID: 31971455 DOI: 10.1080/10799893.2020.1715431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is the third most common malignancy among both the genders globally. Therefore, searching of new therapeutic options is utmost priority. Molecular docking is a widely used tool in drug discovery to identify potential new therapeutic targets. Molecular docking plays a vital role in the visualization of ligand-protein interaction at an atomic level and enhancing our understanding of the ligand behavior thus aiding in the structure-based drug designing. Selected phytochemicals with potential anticancer activities were examined for their binding affinities to the selected VEGFR and EGFR receptors. The receptor protein 3D structures were obtained from Protein Data Bank, and the molecular docking was performed using UCSF Chimera software with its AutoDock Vina tool. Out of 18 compounds screened, Yuanhuanin, Theaflavin, and Genistein have shown highest binding energies. Findings of this study should be further evaluated for their potential use in CRC treatment, management, and prevention.
Collapse
|
13
|
Karasinska JM, Topham JT, Kalloger SE, Jang GH, Denroche RE, Culibrk L, Williamson LM, Wong HL, Lee MKC, O'Kane GM, Moore RA, Mungall AJ, Moore MJ, Warren C, Metcalfe A, Notta F, Knox JJ, Gallinger S, Laskin J, Marra MA, Jones SJM, Renouf DJ, Schaeffer DF. Altered Gene Expression along the Glycolysis-Cholesterol Synthesis Axis Is Associated with Outcome in Pancreatic Cancer. Clin Cancer Res 2019; 26:135-146. [PMID: 31481506 DOI: 10.1158/1078-0432.ccr-19-1543] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/11/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of clinically actionable molecular subtypes of pancreatic ductal adenocarcinoma (PDAC) is key to improving patient outcome. Intertumoral metabolic heterogeneity contributes to cancer survival and the balance between distinct metabolic pathways may influence PDAC outcome. We hypothesized that PDAC can be stratified into prognostic metabolic subgroups based on alterations in the expression of genes involved in glycolysis and cholesterol synthesis. EXPERIMENTAL DESIGN We performed bioinformatics analysis of genomic, transcriptomic, and clinical data in an integrated cohort of 325 resectable and nonresectable PDAC. The resectable datasets included retrospective The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) cohorts. The nonresectable PDAC cohort studies included prospective COMPASS, PanGen, and BC Cancer Personalized OncoGenomics program (POG). RESULTS On the basis of the median normalized expression of glycolytic and cholesterogenic genes, four subgroups were identified: quiescent, glycolytic, cholesterogenic, and mixed. Glycolytic tumors were associated with the shortest median survival in resectable (log-rank test P = 0.018) and metastatic settings (log-rank test P = 0.027). Patients with cholesterogenic tumors had the longest median survival. KRAS and MYC-amplified tumors had higher expression of glycolytic genes than tumors with normal or lost copies of the oncogenes (Wilcoxon rank sum test P = 0.015). Glycolytic tumors had the lowest expression of mitochondrial pyruvate carriers MPC1 and MPC2. Glycolytic and cholesterogenic gene expression correlated with the expression of prognostic PDAC subtype classifier genes. CONCLUSIONS Metabolic classification specific to glycolytic and cholesterogenic pathways provides novel biological insight into previously established PDAC subtypes and may help develop personalized therapies targeting unique tumor metabolic profiles.See related commentary by Mehla and Singh, p. 6.
