1
|
Ek T, Ibrahim RR, Vogt H, Georgantzi K, Träger C, Gaarder J, Djos A, Rahmqvist I, Mellström E, Pujol-Calderón F, Vannas C, Hansson L, Fagman H, Treis D, Fransson S, Österlund T, Chuang TP, Verhoeven BM, Ståhlberg A, Palmer RH, Hallberg B, Martinsson T, Kogner P, Dalin M. Long-Lasting Response to Lorlatinib in Patients with ALK-Driven Relapsed or Refractory Neuroblastoma Monitored with Circulating Tumor DNA Analysis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2553-2564. [PMID: 39177282 PMCID: PMC11440348 DOI: 10.1158/2767-9764.crc-24-0338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Patients with anaplastic lymphoma kinase (ALK)-driven neuroblastoma may respond to tyrosine kinase inhibitors, but resistance to treatment occurs and methods currently used for detection of residual disease have limited sensitivity. Here, we present a national unselected cohort of five patients with relapsed or refractory ALK-driven neuroblastoma treated with lorlatinib as monotherapy and test the potential of targeted circulating tumor DNA (ctDNA) analysis as a guide for treatment decisions in these patients. We developed a sequencing panel for ultrasensitive detection of ALK mutations associated with neuroblastoma or resistance to tyrosine kinase inhibitors and used it for ctDNA analysis in 83 plasma samples collected longitudinally from the four patients who harbored somatic ALK mutations. All four patients with ALK p.R1275Q experienced major responses and were alive 35 to 61 months after starting lorlatinib. A fifth patient with ALK p.F1174L initially had a partial response but relapsed after 10 months of treatment. In all cases, ctDNA was detected at the start of lorlatinib single-agent treatment and declined gradually, correlating with clinical responses. In the two patients exhibiting relapse, ctDNA increased 9 and 3 months, respectively, before clinical detection of disease progression. In one patient harboring HRAS p.Q61L in the relapsed tumor, retrospective ctDNA analysis showed that the mutation appeared de novo after 8 months of lorlatinib treatment. We conclude that some patients with relapsed or refractory high-risk neuroblastoma show durable responses to lorlatinib as monotherapy, and targeted ctDNA analysis is effective for evaluation of treatment and early detection of relapse in ALK-driven neuroblastoma. SIGNIFICANCE We present five patients with ALK-driven relapsed or refractory neuroblastoma treated with lorlatinib as monotherapy. All patients responded to treatment, and four of them were alive after 3 to 5 years of follow-up. We performed longitudinal ctDNA analysis with ultra-deep sequencing of the ALK tyrosine kinase domain. We conclude that ctDNA analysis may guide treatment decisions in ALK-driven neuroblastoma, also when the disease is undetectable using standard clinical methods.
Collapse
Affiliation(s)
- Torben Ek
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Raghda R. Ibrahim
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Hartmut Vogt
- Department of Biomedical and Clinical Sciences, Crown Princess Victoria Children’s Hospital, and Division of Children’s and Women’s Health, Linköping University, Linköping, Sweden.
| | - Kleopatra Georgantzi
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Catarina Träger
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
- Department of Pediatric Hematology and Oncology, Academic Children’s Hospital, Uppsala, Sweden.
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden.
| | - Jennie Gaarder
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ida Rahmqvist
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Elisabeth Mellström
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Fani Pujol-Calderón
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Christoffer Vannas
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Lina Hansson
- Department of Oncology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Pathology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Diana Treis
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Tobias Österlund
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bronte Manouk Verhoeven
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Anders Ståhlberg
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| | - Per Kogner
- Department of Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden.
- Childhood Cancer Research Unit, Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden.
| | - Martin Dalin
- Children’s Cancer Centre, Queen Silvia Children’s Hospital, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
- Department of Pediatrics, Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Wilson I, Qiu M, Itchins M, Wang B, Huang M, Grimison P. Metastatic Non-Myofibroblastic Sarcoma Harbouring EML4-ALK Fusion-Dramatic Response to ALK Tyrosine Kinase Inhibitors and Development of Resistance Mutations. Cancer Rep (Hoboken) 2024; 7:e2164. [PMID: 39188081 PMCID: PMC11347748 DOI: 10.1002/cnr2.2164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND Anaplastic lymphoma kinase (ALK) rearrangements are rare in non-myofibroblastic sarcoma and there is limited data on the efficacy of ALK tyrosine kinase inhibitors (TKIs) and mechanisms of resistance in these patients. CASE A 58 year-old man with metastatic non-myofibroblastic sarcoma was found to have an EML4-ALK fusion on molecular sequencing. After progression on first line systemic therapy with doxorubicin, the patient received alectinib, a second generation ALK inhibitor, and had a marked clinical and radiological response. He progressed after 5 months of treatment. Repeat lung biopsy identified the emergence of an ALK I1171N resistance mutation. He was then treated with lorlatinib, again with rapid clinical improvement and significant partial radiological response. He progressed after 4 months, at which time a repeat lung biopsy identified a new ALK kinase domain mutation G1202R. The patient was subsequently treated with chemotherapy, though unfortunately died shortly after due to rapidly progressive disease. CONCLUSION This case report adds to a body of evidence demonstrating the potential transformative response to targeted therapy in non-lung solid organ tumours harbouring ALK fusions. This is the first description tracking the development of resistance mutations in a patient with non-myofibroblastic sarcoma and questions the utility of the presence of G1202R mutation as a marker of lorlatinib sensitivity in non-lung ALK rearranged tumours, contrary to experience in lung cancer.
Collapse
Affiliation(s)
- Isabella Wilson
- Department of Medical OncologyChris O'Brien LifehouseSydneyAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | - Min Qiu
- Sydpath, St Vincent's HospitalSydneyAustralia
- St Vincent's Clinical SchoolUniversity of New South WalesSydneyAustralia
| | - Malinda Itchins
- Department of Medical OncologyChris O'Brien LifehouseSydneyAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyAustralia
- Department of Medical OncologyRoyal North Shore HospitalSydneyAustralia
| | - Bin Wang
- Sydpath, St Vincent's HospitalSydneyAustralia
| | - Min Li Huang
- Sydpath, St Vincent's HospitalSydneyAustralia
- Kinghorn Centre for Cancer Genomics Medicine, Garvan Institute of Medical ResearchSydneyAustralia
| | - Peter Grimison
- Department of Medical OncologyChris O'Brien LifehouseSydneyAustralia
- Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| |
Collapse
|
3
|
Saad MN, Hamed M. Transcriptome-Wide Association Study Reveals New Molecular Interactions Associated with Melanoma Pathogenesis. Cancers (Basel) 2024; 16:2517. [PMID: 39061157 PMCID: PMC11274789 DOI: 10.3390/cancers16142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
A transcriptome-wide association study (TWAS) was conducted on genome-wide association study (GWAS) summary statistics of malignant melanoma of skin (UK Biobank dataset) and The Cancer Genome Atlas-Skin Cutaneous Melanoma (TCGA-SKCM) gene expression weights to identify melanoma susceptibility genes. The GWAS included 2465 cases and 449,799 controls, while the gene expression testing was conducted on 103 cases. Afterward, a gene enrichment analysis was applied to identify significant TWAS associations. The melanoma's gene-microRNA (miRNA) regulatory network was constructed from the TWAS genes and their corresponding miRNAs. At last, a disease enrichment analysis was conducted on the corresponding miRNAs. The TWAS detected 27 genes associated with melanoma with p-values less than 0.05 (the top three genes are LOC389458 (RBAK), C16orf73 (MEIOB), and EIF3CL). After the joint/conditional test, one gene (AMIGO1) was dropped, resulting in 26 significant genes. The Gene Ontology (GO) biological process associated the extended gene set (76 genes) with protein K11-linked ubiquitination and regulation of cell cycle phase transition. K11-linked ubiquitin chains regulate cell division. Interestingly, the extended gene set was related to different skin cancer subtypes. Moreover, the enriched pathways were nsp1 from SARS-CoV-2 that inhibit translation initiation in the host cell, cell cycle, translation factors, and DNA repair pathways full network. The gene-miRNA regulatory network identified 10 hotspot genes with the top three: TP53, BRCA1, and MDM2; and four hotspot miRNAs: mir-16, mir-15a, mir-125b, and mir-146a. Melanoma was among the top ten diseases associated with the corresponding (106) miRNAs. Our results shed light on melanoma pathogenesis and biologically significant molecular interactions.
