1
|
Jiang W, Guan B, Sun H, Mi Y, Cai S, Wan R, Li X, Lian P, Li D, Zhao S. WNT11 Promotes immune evasion and resistance to Anti-PD-1 therapy in liver metastasis. Nat Commun 2025; 16:1429. [PMID: 39920102 PMCID: PMC11806061 DOI: 10.1038/s41467-025-56714-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Liver metastasis (LM) poses a significant challenge in cancer treatment, with limited available therapeutic options and poor prognosis. Understanding the dynamics of tumor microenvironment (TME) and immune interactions is crucial for developing effective treatments. We find that WNT11 promoted CD8+ T-cell exclusion and suppression, which was correlated with poor prognosis in LM. Mechanistically, WNT11-overexpressing tumor cells directly reduce CD8+ T-cell recruitment and activity by decreasing CXCL10 and CCL4 expression through CAMKII-mediated β-catenin/AFF3 downregulation. WNT11-overexpressing tumor cells promote immunosuppressive macrophage polarization by inducing IL17D expression via the CAMKII/NF-κB pathway, which result in CD8+ T-cell suppression. Moreover, CAMKII inhibition increases the efficacy of anti-PD-1 therapy in mouse model of LM. Serum expression of WNT11 is identified as a potential minimally invasive biomarker in the management of colorectal cancer-LM with immunotherapy. Our findings highlight WNT11/CAMKII axis as a critical regulator of the TME and a promising target for immunotherapy in patients with LM.
Collapse
Affiliation(s)
- Weiliang Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Bingjie Guan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Hongcheng Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Yushuai Mi
- Department of Gastrointestinal Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, No. 247 Beiyuan Road, Jinan, Shandong, China
| | - Sanjun Cai
- Cancer Institute, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Road, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic Disease, Shanghai Jiao Tong University School of Medicine, No. 650 New Songjiang Road, Shanghai, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Peng Lian
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China
| | - Dawei Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China.
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'an Road, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dong'an Road, Shanghai, China.
| |
Collapse
|
2
|
Li Y, Zhang R, Li J, Wang L, Zhou G. Dysfunction of Endothelial Cell-Mediated Intercellular Communication and Metabolic Pathways in Age-Related Macular Degeneration. Curr Eye Res 2025; 50:169-181. [PMID: 39329213 DOI: 10.1080/02713683.2024.2407361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, but the therapies are not satisfactory. This study aimed to find AMD specific features through the analysis of high-throughput sequencing. METHODS In this study, we integrated six projects containing single-cell RNA sequencing (scRNA-seq) data to perform a comprehensive analysis for AMD samples in the tissues of retina and retinal pigment epithelium/choroid, and in the positions of macula and periphery. Differentially expressed genes (DEGs) were analyzed and crucial signaling pathways were identified across cell types and between the macula and periphery. The intercellular signaling transduction among cell types were inferred by "CellChat" to build cell-cell communication network under normal and AMD conditions, and verified at the transcriptional level. The CD31+ endothelial cells were obtained to evaluate the enrichment of KEGG pathways in atrophic and neovascular AMD, and GSVA was adopted to discover differential metabolic signals in each AMD type. RESULTS Thirteen major cell types were identified in the integrated scRNA-seq data. Although no disease-specific cell type or differential cell proportion was found, DEGs and enriched pathways were shown in cell-type- and position-dependent manners. Severe impairment of endothelial cell-mediated cell interactions was found in the signaling transduction network of the macula, and compromised cell interactions were observed in the periphery. Furthermore, distinct signaling pathways and metabolic states were uncovered in atrophic and neovascular AMD. Striking reduction in energy metabolism, lipid metabolism, and oxidative stress was indicated in the atrophic AMD. CONCLUSION Conclusively, we discover aberrant signals and metabolic pathways in AMD samples, providing insight into mechanisms and potential therapeutic targets for the AMD treatment.