Collapse
Affiliation(s)
| | | | - Steve E Kalloger
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | | | - Luka Culibrk
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Hui-Li Wong
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Michael K C Lee
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Grainne M O'Kane
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Richard A Moore
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Malcolm J Moore
- Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Cassia Warren
- Pancreas Centre BC, Vancouver, British Columbia, Canada
| | | | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Jennifer J Knox
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.,University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Janessa Laskin
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada
| | - Marco A Marra
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre BC, Vancouver, British Columbia, Canada.,Division of Medical Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre BC, Vancouver, British Columbia, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Anatomic Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Tessier-Cloutier B, Cai E, Schaeffer DF. Off-label use of common predictive biomarkers in gastrointestinal malignancies: a critical appraisal. Diagn Pathol 2019; 14:62. [PMID: 31221175 PMCID: PMC6587260 DOI: 10.1186/s13000-019-0843-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
The use of immunohistochemistry (IHC) as a companion diagnostic is an increasingly important part of the case workup by pathologists and is often central to clinical decision making. New predictive molecular markers are constantly sought for to improve treatment stratification parallel to drug development. Unfortunately, official biomarker guidelines lag behind, and pathologists are often left hesitating when medical oncologists request off-labelled biomarker testing. We performed a literature review of five commonly requested off-label IHC predictive biomarkers in gastrointestinal tract (GIT) malignancies: HER2, mismatch repair (MMR), PD-L1, BRAF V600E and ROS1. We found that HER2 amplification is rare and poorly associated to IHC overexpression in extracolonic and extragastric GIT cancers; however in KRAS wild type colorectal cancers, which fail conventional treatment, HER2 IHC may be useful and should be considered. For MMR testing, more evidence is needed to recommend reflex testing in GIT cancers for treatment purposes. MMR testing should not be discouraged in patients considered for second line checkpoint inhibitor therapy. With the exception of gastric tumors, PD-L1 IHC is a weak predictor of checkpoint inhibitor response in the GIT and should be replaced by MMR in this context. BRAF inhibitors showed activity in BRAF V600E mutated cholangiocarcinomas and pancreatic carcinomas in non-first line settings. ROS1 translocation is extremely rare and poorly correlated to ROS1 IHC expression in the GIT; currently there is no role for ROS1 IHC testing in GIT cancers. Overall, the predictive biomarker literature has grown exponentially, and official guidelines need to be updated more regularly to support pathologists’ testing decisions.
Collapse
Affiliation(s)
- Basile Tessier-Cloutier
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada
| | - Ellen Cai
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada
| | - David F Schaeffer
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada. .,Department of Pathology and Laboratory Medicine, Vancouver General Hospital, 910 West 10th Ave, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Belli V, Matrone N, Napolitano S, Migliardi G, Cottino F, Bertotti A, Trusolino L, Martinelli E, Morgillo F, Ciardiello D, De Falco V, Giunta EF, Bracale U, Ciardiello F, Troiani T. Combined blockade of MEK and PI3KCA as an effective antitumor strategy in HER2 gene amplified human colorectal cancer models. J Exp Clin Cancer Res 2019; 38:236. [PMID: 31164152 PMCID: PMC6549349 DOI: 10.1186/s13046-019-1230-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/13/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Targeting the epidermal growth factor receptor (EGFR) either alone or in combination with chemotherapy is an effective treatment for patients with RAS wild-type metastatic colorectal cancer (mCRC). However, only a small percentage of mCRC patients receive clinical benefits from anti-EGFR therapies, due to the development of resistance mechanisms. In this regard, HER2 has emerged as an actionable target in the treatment of mCRC patients with resistance to anti-EGFR therapy. METHODS We have used SW48 and LIM1215 human colon cancer cell lines, quadruple wild-type for KRAS, NRAS, BRAF and PI3KCA genes, and their HER2-amplified (LIM1215-HER2 and SW48-HER2) derived cells to perform in vitro and in vivo studies in order to identify novel therapeutic strategies in HER2 gene amplified human colorectal cancer. RESULTS LIM1215-HER2 and SW48-HER2 cells showed over-expression and activation of the HER family receptors and concomitant intracellular downstream signaling including the pro-survival PI3KCA/AKT and the mitogenic RAS/RAF/MEK/MAPK pathways. HER2-amplified cells were treated with several agents including anti-EGFR antibodies (cetuximab, SYM004 and MM151); anti-HER2 (trastuzumab, pertuzumab and lapatinib) inhibitors; anti-HER3 (duligotuzumab) inhibitors; and MEK and PI3KCA inhibitors, such as refametinib and pictilisib, as single agents and in combination. Subsequently, different in vivo experiments have been performed. MEK plus PI3KCA inhibitors treatment determined the best antitumor activity. These results were validated in vivo in HER2-amplified patient derived tumor xenografts from three metastatic colorectal cancer patients. CONCLUSIONS These results suggest that combined therapy with MEK and PI3KCA inhibitors could represent a novel and effective treatment option for HER2-amplified colorectal cancer.