Collapse
Affiliation(s)
- Mohamed N. Saad
- Biomedical Engineering Department, Faculty of Engineering, Minia University, Minia 61519, Egypt
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
| | - Mohamed Hamed
- Institute for Biostatistics and Informatics in Medicine and Ageing Research (IBIMA), Rostock University Medical Center, 18057 Rostock, Germany;
- Faculty of Media Engineering and Technology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
4
|
Lai WY, Chuang TP, Borenäs M, Lind DE, Hallberg B, Palmer RH. Anaplastic Lymphoma Kinase signaling stabilizes SLC3A2 expression via MARCH11 to promote neuroblastoma cell growth. Cell Death Differ 2024; 31:910-923. [PMID: 38858548 PMCID: PMC11239919 DOI: 10.1038/s41418-024-01319-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024] Open
Abstract
Solute Carrier Family 3, Member 2 (SLC3A2 or 4F2hc) is a multifunctional glycoprotein that mediates integrin-dependent signaling, acts as a trafficking chaperone for amino acid transporters, and is involved in polyamine transportation. We identified SLC3A2 as a potential Anaplastic Lymphoma Kinase (ALK) interacting partner in a BioID-proximity labeling screen in neuroblastoma (NB) cells. In this work we show that endogenous SLC3A2 and ALK interact in NB cells and that this SLC3A2:ALK interaction was abrogated upon treatment with the ALK inhibitor lorlatinib. We show here that loss of ALK activity leads to decreased SLC3A2 expression and reduced SLC3A2 protein stability in a panel of NB cell lines, while stimulation of ALK with ALKAL2 ligand resulted in increased SLC3A2 protein levels. We further identified MARCH11, an E3 ligase, as a regulator of SLC3A2 ubiquitination downstream of ALK. Further, knockdown of SLC3A2 resulted in inhibition of NB cell growth. To investigate the therapeutic potential of SLC3A2 targeting, we performed monotreatment of NB cells with AMXT-1501 (a polyamine transport inhibitor), which showed only moderate effects in NB cells. In contrast, a combination lorlatinib/AMXT-1501 treatment resulted in synergistic inhibition of cell growth in ALK-driven NB cell lines. Taken together, our results identify a novel role for the ALK receptor tyrosine kinase (RTK), working in concert with the MARCH11 E3 ligase, in regulating SLC3A2 protein stability and function in NB cells. The synergistic effect of combined ALK and polyamine transport inhibition shows that ALK/MARCH11/SLC3A2 regulation of amino acid transport is important for oncogenic growth and survival in NB cells.
Collapse
Affiliation(s)
- Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Tzu-Po Chuang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
5
|
Poei D, Ali S, Ye S, Hsu R. ALK inhibitors in cancer: mechanisms of resistance and therapeutic management strategies. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:20. [PMID: 38835344 PMCID: PMC11149099 DOI: 10.20517/cdr.2024.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/08/2024] [Indexed: 06/06/2024]
Abstract
Anaplastic lymphoma kinase (ALK) gene rearrangements have been identified as potent oncogenic drivers in several malignancies, including non-small cell lung cancer (NSCLC). The discovery of ALK inhibition using a tyrosine kinase inhibitor (TKI) has dramatically improved the outcomes of patients with ALK-mutated NSCLC. However, the emergence of intrinsic and acquired resistance inevitably occurs with ALK TKI use. This review describes the molecular mechanisms of ALK TKI resistance and discusses management strategies to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Darin Poei
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Sana Ali
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Shirley Ye
- Department of Internal Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Robert Hsu
- Division of Medical Oncology, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
6
|
Borenäs M, Umapathy G, Lind DE, Lai WY, Guan J, Johansson J, Jennische E, Schmidt A, Kurhe Y, Gabre JL, Aniszewska A, Strömberg A, Bemark M, Hall MN, den Eynden JV, Hallberg B, Palmer RH. ALK signaling primes the DNA damage response sensitizing ALK-driven neuroblastoma to therapeutic ATR inhibition. Proc Natl Acad Sci U S A 2024; 121:e2315242121. [PMID: 38154064 PMCID: PMC10769851 DOI: 10.1073/pnas.2315242121] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
High-risk neuroblastoma (NB) is a significant clinical challenge. MYCN and Anaplastic Lymphoma Kinase (ALK), which are often involved in high-risk NB, lead to increased replication stress in cancer cells, suggesting therapeutic strategies. We previously identified an ATR (ataxia telangiectasia and Rad3-related)/ALK inhibitor (ATRi/ALKi) combination as such a strategy in two independent genetically modified mouse NB models. Here, we identify an underlying molecular mechanism, in which ALK signaling leads to phosphorylation of ATR and CHK1, supporting an effective DNA damage response. The importance of ALK inhibition is supported by mouse data, in which ATRi monotreatment resulted in a robust initial response, but subsequent relapse, in contrast to a 14-d ALKi/ATRi combination treatment that resulted in a robust and sustained response. Finally, we show that the remarkable response to the 14-d combined ATR/ALK inhibition protocol reflects a robust differentiation response, reprogramming tumor cells to a neuronal/Schwann cell lineage identity. Our results identify an ability of ATR inhibition to promote NB differentiation and underscore the importance of further exploring combined ALK/ATR inhibition in NB, particularly in high-risk patient groups with oncogene-induced replication stress.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Dan E. Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Joel Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Eva Jennische
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, Basel University, Basel4056, Switzerland
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Jonatan L. Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Agata Aniszewska
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg SE-405 30, Sweden
| | | | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, Ghent9000, Belgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, GothenburgSE-405 30, Sweden
| |
Collapse
|
7
|
Balasundaram A, C Doss GP. Comparative Atomistic Insights on Apo and ATP-I1171N/S/T in Nonsmall-Cell Lung Cancer. ACS OMEGA 2023; 8:43856-43872. [PMID: 38027370 PMCID: PMC10666221 DOI: 10.1021/acsomega.3c05785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023]
Abstract
Anaplastic lymphoma kinase (ALK) rearrangements occur in about 5% of nonsmall cell lung cancer (NSCLC) patients. Despite being first recognized as EML4-ALK, fusions with several additional genes have been identified, all of which cause constitutive activation of the ALK kinase and subsequently lead to tumor development. ALK inhibitors first-line crizotinib, second-line ceritinib, and alectinib are effective against NSCLC patients with these rearrangements. Patients progressing on crizotinib had various mutations in the ALK kinase domain. ALK fusion proteins are activated by oligomerization through the fusion partner, which leads to the autophosphorylation of the kinase's domain and consequent downstream activation. The proposed computational study focuses on understanding the activation mechanism of ALK and ATP binding of wild-type (WT) and I1171N/S/T mutations. We analyzed the conformational change of ALK I1171N/S/T mutations and ATP binding using molecular docking and molecular dynamics simulation approaches. According to principal component analysis and free energy landscape, it is clear that I1171N/S/T mutations in Apo and ATP showed different energy minima/unstable structures compared to WT-Apo. The results revealed that I1171N/S/T mutations and ATP binding significantly supported a change toward an active-state conformation, whereas WT-Apo remained inactive. We demonstrated that I1171N/S/T mutations are persistent in an active state and independent of ATP. The I1171S/T mutations showed greater intermolecular H-bonds with ATP than WT-ATP. The molecular mechanics Poisson-Boltzmann surface area analysis revealed that the I1171N/S/T mutation binding energy was similar to that of WT-ATP. This study shows that I1171N/S/T can form stable bonds with ATP and may contribute to a constitutively active kinase. Based on the Y1278-C1097 H-bond and E1167-K1150 salt bridge interaction, I1171N strongly promotes the constitutively active kinase independent of ATP. This structural mechanism study will aid in understanding the oncogenic activity of ALK and the basis for improving the ALK inhibitors.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - George Priya C Doss
- Laboratory of Integrative Genomics,
Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
8
|
Kim Y, Lee HM. CRISPR-Cas System Is an Effective Tool for Identifying Drug Combinations That Provide Synergistic Therapeutic Potential in Cancers. Cells 2023; 12:2593. [PMID: 37998328 PMCID: PMC10670858 DOI: 10.3390/cells12222593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Despite numerous efforts, the therapeutic advancement for neuroblastoma and other cancer treatments is still ongoing due to multiple challenges, such as the increasing prevalence of cancers and therapy resistance development in tumors. To overcome such obstacles, drug combinations are one of the promising applications. However, identifying and implementing effective drug combinations are critical for achieving favorable treatment outcomes. Given the enormous possibilities of combinations, a rational approach is required to predict the impact of drug combinations. Thus, CRISPR-Cas-based and other approaches, such as high-throughput pharmacological and genetic screening approaches, have been used to identify possible drug combinations. In particular, the CRISPR-Cas system (Clustered Regularly Interspaced Short Palindromic Repeats) is a powerful tool that enables us to efficiently identify possible drug combinations that can improve treatment outcomes by reducing the total search space. In this review, we discuss the rational approaches to identifying, examining, and predicting drug combinations and their impact.