Collapse
Affiliation(s)
- Yang Li
- Department of Ophthalmology, Yuncheng Central Hospital Affiliated to Shanxi Medical University, Yuncheng, China
| | - Rong Zhang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jing Li
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Lin Wang
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Guohong Zhou
- Department of Ophthalmology, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
3
|
Li K, Huang J, Tan Y, Sun J, Zhou M. Single-cell and bulk transcriptome analysis reveals tumor cell heterogeneity and underlying molecular program in uveal melanoma. J Transl Med 2024; 22:1020. [PMID: 39533334 PMCID: PMC11555829 DOI: 10.1186/s12967-024-05831-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Uveal melanoma (UM) is a rare and deadly eye cancer with high metastatic potential. Despite the predominance of malignant cells within the tumor microenvironment, the heterogeneity and underlying molecular features remain to be fully characterized. METHODS We analyzed single-cell transcriptomic profiling of 37,660 malignant cells from 17 UM tumors. A consensus non-negative factorization algorithm was used to decipher transcriptional programs underlying tumor cell-intrinsic heterogeneity. Tumor-infiltrated immune cells were computationally estimated from bulk transcriptomes and bioinformatics methods. A gene signature was derived for subtyping and prognostic stratification and validated in multicenter cohorts. RESULTS ScRNA-seq analysis revealed the existence of diverse subpopulations and transcriptional variability among malignant cells within and between tumors. Furthermore, we observed that the heterogeneity of malignant cell states and compositions correlated with genomic, immunological, and clinical characteristics. By identifying gene expression programs associated with malignant cell heterogeneity at the single cell level, UM samples were classified into two distinct intra-tumoral subtypes (ITMHlo and ITMHhi) with different prognoses and immune microenvironments. Finally, a machine learning-derived 9-gene signature was developed to translate single-cell information into bulk tissue transcriptomes for patient stratification and was validated in multicenter cohorts. CONCLUSIONS Our study provides insight into understanding the intra-tumoral heterogeneity of UM and its potential impact on patient stratification.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingzhe Huang
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ying Tan
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jie Sun
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Meng Zhou
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
4
|
Maurer A, Clerici G, Schaab JA, Cheng PF, Mihic-Probst D, Mader C, Messerli M, Huellner MW, Dummer R, Dimitriou F. Immunotherapy response and resistance in patients with advanced uveal melanoma: a retrospective cohort study. Clin Exp Med 2024; 24:234. [PMID: 39352553 PMCID: PMC11445343 DOI: 10.1007/s10238-024-01497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024]
Abstract
Metastatic uveal melanoma (mUM) is associated with poor prognosis. Ipilimumab/nivolumab has shown antitumor efficacy in phase II studies. Tebentafusp resulted in longer overall survival (OS) compared to investigator`s choice in a phase III study. We sought to describe the radiological response patterns of mUM patients treated with immunotherapy. Patients with mUM treated with ipilimumab/nivolumab and tebentafusp between July 2018 and December 2022, with available radiological assessment per RECISTv1.1 and/or imPERCIST5, were retrospectively identified and included. Progression-free survival (PFS) and OS rates, liver-specific response and pathological assessment in available liver biopsies were evaluated. In the ipilimumab/nivolumab group, median PFS (mPFS) was 2.9 months (95% CI 2.2-28.6) and mOS 28.9 months (95% CI 12.7-NR). Complete (CMR) and partial (PMR) metabolic response per imPERCIST5, and partial response (PR) per RECISTv1.1 were associated with longer PFS and OS by trend, compared to morphologically and metabolically stable or progressive disease. In the tebentafusp group, mPFS was 2.7 months (95% CI 2.2-3) and mOS 18.6 months (95% CI 11.5-NR). PMR and PR were associated with longer PFS by trend. In both treatments, the overall treatment response was associated with the radiological response at the liver site. In available liver tumor biopsies, differences in pathological and radiological responses were noted. ImPERCIST5 and RECIST v1.1 are valuable tools in the radiological response assessment, but both methods display limitations. Accurate biomarkers to stratify patients at risk for disease progression and future translational studies to investigate mechanisms of response and resistance are required.
Collapse
Affiliation(s)
- Alexander Maurer
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Giulio Clerici
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Jan A Schaab
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Phil F Cheng
- Department of Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Daniela Mihic-Probst
- Institute for Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Cäcilia Mader
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Martin W Huellner
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
| |
Collapse
|
5
|
Karlsson JW, Sah VR, Olofsson Bagge R, Kuznetsova I, Iqba M, Alsen S, Stenqvist S, Saxena A, Ny L, Nilsson LM, Nilsson JA. Patient-derived xenografts and single-cell sequencing identifies three subtypes of tumor-reactive lymphocytes in uveal melanoma metastases. eLife 2024; 12:RP91705. [PMID: 39312285 PMCID: PMC11419671 DOI: 10.7554/elife.91705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Uveal melanoma (UM) is a rare melanoma originating in the eye's uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.