Collapse
Affiliation(s)
- Valentina Belli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Nunzia Matrone
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Stefania Napolitano
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
- Division of Cancer Medicine, Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Giorgia Migliardi
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Francesca Cottino
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
| | - Andrea Bertotti
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Livio Trusolino
- Department of Oncology, University of Torino, 10060 Candiolo, Turin, Italy
- Candiolo Cancer Institute – FPO IRCCS, 10060 Candiolo, Turin, Italy
| | - Erika Martinelli
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Floriana Morgillo
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Davide Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Vincenzo De Falco
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Emilio Francesco Giunta
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Umberto Bracale
- Department of Endocrinology, Gastroenterology and Endoscopic Surgery, Università di Napoli Federico II, 80131 Naples, Italy
| | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Via S. Pansini 5, 80131 Naples, Italy
| |
Collapse
|
16
|
Siravegna G, Lazzari L, Crisafulli G, Sartore-Bianchi A, Mussolin B, Cassingena A, Martino C, Lanman RB, Nagy RJ, Fairclough S, Rospo G, Corti G, Bartolini A, Arcella P, Montone M, Lodi F, Lorenzato A, Vanzati A, Valtorta E, Cappello G, Bertotti A, Lonardi S, Zagonel V, Leone F, Russo M, Balsamo A, Truini M, Di Nicolantonio F, Amatu A, Bonazzina E, Ghezzi S, Regge D, Vanzulli A, Trusolino L, Siena S, Marsoni S, Bardelli A. Radiologic and Genomic Evolution of Individual Metastases during HER2 Blockade in Colorectal Cancer. Cancer Cell 2018; 34:148-162.e7. [PMID: 29990497 DOI: 10.1016/j.ccell.2018.06.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 04/18/2018] [Accepted: 06/07/2018] [Indexed: 02/07/2023]
Abstract
Targeting HER2 is effective in 24% of ERBB2 amplified metastatic colorectal cancer; however, secondary resistance occurs in most of the cases. We studied the evolution of individual metastases during treatment to discover spatially resolved determinants of resistance. Circulating tumor DNA (ctDNA) analysis identified alterations associated with resistance in the majority of refractory patients. ctDNA profiles and lesion-specific radiographic reports revealed organ- or metastasis-private evolutionary patterns. When radiologic assessments documented progressive disease in target lesions, response to HER2 blockade was retained in other metastases. Genomic and functional analyses on samples and cell models from eight metastases of a patient co-recruited to a postmortem study unveiled lesion-specific evolutionary trees and pharmacologic vulnerabilities. Lesion size and contribution of distinct metastases to plasma ctDNA were correlated.
Collapse
Affiliation(s)
| | - Luca Lazzari
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; FIRC Institute of Molecular Oncology (IFOM), Milan, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | - Giovanni Crisafulli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | | | | | - Andrea Cassingena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Cosimo Martino
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | | | | | | | - Giuseppe Rospo
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | - Giorgio Corti
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | | | - Pamela Arcella
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | - Monica Montone
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | - Francesca Lodi
- Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | | | - Alice Vanzati
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Emanuele Valtorta
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | | | - Andrea Bertotti
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | - Sara Lonardi
- Istituto Oncologico Veneto - IRCCS, Oncologia Medica 1, Padova 35128, Italy
| | - Vittorina Zagonel
- Istituto Oncologico Veneto - IRCCS, Oncologia Medica 1, Padova 35128, Italy
| | - Francesco Leone
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | | | | | - Mauro Truini
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Federica Di Nicolantonio
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | - Alessio Amatu
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Erica Bonazzina
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Silvia Ghezzi
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Daniele Regge
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy
| | - Angelo Vanzulli
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20122, Italy
| | - Livio Trusolino
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy
| | - Salvatore Siena
- Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan 20122, Italy
| | - Silvia Marsoni
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; FIRC Institute of Molecular Oncology (IFOM), Milan, Italy; Niguarda Cancer Center, Grande Ospedale Metropolitano Niguarda, Milan 20162, Italy
| | - Alberto Bardelli
- Candiolo Cancer Institute-FPO, IRCCS, Candiolo, TO, Italy; Department of Oncology, University of Torino, Candiolo, TO 10060, Italy.
| |
Collapse
|