Collapse
Affiliation(s)
| | - Hyeong-Min Lee
- Department of Computational Biology, St. Jude Research Hospital, Memphis, TN 38105, USA;
| |
Collapse
|
9
|
Guan J, Borenäs M, Xiong J, Lai WY, Palmer RH, Hallberg B. IGF1R Contributes to Cell Proliferation in ALK-Mutated Neuroblastoma with Preference for Activating the PI3K-AKT Signaling Pathway. Cancers (Basel) 2023; 15:4252. [PMID: 37686528 PMCID: PMC10563084 DOI: 10.3390/cancers15174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Aberrant activation of anaplastic lymphoma kinase (ALK) by activating point mutation or amplification drives 5-12% of neuroblastoma (NB). Previous work has identified the involvement of the insulin-like growth factor 1 receptor (IGF1R) receptor tyrosine kinase (RTK) in a wide range of cancers. We show here that many NB cell lines exhibit IGF1R activity, and that IGF1R inhibition led to decreased cell proliferation to varying degrees in ALK-driven NB cells. Furthermore, combined inhibition of ALK and IGF1R resulted in synergistic anti-proliferation effects, in particular in ALK-mutated NB cells. Mechanistically, both ALK and IGF1R contribute significantly to the activation of downstream PI3K-AKT and RAS-MAPK signaling pathways in ALK-mutated NB cells. However, these two RTKs employ a differential repertoire of adaptor proteins to mediate downstream signaling effects. We show here that ALK signaling led to activation of the RAS-MAPK pathway by preferentially phosphorylating the adaptor proteins GAB1, GAB2, and FRS2, while IGF1R signaling preferentially phosphorylated IRS2, promoting activation of the PI3K-AKT pathway. Together, these findings reveal a potentially important role of the IGF1R RTK in ALK-mutated NB and that co-targeting of ALK and IGF1R may be advantageous in clinical treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Jikui Guan
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Junfeng Xiong
- Institute of Pediatric Medicine, Children’s Hospital Affiliated to Zhengzhou University, Zhengzhou 450018, China
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530 Gothenburg, Sweden (R.H.P.); (B.H.)
| |
Collapse
|
10
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
11
|
Pastorino F, Capasso M, Brignole C, Lasorsa VA, Bensa V, Perri P, Cantalupo S, Giglio S, Provenzi M, Rabusin M, Pota E, Cellini M, Tondo A, De Ioris MA, Sementa AR, Garaventa A, Ponzoni M, Amoroso L. Therapeutic Targeting of ALK in Neuroblastoma: Experience of Italian Precision Medicine in Pediatric Oncology. Cancers (Basel) 2023; 15:cancers15030560. [PMID: 36765519 PMCID: PMC9913103 DOI: 10.3390/cancers15030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Patients with relapsed/refractory disease have a poor prognosis, and additional therapeutic options are needed. Mutations and amplifications in the ALK (Anaplastic Lymphoma Kinase) gene constitute a key target for treatment. Our goal, within the Italian project of PeRsonalizEdMEdicine (PREME), was to evaluate the genomic status of patients with relapsed/refractory NB and to implement targeted therapies in those with targetable mutations. From November 2018 to November 2021, we performed Whole Exome Sequencing or Targeted Gene Panel Sequencing in relapsed/refractory NB patients in order to identify druggable variants. Activating mutations of ALK were identified in 8(28.57%) of 28 relapsed/refractory NB patients. The mutation p.F1174L was found in six patients, whereas p.R1275Q was found in one and the unknown mutation p.S104R in another. Three patients died before treatment could be started, while five patients received crizotinib: two in monotherapy (one with p.F1174L and the other with p.S104R) and three (with p.F1174L variant) in combination with chemotherapy. All treated patients showed a clinical improvement, and one had complete remission after two cycles of combined treatment. The most common treatment-related toxicities were hematological. ALK inhibitors may play an important role in the treatment of ALK-mutated NB patients.
Collapse
Affiliation(s)
- Fabio Pastorino
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Chiara Brignole
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Vito A. Lasorsa
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Veronica Bensa
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Patrizia Perri
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via Pansini 5, 80131 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore, 486, 80145 Napoli, Italy
| | - Serena Giglio
- UO Pediatria-Neonatologia/Nido PO A. Ajello ASP Trapani, 91100 Trapani, Italy
| | - Massimo Provenzi
- Pediatric Oncology, Ospedale Papa Giovanni XXIII, Piazza Organizzazione Mondiale Sanità 1, 24127 Bergamo, Italy
| | - Marco Rabusin
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Via dell’Istria 65/1, 34137 Trieste, Italy
| | - Elvira Pota
- UOSD di Ematologia ed Oncologia Pediatrica, Università Degli Studi Della Campania “Luigi Vanvitelli,” Piazza Luigi Miraglia 2, 80138 Napoli, Italy
| | - Monica Cellini
- Division of Paediatric Hemato-Oncology, University Hospital Azienda Policlinico di Modena, Via del Pozzo 71, 41124 Modena, Italy
| | - Annalisa Tondo
- Department of Hematology-Oncology, Anna Meyer Children’s Hospital, VialePieraccini 24, 50139 Firenze, Italy
| | - Maria A. De Ioris
- Department of Paediatric Haematology/Oncology, and Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela R. Sementa
- Dipartimento di Patologia, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | - Alberto Garaventa
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Mirco Ponzoni
- UOSD Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
- Correspondence: ; Tel.: +39-01056363539; Fax: +39-0103779820
| | - Loredana Amoroso
- UOC Oncologia, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
12
|
Abstract
Purpose of Review The evolving information of the initiation, tumor cell heterogeneity, and plasticity of childhood neuroblastoma has opened up new perspectives for developing therapies based on detailed knowledge of the disease. Recent Findings The cellular origin of neuroblastoma has begun to unravel and there have been several reports on tumor cell heterogeneity based on transcriptional core regulatory circuitries that have given us important information on the biology of neuroblastoma as a developmental disease. This together with new insight of the tumor microenvironment which acts as a support for neuroblastoma growth has given us the prospect for designing better treatment approaches for patients with high-risk neuroblastoma. Here, we discuss these new discoveries and highlight some emerging therapeutic options. Summary Neuroblastoma is a disease with multiple facets. Detailed biological and molecular knowledge on neuroblastoma initiation, heterogeneity, and the communications between cells in the tumor microenvironment holds promise for better therapies.
Collapse
|
13
|
Szydzik J, Lind DE, Arefin B, Kurhe Y, Umapathy G, Siaw JT, Claeys A, Gabre JL, Van den Eynden J, Hallberg B, Palmer RH. ATR inhibition enables complete tumour regression in ALK-driven NB mouse models. Nat Commun 2021; 12:6813. [PMID: 34819497 PMCID: PMC8613282 DOI: 10.1038/s41467-021-27057-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 11/03/2021] [Indexed: 01/23/2023] Open
Abstract
High-risk neuroblastoma (NB) often involves MYCN amplification as well as mutations in ALK. Currently, high-risk NB presents significant clinical challenges, and additional therapeutic options are needed. Oncogenes like MYCN and ALK result in increased replication stress in cancer cells, offering therapeutically exploitable options. We have pursued phosphoproteomic analyses highlighting ATR activity in ALK-driven NB cells, identifying the BAY1895344 ATR inhibitor as a potent inhibitor of NB cell growth and proliferation. Using RNA-Seq, proteomics and phosphoproteomics we characterize NB cell and tumour responses to ATR inhibition, identifying key components of the DNA damage response as ATR targets in NB cells. ATR inhibition also produces robust responses in mouse models. Remarkably, a 2-week combined ATR/ALK inhibition protocol leads to complete tumor regression in two independent genetically modified mouse NB models. These results suggest that NB patients, particularly in high-risk groups with oncogene-induced replication stress, may benefit from ATR inhibition as therapeutic intervention. Effective therapeutic options are still needed in neuroblastoma treatment. Here, the authors, through a comprehensive proteomics analysis, identify ATR as a potential therapeutic target of neuroblastoma and demonstrate the efficacy of the ATR inhibitor BAY1895344 in combination with the ALK tyrosine kinase inhibitor lorlatinib.
Collapse
Affiliation(s)
- Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Yeshwant Kurhe
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jonatan L Gabre
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000, Ghent, Belgium.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-40530, Gothenburg, Sweden.
| |
Collapse
|
14
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|
15
|
The Use of Inhibitors of Tyrosine Kinase in Paediatric Haemato-Oncology-When and Why? Int J Mol Sci 2021; 22:ijms222112089. [PMID: 34769519 PMCID: PMC8584725 DOI: 10.3390/ijms222112089] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
The fundamental pathophysiology of malignancies is dysregulation of the signalling pathways. Protein tyrosine kinases (PTKs) are among the enzymes which, if mutated, play a critical role in carcinogenesis. The best-studied rearrangement, which enhances PTK activity and causes atypical proliferation, is BCR-ABL1. Abnormal expression of PTKs has proven to play a significant role in the development of various malignancies, such as chronic myelogenous leukaemia, brain tumours, neuroblastoma, and gastrointestinal stromal tumours. The use of tyrosine kinase inhibitors (TKIs) is an outstanding example of successful target therapy. TKIs have been effectively applied in the adult oncology setting, but there is a need to establish TKIs’ importance in paediatric patients. Many years of research have allowed a significant improvement in the outcome of childhood cancers. However, there are still groups of patients who have a poor prognosis, where the intensification of chemotherapy could even cause death. TKIs are designed to target specific PTKs, which lead to the limitation of severe adverse effects and increase overall survival. These advances will hopefully allow new therapeutic approaches in paediatric haemato-oncology to emerge. In this review, we present an analysis of the current data on tyrosine kinase inhibitors in childhood cancers.
Collapse
|
16
|
Perri P, Ponzoni M, Corrias MV, Ceccherini I, Candiani S, Bachetti T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers (Basel) 2021; 13:5528. [PMID: 34771690 PMCID: PMC8582685 DOI: 10.3390/cancers13215528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma (NB) is a tumor of the peripheral sympathetic nervous system that substantially contributes to childhood cancer mortality. NB originates from neural crest cells (NCCs) undergoing a defective sympathetic neuronal differentiation and although the starting events leading to the development of NB remain to be fully elucidated, the master role of genetic alterations in key oncogenes has been ascertained: (1) amplification and/or over-expression of MYCN, which is strongly associated with tumor progression and invasion; (2) activating mutations, amplification and/or over-expression of ALK, which is involved in tumor initiation, angiogenesis and invasion; (3) amplification and/or over-expression of LIN28B, promoting proliferation and suppression of neuroblast differentiation; (4) mutations and/or over-expression of PHOX2B, which is involved in the regulation of NB differentiation, stemness maintenance, migration and metastasis. Moreover, altered microRNA (miRNA) expression takes part in generating pathogenetic networks, in which the regulatory loops among transcription factors, miRNAs and target genes lead to complex and aberrant oncogene expression that underlies the development of a tumor. In this review, we have focused on the circuitry linking the oncogenic transcription factors MYCN and PHOX2B with their transcriptional targets ALK and LIN28B and the tumor suppressor microRNAs let-7, miR-34 and miR-204, which should act as down-regulators of their expression. We have also looked at the physiologic role of these genetic and epigenetic determinants in NC development, as well as in terminal differentiation, with their pathogenic dysregulation leading to NB oncogenesis.
Collapse
Affiliation(s)
- Patrizia Perri
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Mirco Ponzoni
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy; (M.P.); (M.V.C.)
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Simona Candiani
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| | - Tiziana Bachetti
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Earth, Environment and Life Sciences, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
17
|
Targeting anaplastic lymphoma kinase (ALK) gene alterations in neuroblastoma by using alkylating pyrrole-imidazole polyamides. PLoS One 2021; 16:e0257718. [PMID: 34591871 PMCID: PMC8483358 DOI: 10.1371/journal.pone.0257718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/08/2021] [Indexed: 12/28/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) aberration is related to high-risk neuroblastomas and is an important therapeutic target. As acquired resistance to ALK tyrosine kinase inhibitors is inevitable, novel anti-ALK drug development is necessary in order to overcome potential drug resistance against ATP-competitive kinase inhibitors. In this study, to overcome ALK inhibitor resistance, we examined the growth inhibition effects of newly developed ALK-targeting pyrrole-imidazole polyamide CCC-003, which was designed to directly bind and alkylate DNA within the F1174L-mutated ALK gene. CCC-003 suppressed cell proliferation in ALK-mutated neuroblastoma cells. The expression of total and phosphorylated ALK was downregulated by CCC-003 treatment but not by treatment with a mismatch polyamide without any binding motif within the ALK gene region. CCC-003 preferentially bound to the DNA sequence with the F1174L mutation and significantly suppressed tumor progression in a human neuroblastoma xenograft mouse model. Our data suggest that the specific binding of CCC-003 to mutated DNA within the ALK gene exerts its anti-tumor activity through a mode of action that is distinct from those of other ALK inhibitors. In summary, our current study provides evidence for the potential of pyrrole-imidazole polyamide ALK inhibitor CCC-003 for the treatment of neuroblastoma thus offering a possible solution to the problem of tyrosine kinase inhibitor resistance.
Collapse
|
18
|
Identification of the Novel Methylated Genes' Signature to Predict Prognosis in INRG High-Risk Neuroblastomas. JOURNAL OF ONCOLOGY 2021; 2021:1615201. [PMID: 34557229 PMCID: PMC8455188 DOI: 10.1155/2021/1615201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastomas are the most frequent extracranial pediatric solid tumors. The prognosis of children with high-risk neuroblastomas has remained poor in the past decade. A powerful signature is required to identify factors associated with prognosis and improved treatment selection. Here, we identified a strong methylation signature that favored the earlier diagnosis of neuroblastoma in patients. METHODS Gene methylation (GM) data of neuroblastoma patients from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) were analyzed using a multivariate Cox regression analysis (MCRA) and univariate Cox proportional hazards regression analysis (UCPHRA). RESULTS The methylated genes' signature consisting of eight genes (NBEA, DDX28, TMED8, LOC151174, EFNB2, GHRHR, MIMT1, and SLC29A3) was selected. The signature divided patients into low- and high-risk categories, with statistically significant survival rates (median survival time: 25.08 vs. >128.80 months, log-rank test, P < 0.001) in the training group, and the validation of the signature's risk stratification ability was carried out in the test group (log-rank test, P < 0.01, median survival time: 30.48 vs. >120.36 months). The methylated genes' signature was found to be an independent predictive factor for neuroblastoma by MCRA. Functional enrichment analysis suggested that these methylated genes were related to butanoate metabolism, beta-alanine metabolism, and glutamate metabolism, all playing different significant roles in the process of energy metabolism in neuroblastomas. CONCLUSIONS The set of eight methylated genes could be used as a new predictive and prognostic signature for patients with INRG high-risk neuroblastomas, thus assisting in treatment, drug development, and predicting survival.
Collapse
|
19
|
Brenner AK, Gunnes MW. Therapeutic Targeting of the Anaplastic Lymphoma Kinase (ALK) in Neuroblastoma-A Comprehensive Update. Pharmaceutics 2021; 13:pharmaceutics13091427. [PMID: 34575503 PMCID: PMC8470592 DOI: 10.3390/pharmaceutics13091427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 01/27/2023] Open
Abstract
Neuroblastoma (NBL) is an embryonic malignancy of the sympathetic nervous system and mostly affects children under the age of five. NBL is highly heterogeneous and ranges from spontaneously regressing to highly aggressive disease. One of the risk factors for poor prognosis are aberrations in the receptor tyrosine kinase anaplastic lymphoma kinase (ALK), which is involved in the normal development and function of the nervous system. ALK mutations lead to constitutive activation of ALK and its downstream signalling pathways, thus driving tumorigenesis. A wide range of steric ALK inhibitors has been synthesized, and several of these inhibitors are already in clinical use. Major challenges are acquired drug resistance to steric inhibitors and pathway evasion strategies of cancer cells upon targeted therapy. This review will give a comprehensive overview on ALK inhibitors in clinical use in high-risk NBL and on the potential and limitations of novel inhibitors. Because combinatory treatment regimens are probably less likely to induce drug resistance, a special focus will be on the combination of ALK inhibitors with drugs that either target downstream signalling pathways or that affect the survival and proliferation of cancer cells in general.
Collapse
|
20
|
Liu T, Merguerian MD, Rowe SP, Pratilas CA, Chen AR, Ladle BH. Exceptional response to the ALK and ROS1 inhibitor lorlatinib and subsequent mechanism of resistance in relapsed ALK F1174L-mutated neuroblastoma. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006064. [PMID: 34210658 PMCID: PMC8327881 DOI: 10.1101/mcs.a006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
Treatment of high-risk neuroblastoma typically incorporates multiagent chemotherapy, surgery, radiation therapy, autologous stem cell transplantation, immunotherapy, and differentiation therapy. The discovery of activating mutations in ALK receptor tyrosine kinase (ALK) in ∼8% of neuroblastomas opens the possibility of further improving outcomes for this subset of patients with the addition of ALK inhibitors. ALK inhibitors have shown efficacy in tumors such as non-small-cell lung cancer and anaplastic large cell lymphoma in which wild-type ALK overexpression is driven by translocation events. In contrast, ALK mutations driving neuroblastomas are missense mutations in the tyrosine kinase domain yielding constitutive activation and differing sensitivity to available ALK inhibitors. We describe a case of a patient with relapsed, refractory, metastatic ALK F1174L-mutated neuroblastoma who showed no response to the first-generation ALK inhibitor crizotinib but had a subsequent complete response to the ALK/ROS1 inhibitor lorlatinib. The patient's disease relapsed after 13 mo of treatment. Sequencing of cell-free DNA at the time of relapse pointed toward a potential mechanism of acquired lorlatinib resistance: amplification of CDK4 and FGFR1 and a NRAS Q61K mutation. We review the literature regarding differing sensitivity of ALK mutations found in neuroblastoma to current FDA-approved ALK inhibitors and known pathways of acquired resistance. Our report adds to the literature of important correlations between neuroblastoma ALK mutation status and clinical responsiveness to ALK inhibitors. It also highlights the importance of understanding acquired mechanisms of resistance.
Collapse
Affiliation(s)
- Tingting Liu
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Matthew D Merguerian
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Steven P Rowe
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, Maryland 21287, USA
| | - Christine A Pratilas
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Allen R Chen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| | - Brian H Ladle
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Division of Pediatric Oncology, Baltimore, Maryland 21287, USA
| |
Collapse
|
21
|
Bellantoni AJ, Wagner LM. Pursuing Precision: Receptor Tyrosine Kinase Inhibitors for Treatment of Pediatric Solid Tumors. Cancers (Basel) 2021; 13:3531. [PMID: 34298746 PMCID: PMC8303693 DOI: 10.3390/cancers13143531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Receptor tyrosine kinases are critical for the growth and proliferation of many different cancers and therefore represent a potential vulnerability that can be therapeutically exploited with small molecule inhibitors. Over forty small molecule inhibitors are currently approved for the treatment of adult solid tumors. Their use has been more limited in pediatric solid tumors, although an increasing number of single-agent and combination studies are now being performed. These agents have been quite successful in certain clinical contexts, such as the treatment of pediatric tumors driven by kinase fusions or activating mutations. By contrast, only modest activity has been observed when inhibitors are used as single agents for solid tumors that do not have genetically defined alterations in the target genes. The absence of predictive biomarkers has limited the wider applicability of these drugs and much work remains to define the appropriate patient population and clinical situation in which receptor tyrosine kinase inhibitors are most beneficial. In this manuscript, we discuss these issues by highlighting past trials and identifying future strategies that may help add precision to the use of these agents for pediatric extracranial solid tumors.
Collapse
Affiliation(s)
| | - Lars M. Wagner
- Division of Pediatric Hematology/Oncology, Duke University, Durham, NC 27710, USA;
| |
Collapse
|
22
|
Bellini A, Pötschger U, Bernard V, Lapouble E, Baulande S, Ambros PF, Auger N, Beiske K, Bernkopf M, Betts DR, Bhalshankar J, Bown N, de Preter K, Clément N, Combaret V, Font de Mora J, George SL, Jiménez I, Jeison M, Marques B, Martinsson T, Mazzocco K, Morini M, Mühlethaler-Mottet A, Noguera R, Pierron G, Rossing M, Taschner-Mandl S, Van Roy N, Vicha A, Chesler L, Balwierz W, Castel V, Elliott M, Kogner P, Laureys G, Luksch R, Malis J, Popovic-Beck M, Ash S, Delattre O, Valteau-Couanet D, Tweddle DA, Ladenstein R, Schleiermacher G. Frequency and Prognostic Impact of ALK Amplifications and Mutations in the European Neuroblastoma Study Group (SIOPEN) High-Risk Neuroblastoma Trial (HR-NBL1). J Clin Oncol 2021; 39:3377-3390. [PMID: 34115544 PMCID: PMC8791815 DOI: 10.1200/jco.21.00086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE In neuroblastoma (NB), the ALK receptor tyrosine kinase can be constitutively activated through activating point mutations or genomic amplification. We studied ALK genetic alterations in high-risk (HR) patients on the HR-NBL1/SIOPEN trial to determine their frequency, correlation with clinical parameters, and prognostic impact. MATERIALS AND METHODS Diagnostic tumor samples were available from 1,092 HR-NBL1/SIOPEN patients to determine ALK amplification status (n = 330), ALK mutational profile (n = 191), or both (n = 571). RESULTS Genomic ALK amplification (ALKa) was detected in 4.5% of cases (41 out of 901), all except one with MYCN amplification (MNA). ALKa was associated with a significantly poorer overall survival (OS) (5-year OS: ALKa [n = 41] 28% [95% CI, 15 to 42]; no-ALKa [n = 860] 51% [95% CI, 47 to 54], [P < .001]), particularly in cases with metastatic disease. ALK mutations (ALKm) were detected at a clonal level (> 20% mutated allele fraction) in 10% of cases (76 out of 762) and at a subclonal level (mutated allele fraction 0.1%-20%) in 3.9% of patients (30 out of 762), with a strong correlation between the presence of ALKm and MNA (P < .001). Among 571 cases with known ALKa and ALKm status, a statistically significant difference in OS was observed between cases with ALKa or clonal ALKm versus subclonal ALKm or no ALK alterations (5-year OS: ALKa [n = 19], 26% [95% CI, 10 to 47], clonal ALKm [n = 65] 33% [95% CI, 21 to 44], subclonal ALKm (n = 22) 48% [95% CI, 26 to 67], and no alteration [n = 465], 51% [95% CI, 46 to 55], respectively; P = .001). Importantly, in a multivariate model, involvement of more than one metastatic compartment (hazard ratio [HR], 2.87; P < .001), ALKa (HR, 2.38; P = .004), and clonal ALKm (HR, 1.77; P = .001) were independent predictors of poor outcome. CONCLUSION Genetic alterations of ALK (clonal mutations and amplifications) in HR-NB are independent predictors of poorer survival. These data provide a rationale for integration of ALK inhibitors in upfront treatment of HR-NB with ALK alterations.
Collapse
Affiliation(s)
- Angela Bellini
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France.,INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Ulrike Pötschger
- Department for Studies and Statistics and Integrated Research, Vienna, Austria.,St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Virginie Bernard
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | - Eve Lapouble
- Unité de Génétique Somatique, Service de Génétique, Hospital Group, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | - Peter F Ambros
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - Nathalie Auger
- Service de Génétique des tumeurs; Institut Gustave Roussy, Villejuif, France
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, and Medical Faculty, University of Oslo, Oslo, Norway
| | - Marie Bernkopf
- St Anna Children's Cancer Research Institute, Vienna, Austria
| | - David R Betts
- Department of Clinical Genetics, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Jaydutt Bhalshankar
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France.,INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Nick Bown
- Northern Genetics Service, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | | | - Nathalie Clément
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France.,INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Valérie Combaret
- Translational Research Laboratory, Centre Léon Bérard, Lyon, France
| | | | - Sally L George
- Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom
| | - Irene Jiménez
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France.,INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| | - Marta Jeison
- Schneider Children's Medical Center of Israel, Tel Aviv University, Tel Aviv, Israel
| | - Barbara Marques
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, Lisbon, Portugal
| | | | - Katia Mazzocco
- Department of Pathology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Martina Morini
- Laboratory of Molecular Biology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Annick Mühlethaler-Mottet
- Pediatric Hematology-Oncology Research Laboratory, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia-Incliva Health Research Institute/CIBERONC, Madrid, Spain
| | - Gaelle Pierron
- Unité de Génétique Somatique, Service de Génétique, Hospital Group, Institut Curie, Paris, France
| | - Maria Rossing
- Center for Genomic Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | | | | | - Ales Vicha
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Louis Chesler
- Paediatric Tumour Biology, Division of Clinical Studies, The Institute of Cancer Research, Sutton, United Kingdom
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Victoria Castel
- Clinical and Translational Oncology Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Martin Elliott
- Leeds Children's Hospital, Leeds General Infirmary, Leeds, United Kingdom
| | - Per Kogner
- Karolinska University Hospital, Stockholm, Sweden
| | - Geneviève Laureys
- Department of Paediatric Haematology and Oncology, Princess Elisabeth Children's Hospital, Ghent University Hospital, Ghent, Belgium
| | - Roberto Luksch
- Paediatric Oncology, Fondazione IRCCS, Istituto Nazionale dei Tumori, Milan, Italy
| | - Josef Malis
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Maja Popovic-Beck
- Pediatric Hematology-Oncology Unit, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Shifra Ash
- Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Olivier Delattre
- INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France.,Institut Curie Genomics of Excellence (ICGex) Platform, Research Center, Institut Curie, Paris, France
| | | | - Deborah A Tweddle
- Wolfson Childhood Cancer Research Centre, Newcastle Centre for Cancer, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ruth Ladenstein
- Department for Studies and Statistics and Integrated Research, St Anna Children's Hospital, St Anna Children's Cancer Research Institute, Vienna, Austria.,Department of Paediatrics, Medical University of Vienna, Vienna, Austria
| | - Gudrun Schleiermacher
- Equipe SiRIC RTOP Recherche Translationelle en Oncologie Pédiatrique, Institut Curie, Paris, France.,INSERM U830, Laboratoire de Génétique et Biologie des Cancers, Institut Curie, Paris, France.,SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, Paris, France
| |
Collapse
|
23
|
Harvey M, Irwin MS, Armstrong L, Seath K, Young S, Gershony S, Deyell RJ. Crizotinib response in a neuroblastoma patient with a constitutional mosaic anaplastic lymphoma kinase I1170N-activating mutation. Pediatr Blood Cancer 2021; 68:e28916. [PMID: 33523537 DOI: 10.1002/pbc.28916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Melissa Harvey
- Division of Pediatric Hematology/Oncology/BMT, University of British Columbia, British Columbia Children's Hospital and Research Institute, Vancouver, British Columbia, Canada
| | - Meredith S Irwin
- Department of Paediatrics, Division of Pediatric Hematology/Oncology, University of Toronto, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Kim Seath
- Department of Medical Genetics, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Sean Young
- Department of Pathology and Laboratory Medicine, University of British Columbia and BCCA Cancer Genetics and Genomics Laboratory, Vancouver, British Columbia, Canada
| | - Sharon Gershony
- Department of Radiology, Division of Nuclear Medicine, University of British Columbia, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | - Rebecca J Deyell
- Division of Pediatric Hematology/Oncology/BMT, University of British Columbia, British Columbia Children's Hospital and Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
24
|
Antoni D, Burckel H, Noel G. Combining Radiation Therapy with ALK Inhibitors in Anaplastic Lymphoma Kinase-Positive Non-Small Cell Lung Cancer (NSCLC): A Clinical and Preclinical Overview. Cancers (Basel) 2021; 13:2394. [PMID: 34063424 PMCID: PMC8156706 DOI: 10.3390/cancers13102394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/25/2022] Open
Abstract
Over the past years, the identification of genetic alterations in oncogenic drivers in non-small cell lung cancer (NSCLC) has significantly and favorably transformed the outcome of patients who can benefit from targeted therapies such as tyrosine kinase inhibitors. Among these genetic alterations, anaplastic lymphoma kinase (ALK) rearrangements were discovered in 2007 and are present in 3-5% of patients with NSCLC. In addition, radiotherapy remains one of the cornerstones of NSCLC treatment. Moreover, improvements in the field of radiotherapy with the use of hypofractionated or ablative stereotactic radiotherapy have led to a better outcome for localized or oligometastatic NSCLC. To date, the effects of the combination of ALK inhibitors and radiotherapy are unclear in terms of safety and efficacy but could potently improve treatment. In this manuscript, we provide a clinical and preclinical overview of combining radiation therapy with ALK inhibitors in anaplastic lymphoma kinase-positive non-small cell lung cancer.
Collapse
Affiliation(s)
- Delphine Antoni
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| | - Hélène Burckel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
| | - Georges Noel
- Paul Strauss Comprehensive Cancer Center, Radiobiology Laboratory, Institut de Cancérologie Strasbourg Europe (ICANS), Strasbourg University, UNICANCER, 67000 Strasbourg, France; (H.B.); (G.N.)
- Department of Radiotherapy, ICANS, Institut de Cancérologie Strasbourg Europe, 17 rue Albert Calmette, CEDEX, 67200 Strasbourg, France
| |
Collapse
|
25
|
Han JZR, Hastings JF, Phimmachanh M, Fey D, Kolch W, Croucher DR. Personalized Medicine for Neuroblastoma: Moving from Static Genotypes to Dynamic Simulations of Drug Response. J Pers Med 2021; 11:395. [PMID: 34064704 PMCID: PMC8151552 DOI: 10.3390/jpm11050395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022] Open
Abstract
High-risk neuroblastoma is an aggressive childhood cancer that is characterized by high rates of chemoresistance and frequent metastatic relapse. A number of studies have characterized the genetic and epigenetic landscape of neuroblastoma, but due to a generally low mutational burden and paucity of actionable mutations, there are few options for applying a comprehensive personalized medicine approach through the use of targeted therapies. Therefore, the use of multi-agent chemotherapy remains the current standard of care for neuroblastoma, which also conceptually limits the opportunities for developing an effective and widely applicable personalized medicine approach for this disease. However, in this review we outline potential approaches for tailoring the use of chemotherapy agents to the specific molecular characteristics of individual tumours by performing patient-specific simulations of drug-induced apoptotic signalling. By incorporating multiple layers of information about tumour-specific aberrations, including expression as well as mutation data, these models have the potential to rationalize the selection of chemotherapeutics contained within multi-agent treatment regimens and ensure the optimum response is achieved for each individual patient.
Collapse
Affiliation(s)
- Jeremy Z. R. Han
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Jordan F. Hastings
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Monica Phimmachanh
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
| | - Dirk Fey
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; (D.F.); (W.K.)
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David R. Croucher
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; (J.Z.R.H.); (J.F.H.); (M.P.)
- St Vincent’s Hospital Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Siaw JT, Javanmardi N, Van den Eynden J, Lind DE, Fransson S, Martinez-Monleon A, Djos A, Sjöberg RM, Östensson M, Carén H, Trøen G, Beiske K, Berbegall AP, Noguera R, Lai WY, Kogner P, Palmer RH, Hallberg B, Martinsson T. 11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Rep 2021; 32:108171. [PMID: 32966799 DOI: 10.1016/j.celrep.2020.108171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
High-risk neuroblastomas typically display an undifferentiated or poorly differentiated morphology. It is therefore vital to understand molecular mechanisms that block the differentiation process. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in the maintenance of undifferentiated neural crest-derived progenitors through the repression of DLG2, a candidate tumor suppressor gene in neuroblastoma. DLG2 is expressed in the murine "bridge signature" that represents the transcriptional transition state when neural crest cells or Schwann cell precursors differentiate to chromaffin cells of the adrenal gland. We show that the restoration of DLG2 expression spontaneously drives neuroblastoma cell differentiation, highlighting the importance of DLG2 in this process. These findings are supported by genetic analyses of high-risk 11q deletion neuroblastomas, which identified genetic lesions in the DLG2 gene. Our data also suggest that further exploration of other bridge genes may help elucidate the mechanisms underlying the differentiation of NC-derived progenitors and their contribution to neuroblastomas.
Collapse
Affiliation(s)
- Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Angela Martinez-Monleon
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Rose-Marie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunhild Trøen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
27
|
Hammarsten O, Muslimovic A, Thunström S, Ek T, Johansson P. Use of the cell division assay to diagnose Fanconi anemia patients' hypersensitivity to mitomycin C. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2021; 100:370-376. [PMID: 32857894 PMCID: PMC8246776 DOI: 10.1002/cyto.b.21950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
The recently reported cell division assay (CDA) was optimized to measure the relative sensitivity of cells to cytotoxic drugs in vitro. Here, we investigated the in vitro hypersensitivity of lymphocytes from Fanconi anemia (FA) patients, to cytotoxic drugs using CDA. Peripheral blood mononuclear cells (PBMC) as well as cell lines derived from FA patients were treated with two DNA interstrand crosslinking (ICL) agents, mitomycin C and cyclophosphamide. Our data indicate that the CDA detects hypersensitivity of cells from FA patients to mitomycin C. Further, cell lines derived from FA-patients were also hypersensitive to mitomycin C as well as cyclophosphamide, when assayed by the CDA. This study suggests that the CDA is a useful alternative for the diagnosis of FA patients' hypersensitivity to ICL agents.
Collapse
Affiliation(s)
- Ola Hammarsten
- Department of Laboratory MedicineSahlgrenska Academy at the University of GothenburgGothenburgSweden
- Laboratory of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Aida Muslimovic
- Laboratory of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| | - Sofia Thunström
- Clinical GeneticsSahlgrenska University HospitalGothenburgSweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska AcademyGothenburg UniversityGothenburgSweden
| | - Torben Ek
- Children's Cancer Centre, Queen Silvia Children's HospitalGothenburgSweden
| | - Pegah Johansson
- Laboratory of Clinical ChemistrySahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
28
|
Borenäs M, Umapathy G, Lai W, Lind DE, Witek B, Guan J, Mendoza‐Garcia P, Masudi T, Claeys A, Chuang T, El Wakil A, Arefin B, Fransson S, Koster J, Johansson M, Gaarder J, Van den Eynden J, Hallberg B, Palmer RH. ALK ligand ALKAL2 potentiates MYCN-driven neuroblastoma in the absence of ALK mutation. EMBO J 2021; 40:e105784. [PMID: 33411331 PMCID: PMC7849294 DOI: 10.15252/embj.2020105784] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
High-risk neuroblastoma (NB) is responsible for a disproportionate number of childhood deaths due to cancer. One indicator of high-risk NB is amplification of the neural MYC (MYCN) oncogene, which is currently therapeutically intractable. Identification of anaplastic lymphoma kinase (ALK) as an NB oncogene raised the possibility of using ALK tyrosine kinase inhibitors (TKIs) in treatment of patients with activating ALK mutations. 8-10% of primary NB patients are ALK-positive, a figure that increases in the relapsed population. ALK is activated by the ALKAL2 ligand located on chromosome 2p, along with ALK and MYCN, in the "2p-gain" region associated with NB. Dysregulation of ALK ligand in NB has not been addressed, although one of the first oncogenes described was v-sis that shares > 90% homology with PDGF. Therefore, we tested whether ALKAL2 ligand could potentiate NB progression in the absence of ALK mutation. We show that ALKAL2 overexpression in mice drives ALK TKI-sensitive NB in the absence of ALK mutation, suggesting that additional NB patients, such as those exhibiting 2p-gain, may benefit from ALK TKI-based therapeutic intervention.
Collapse
Affiliation(s)
- Marcus Borenäs
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Wei‐Yun Lai
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Barbara Witek
- Department of Molecular BiologyUmeå UniversityUmeåSweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Children's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Patricia Mendoza‐Garcia
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Tafheem Masudi
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Arne Claeys
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Tzu‐Po Chuang
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Abeer El Wakil
- Department of Molecular BiologyUmeå UniversityUmeåSweden
- Present address:
Department of Biological SciencesAlexandria UniversityAlexandriaEgypt
| | - Badrul Arefin
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Susanne Fransson
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jan Koster
- Department of OncogenomicsAcademic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Mathias Johansson
- Clinical GenomicsScience for life laboratoryUniversity of GothenburgGothenburgSweden
| | - Jennie Gaarder
- Laboratory MedicineInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology UnitGhent UniversityGhentBelgium
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell BiologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
29
|
Holzhauser S, Lukoseviciute M, Papachristofi C, Vasilopoulou C, Herold N, Wickström M, Kostopoulou ON, Dalianis T. Effects of PI3K and FGFR inhibitors alone and in combination, and with/without cytostatics in childhood neuroblastoma cell lines. Int J Oncol 2021; 58:211-225. [PMID: 33491755 PMCID: PMC7864013 DOI: 10.3892/ijo.2021.5167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is a heterogenous disease with treatment varying from observation for low-risk tumors, to extensive therapy with chemotherapy, surgery, radiotherapy, and autologous bone-marrow-transplantation and immunotherapy. However, a high frequency of primary-chemo-refractory disease and recurrences urgently require novel treatment strategies. The present study therefore investigated the anti-NB efficacy of the recently FDA-approved phosphoinositide 3-kinase (PI3K) and fibroblast growth factor receptor (FGFR) inhibitors, alpelisib (BYL719) and erdafitinib (JNJ-42756493), alone and in combination with or without cisplatin, vincristine, or doxorubicin on 5 NB cell lines. For this purpose, the NB cell lines, SK-N-AS, SK-N-BE(2)-C, SK-N-DZ, SK-N-FI and SK-N-SH (where SK-N-DZ had a deletion of PIK3C2G and none had FGFR mutations according to the Cancer Program's Dependency Map, although some were chemoresistant), were tested for their sensitivity to FDA-approved inhibitors alone or in combination, or together with cytostatic drugs by viability, cytotoxicity, apoptosis and proliferation assays. The results revealed that monotherapy with alpelisib or erdafitinib resulted in a dose-dependent inhibition of cell viability and proliferation. Notably, the combined use of PI3K and FGFR inhibitors resulted in an enhanced efficacy, while their combined use with the canonical cytotoxic agents, cisplatin, vincristine and doxorubicin, resulted in variable synergistic, additive and antagonistic effects. Collectively, the present study provides pre-clinical evidence that PI3K and FGFR inhibitors exhibit promising anti-NB activity. The data presented herein also indicate that the incorporation of these inhibitors into chemotherapeutic regimens requires careful consideration and further research in order to obtain a beneficial efficacy. Nevertheless, the addition of PI3K and FGFR inhibitors to the treatment arsenal might reduce the occurrence of refractory and relapsing disease in NB without FGFR and PI3K mutations.
Collapse
Affiliation(s)
- Stefan Holzhauser
- Department of Oncology‑Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Monika Lukoseviciute
- Department of Oncology‑Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | | | - Nikolas Herold
- Children and Women's Health, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Malin Wickström
- Children and Women's Health, Karolinska Institutet, 17164 Stockholm, Sweden
| | | | - Tina Dalianis
- Department of Oncology‑Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| |
Collapse
|
30
|
Targeting Vesicular LGALS3BP by an Antibody-Drug Conjugate as Novel Therapeutic Strategy for Neuroblastoma. Cancers (Basel) 2020; 12:cancers12102989. [PMID: 33076448 PMCID: PMC7650653 DOI: 10.3390/cancers12102989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Antibody Drug Conjugates are an emerging class of biopharmaceuticals that have seen an impressive increase of attention in the field of cancer therapy. Here, we describe the therapeutic activity of 1959-sss/DM3, a non-internalizing ADC targeting LGALS3BP, a secreted, extracellular vesicles-associated protein expressed by the majority of human cancers, including neuroblastoma. We show that 1959-sss/DM3 treatment can cure mice with established neuroblastoma tumours in pseudometastatic, orthotopic and Patient Derived Xenograft models. Abstract Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.
Collapse
|
31
|
Identification of the Wallenda JNKKK as an Alk suppressor reveals increased competitiveness of Alk-expressing cells. Sci Rep 2020; 10:14954. [PMID: 32917927 PMCID: PMC7486895 DOI: 10.1038/s41598-020-70890-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/05/2020] [Indexed: 12/27/2022] Open
Abstract
Anaplastic lymphoma kinase (Alk) is a receptor tyrosine kinase of the insulin receptor super-family that functions as oncogenic driver in a range of human cancers such as neuroblastoma. In order to investigate mechanisms underlying Alk oncogenic signaling, we conducted a genetic suppressor screen in Drosophila melanogaster. Our screen identified multiple loci important for Alk signaling, including members of Ras/Raf/ERK-, Pi3K-, and STAT-pathways as well as tailless (tll) and foxo whose orthologues NR2E1/TLX and FOXO3 are transcription factors implicated in human neuroblastoma. Many of the identified suppressors were also able to modulate signaling output from activated oncogenic variants of human ALK, suggesting that our screen identified targets likely relevant in a wide range of contexts. Interestingly, two misexpression alleles of wallenda (wnd, encoding a leucine zipper bearing kinase similar to human DLK and LZK) were among the strongest suppressors. We show that Alk expression leads to a growth advantage and induces cell death in surrounding cells. Our results suggest that Alk activity conveys a competitive advantage to cells, which can be reversed by over-expression of the JNK kinase kinase Wnd.
Collapse
|
32
|
Suzuki T. [Research on Analysis of Final Diagnosis and Prognostic Factors, and Development of New Therapeutic Drugs for Malignant Tumors (Especially Malignant Pediatric Tumors)]. YAKUGAKU ZASSHI 2020; 140:229-271. [PMID: 32009046 DOI: 10.1248/yakushi.19-00178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Outcomes of treatment for malignant pediatric tumors including leukemia are improving by conventional multimodal treatment with strong chemotherapy, surgical resection, radiotherapy, and bone marrow transplantation. However, patients with advanced neuroblastoma, metastatic Ewing's sarcoma family of tumor (ESFT), and metastatic osteosarcoma continue to have an extremely poor prognosis. Therefore novel therapeutic strategies are urgently needed to improve their survival. Apoptotic cell death is a key mechanism for normal cellular homeostasis. Intact apoptotic mechanisms are pivotal for embryonic development, tissue remodeling, immune regulation, and tumor regression. Genetic aberrations disrupting programmed cell death often underpin tumorigenesis and drug resistance. Moreover, it has been suggested that apoptosis or cell differentiation proceeds to spontaneous regression in early stage neuroblastoma. Therefore apoptosis or cell differentiation is a critical event in this cancer. We extracted many compounds from natural plants (Angelica keiskei, Alpinia officiarum, Lycaria puchury-major, Brassica rapa) or synthesized cyclophane pyridine, indirubin derivatives, vitamin K3 derivatives, burchellin derivatives, and GANT61, and examined their effects on apoptosis, cell differentiation, and cell cycle in neuroblastoma and ESFT cell lines compared with normal cells. Some compounds were very effective against these tumor cells. These results suggest that they may be applicable as an efficacious and safe drug for the treatment of malignant pediatric tumors.
Collapse
Affiliation(s)
- Takashi Suzuki
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University
| |
Collapse
|
33
|
Chatrath A, Przanowska R, Kiran S, Su Z, Saha S, Wilson B, Tsunematsu T, Ahn JH, Lee KY, Paulsen T, Sobierajska E, Kiran M, Tang X, Li T, Kumar P, Ratan A, Dutta A. The pan-cancer landscape of prognostic germline variants in 10,582 patients. Genome Med 2020; 12:15. [PMID: 32066500 PMCID: PMC7027124 DOI: 10.1186/s13073-020-0718-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND While clinical factors such as age, grade, stage, and histological subtype provide physicians with information about patient prognosis, genomic data can further improve these predictions. Previous studies have shown that germline variants in known cancer driver genes are predictive of patient outcome, but no study has systematically analyzed multiple cancers in an unbiased way to identify genetic loci that can improve patient outcome predictions made using clinical factors. METHODS We analyzed sequencing data from the over 10,000 cancer patients available through The Cancer Genome Atlas to identify germline variants associated with patient outcome using multivariate Cox regression models. RESULTS We identified 79 prognostic germline variants in individual cancers and 112 prognostic germline variants in groups of cancers. The germline variants identified in individual cancers provide additional predictive power about patient outcomes beyond clinical information currently in use and may therefore augment clinical decisions based on expected tumor aggressiveness. Molecularly, at least 12 of the germline variants are likely associated with patient outcome through perturbation of protein structure and at least five through association with gene expression differences. Almost half of these germline variants are in previously reported tumor suppressors, oncogenes or cancer driver genes with the other half pointing to genomic loci that should be further investigated for their roles in cancers. CONCLUSIONS Germline variants are predictive of outcome in cancer patients and specific germline variants can improve patient outcome predictions beyond predictions made using clinical factors alone. The germline variants also implicate new means by which known oncogenes, tumor suppressor genes, and driver genes are perturbed in cancer and suggest roles in cancer for other genes that have not been extensively studied in oncology. Further studies in other cancer cohorts are necessary to confirm that germline variation is associated with outcome in cancer patients as this is a proof-of-principle study.
Collapse
Affiliation(s)
- Ajay Chatrath
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Roza Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Shashi Kiran
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Briana Wilson
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Takaaki Tsunematsu
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Ji-Hye Ahn
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Kyung Yong Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Teressa Paulsen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Ewelina Sobierajska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Xiwei Tang
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Tianxi Li
- Department of Statistics, University of Virginia, Charlottesville, VA, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA
| | - Aakrosh Ratan
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, 1240 Pinn Hall, Charlottesville, VA, 22908, USA.
| |
Collapse
|
34
|
Almstedt E, Elgendy R, Hekmati N, Rosén E, Wärn C, Olsen TK, Dyberg C, Doroszko M, Larsson I, Sundström A, Arsenian Henriksson M, Påhlman S, Bexell D, Vanlandewijck M, Kogner P, Jörnsten R, Krona C, Nelander S. Integrative discovery of treatments for high-risk neuroblastoma. Nat Commun 2020; 11:71. [PMID: 31900415 PMCID: PMC6941971 DOI: 10.1038/s41467-019-13817-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/22/2019] [Indexed: 12/22/2022] Open
Abstract
Despite advances in the molecular exploration of paediatric cancers, approximately 50% of children with high-risk neuroblastoma lack effective treatment. To identify therapeutic options for this group of high-risk patients, we combine predictive data mining with experimental evaluation in patient-derived xenograft cells. Our proposed algorithm, TargetTranslator, integrates data from tumour biobanks, pharmacological databases, and cellular networks to predict how targeted interventions affect mRNA signatures associated with high patient risk or disease processes. We find more than 80 targets to be associated with neuroblastoma risk and differentiation signatures. Selected targets are evaluated in cell lines derived from high-risk patients to demonstrate reversal of risk signatures and malignant phenotypes. Using neuroblastoma xenograft models, we establish CNR2 and MAPK8 as promising candidates for the treatment of high-risk neuroblastoma. We expect that our method, available as a public tool (targettranslator.org), will enhance and expedite the discovery of risk-associated targets for paediatric and adult cancers. We lack effective treatment for half of children with high-risk neuroblastoma. Here, the authors introduce an algorithm that can predict the effect of interventions on gene expression signatures associated with high disease processes and risk, and identify and validate promising drug targets.
Collapse
Affiliation(s)
- Elin Almstedt
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ramy Elgendy
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Neda Hekmati
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Emil Rosén
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Caroline Wärn
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Thale Kristin Olsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Cecilia Dyberg
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Milena Doroszko
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Sven Påhlman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-223 81, Lund, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.,Department of Medicine, Integrated Cardio-Metabolic Centre Single Cell Facility, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, SE-41296, Sweden
| | - Cecilia Krona
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
35
|
Cervantes-Madrid D, Szydzik J, Lind DE, Borenäs M, Bemark M, Cui J, Palmer RH, Hallberg B. Repotrectinib (TPX-0005), effectively reduces growth of ALK driven neuroblastoma cells. Sci Rep 2019; 9:19353. [PMID: 31852910 PMCID: PMC6920469 DOI: 10.1038/s41598-019-55060-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 11/14/2019] [Indexed: 02/07/2023] Open
Abstract
Neuroblastoma is the most commonly diagnosed extracranial tumor in the first year of life. Approximately 9% of neuroblastoma patients present germline or somatic aberrations in the gene encoding for anaplastic lymphoma kinase (ALK). This increases in high-risk neuroblastomas, which have a 14% frequency of ALK aberrations at the time of diagnosis and show increasing numbers at relapse. Abrogating ALK activity with kinase inhibitors is employed as clinical therapy in malignancies such as non-small cell lung cancer and has shown good results in pediatric inflammatory myofibroblastic tumors and anaplastic large cell lymphomas. A phase I clinical trial of the first generation ALK inhibitor, crizotinib, in neuroblastoma patients showed modest results and suggested that further investigation was needed. Continuous development of ALK inhibitors has resulted in the third generation inhibitor repotrectinib (TPX-0005), which targets the active kinase conformations of ALK, ROS1 and TRK receptors. In the present study we investigated the effects of repotrectinib in a neuroblastoma setting in vitro and in vivo. Neuroblastoma cell lines were treated with repotrectinib to investigate inhibition of ALK and to determine its effect on proliferation. PC12 cells transfected with different ALK mutant variants were used to study the efficacy of repotrectinib to block ALK activation/signaling. The in vivo effect of repotrectinib was also analyzed in a neuroblastoma xenograft model. Our results show that repotrectinib is capable of inhibiting signaling activity of a range of ALK mutant variants found in neuroblastoma patients and importantly it exhibits strong antitumor effects in a xenograft model of neuroblastoma.
Collapse
Affiliation(s)
- Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Mats Bemark
- Mucosal Immunobiology and Vaccine Center (MIVAC), Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Jean Cui
- Turning Point Therapeutics, Inc. 10628 Science Center Drive, Suite 200, San Diego, California, 92121, United States
| | - Ruth Helen Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
36
|
Alam MW, Borenäs M, Lind DE, Cervantes-Madrid D, Umapathy G, Palmer RH, Hallberg B. Alectinib, an Anaplastic Lymphoma Kinase Inhibitor, Abolishes ALK Activity and Growth in ALK-Positive Neuroblastoma Cells. Front Oncol 2019; 9:579. [PMID: 31334113 PMCID: PMC6625372 DOI: 10.3389/fonc.2019.00579] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/14/2019] [Indexed: 02/03/2023] Open
Abstract
Oncogenic receptor tyrosine kinases including anaplastic lymphoma kinase (ALK) are implicated in numerous solid and hematologic cancers. ALK mutations are reported in an estimated 9% of neuroblastoma and recent reports indicate that the percentage of ALK-positive cases increases in the relapsed patient population. Initial clinical trial results have shown that it is difficult to inhibit growth of ALK positive neuroblastoma with crizotinib, motivating investigation of next generation ALK inhibitors with higher affinity for ALK. Here, alectinib, a potent next generation ALK inhibitor with antitumor activity was investigated in ALK-driven neuroblastoma models. Employing neuroblastoma cell lines and mouse xenografts we show a clear and efficient inhibition of ALK activity by alectinib. Inhibition of ALK activity was observed in vitro employing a set of different constitutively active ALK variants in biochemical assays. The results suggest that alectinib is an effective inhibitor of ALK kinase activity in ALK addicted neuroblastoma and should be considered as a potential future therapeutic option for ALK-positive neuroblastoma patients alone or in combination with other treatments.
Collapse
Affiliation(s)
- Muhammad Wasi Alam
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Borenäs
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Dan E Lind
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Diana Cervantes-Madrid
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
37
|
Umapathy G, Mendoza-Garcia P, Hallberg B, Palmer RH. Targeting anaplastic lymphoma kinase in neuroblastoma. APMIS 2019; 127:288-302. [PMID: 30803032 PMCID: PMC6850425 DOI: 10.1111/apm.12940] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Over the last decade, anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase (RTK), has been identified as a fusion partner in a diverse variety of translocation events resulting in oncogenic signaling in many different cancer types. In tumors where the full‐length ALK RTK itself is mutated, such as neuroblastoma, the picture regarding the role of ALK as an oncogenic driver is less clear. Neuroblastoma is a complex and heterogeneous tumor that arises from the neural crest derived peripheral nervous system. Although high‐risk neuroblastoma is rare, it often relapses and becomes refractory to treatment. Thus, neuroblastoma accounts for 10–15% of all childhood cancer deaths. Since most cases are in children under the age of 2, understanding the role and regulation of ALK during neural crest development is an important goal in addressing neuroblastoma tumorigenesis. An impressive array of tyrosine kinase inhibitors (TKIs) that act to inhibit ALK have been FDA approved for use in ALK‐driven cancers. ALK TKIs bind differently within the ATP‐binding pocket of the ALK kinase domain and have been associated with different resistance mutations within ALK itself that arise in response to therapeutic use, particularly in ALK‐fusion positive non‐small cell lung cancer (NSCLC). This patient population has highlighted the importance of considering the relevant ALK TKI to be used for a given ALK mutant variant. In this review, we discuss ALK in neuroblastoma, as well as the use of ALK TKIs and other strategies to inhibit tumor growth. Current efforts combining novel approaches and increasing our understanding of the oncogenic role of ALK in neuroblastoma are aimed at improving the efficacy of ALK TKIs as precision medicine options in the clinic.
Collapse
Affiliation(s)
- Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patricia Mendoza-Garcia
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
38
|
Low Frequency ALK Hotspots Mutations In Neuroblastoma Tumours Detected By Ultra-deep Sequencing: Implications For ALK Inhibitor Treatment. Sci Rep 2019; 9:2199. [PMID: 30778092 PMCID: PMC6379392 DOI: 10.1038/s41598-018-37240-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 11/30/2018] [Indexed: 01/01/2023] Open
Abstract
The ALK tyrosine kinase receptor is oncogenically activated in neuroblastoma. Whereas numerous ALK fusion genes have been reported in different malignancies, in neuroblastoma ALK is mainly activated through point mutations. Three hotspot residues (F1174, F1245, and R1275) account for 85% of mutant ALK seen in neuroblastoma. In a cohort of 105 Swedish neuroblastoma cases of all stages, these hotspot regions were re-sequenced (>5000X). ALK mutations were detected in 16 of 105 patients (range of variant allele fraction: 2.7–60%). Mutations at the F1174 and F1245 hotspot were observed in eleven and three cases respectively. ALK mutations were also detected at the I1171 and L1240 codons in one tumor each. No mutations were detected at R1275. Sanger sequencing could confirm ALK status for all mutated samples with variant allele fraction above 15%. Four of the samples with subclonal ALK mutation fraction below this would have gone undetected relying on Sanger sequencing only. No distinct mutation spectrum in relation to neuroblastoma tumours genomic subtypes could be detected although there was a paucity of ALK mutations among 11q-deleted tumors. As ALK mutations status opens up an excellent opportunity for application of small molecule inhibitors targeting ALK, early and sensitive detection of ALK alterations is clinically important considering its potential role in tumour progression.
Collapse
|
39
|
Van den Eynden J, Umapathy G, Ashouri A, Cervantes-Madrid D, Szydzik J, Ruuth K, Koster J, Larsson E, Guan J, Palmer RH, Hallberg B. Phosphoproteome and gene expression profiling of ALK inhibition in neuroblastoma cell lines reveals conserved oncogenic pathways. Sci Signal 2018; 11:11/557/eaar5680. [PMID: 30459281 DOI: 10.1126/scisignal.aar5680] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in ALK trigger the activation of the encoded receptor and its downstream signaling pathways. ALK mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy. Tyrosine kinase inhibitors (TKIs) that target ALK are currently in clinical use for the treatment of patients with ALK-positive non-small cell lung cancer. However, monotherapy with the ALK inhibitor crizotinib has been less encouraging in neuroblastoma patients with ALK alterations, raising the question of whether combinatorial therapy would be more effective. In this study, we established both phosphoproteomic and gene expression profiles of ALK activity in neuroblastoma cells exposed to first- and third-generation ALK TKIs, to identify the underlying molecular mechanisms and identify relevant biomarkers, signaling networks, and new therapeutic targets. This analysis has unveiled various important leads for novel combinatorial treatment strategies for patients with neuroblastoma and an increased understanding of ALK signaling involved in this disease.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Ganesh Umapathy
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Arghavan Ashouri
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | | | - Joanna Szydzik
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Kristina Ruuth
- Institution for Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, Netherlands
| | - Erik Larsson
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden
| | - Jikui Guan
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.,Children's Hospital affiliated with Zhengzhou University, 450018 Zhengzhou, China
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Göteborg, Sweden.
| |
Collapse
|