Collapse
Affiliation(s)
- Joakim W Karlsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Vasu R Sah
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Surgery, Sahlgrenska University HospitalGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, University of GothenburgGothenburgSweden
| | - Irina Kuznetsova
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
| | - Munir Iqba
- Genomics WA, Telethon Kids Institute, Harry Perkins Institute of Medical Research and University of Western AustraliaNedlandsAustralia
| | - Samuel Alsen
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Sofia Stenqvist
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Alka Saxena
- Genomics WA, Telethon Kids Institute, Harry Perkins Institute of Medical Research and University of Western AustraliaNedlandsAustralia
| | - Lars Ny
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
- Department of Oncology, Sahlgrenska University HospitalGothenburgSweden
| | - Lisa M Nilsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Jonas A Nilsson
- Harry Perkins Institute of Medical Research and University of Western AustraliaPerthAustralia
- Sahlgrenska Center for Cancer Research, Institute of Clinical Sciences, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
6
|
Tang S, Zhang Y, Huang S, Zhu T, Huang X. Single cell RNA-sequencing in uveal melanoma: advances in heterogeneity, tumor microenvironment and immunotherapy. Front Immunol 2024; 15:1427348. [PMID: 38966635 PMCID: PMC11222395 DOI: 10.3389/fimmu.2024.1427348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Uveal melanoma (UM) is a highly aggressive and fatal tumor in the eye, and due the special biology of UM, immunotherapy showed little effect in UM patients. To improve the efficacy of immunotherapy for UM patients is of great clinical importance. Single-cell RNA sequencing(scRNA-seq) provides a critical perspective for deciphering the complexity of intratumor heterogeneity and tumor microenvironment(TME). Combing the bioinformatics analysis, scRNA-seq could help to find prognosis-related molecular indicators, develop new therapeutic targets especially for immunotherapy, and finally to guide the clinical treatment options.
Collapse
Affiliation(s)
- Shiyi Tang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Yun Zhang
- Department of Ophthalmology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Shengmei Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| | - Tengfei Zhu
- Department of Anesthesiology, Changzheng Hospital, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiaojing Huang
- Department of Ophthalmology, Shanghai Pudong New Area Gongli Hospital, Shanghai, China
| |
Collapse
|
7
|
Li J, Cao D, Jiang L, Zheng Y, Shao S, Zhuang A, Xiang D. ITGB2-ICAM1 axis promotes liver metastasis in BAP1-mutated uveal melanoma with retained hypoxia and ECM signatures. Cell Oncol (Dordr) 2024; 47:951-965. [PMID: 38150154 DOI: 10.1007/s13402-023-00908-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
PURPOSE Uveal melanoma (UM) with BAP1 inactivating mutations has a high risk of metastasis, but the mechanism behind BAP1 deficiency driving UM metastasis is unknown. METHODS We analyzed the single-cell RNA sequencing (scRNA-Seq) data comprised primary and metastatic UM with or without BAP1 mutations (MUTs) to reveal inter- and intra-tumor heterogeneity among different groups. Then, an immune-competent mouse liver metastatic model was used to explore the role of ITGB2-ICAM1 in BAP1-associated UM metastasis. RESULTS Cluster 1 tumor cells expressed high levels of genes linked to tumor metastasis, such as GDF15, ATF3, and CDKN1A, all of which are associated with poor prognosis. The strength of communication between terminally exhausted CD8+ T cells and GDF15hiATF3hiCDKN1Ahi tumor cells was enhanced in BAP1-mutated UM, with CellChat analysis predicting strong ITGB2-ICAM1 signaling between them. High expression of either ITGB2 or ICAM1 was a worse prognostic indicator. Using an immune-competent mouse liver metastatic model, we indicated that inhibiting either ICAM1 or ITGB2 prevented liver metastasis in the BAP1-mutated group in vivo. The inhibitors primarily inhibited hypoxia- and ECM-related pathways indicated by changes in the expression of genes such as ADAM8, CAV2, ENO1, PGK1, LOXL2, ITGA5, and VCAN. etc. CONCLUSION: This study suggested that the ITGB2-ICAM1 axis may play a crucial role for BAP1-associated UM metastasis by preserving hypoxia- and ECM- related signatures, which provide a potential strategy for preventing UM metastasis in patients with BAP1 mutation.
Collapse
Affiliation(s)
- Jiaoduan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dongyan Cao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lixin Jiang
- Department of Ultrasound, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiwen Zheng
- Department of Ultrasound, the Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Siyuan Shao
- Shanghai OneTar Biomedicine, Shanghai, China
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, China.
| | - Dongxi Xiang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiaotong University, Shanghai, China.
- Department of Biliary-Pancreatic Surgery, the Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China.
| |
Collapse
|
8
|
Beigi YZ, Lanjanian H, Fayazi R, Salimi M, Hoseyni BHM, Noroozizadeh MH, Masoudi-Nejad A. Heterogeneity and molecular landscape of melanoma: implications for targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:17. [PMID: 38724687 PMCID: PMC11082128 DOI: 10.1186/s43556-024-00182-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".
Collapse
Affiliation(s)
- Yasaman Zohrab Beigi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hossein Lanjanian
- Software Engineering Department, Engineering Faculty, Istanbul Topkapi University, Istanbul, Turkey
| | - Reyhane Fayazi
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Salimi
- Department of Medical Genetics, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Behnaz Haji Molla Hoseyni
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | | | - Ali Masoudi-Nejad
- Laboratory of System Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
van den Bosch QCC, de Klein A, Verdijk RM, Kiliç E, Brosens E. Uveal melanoma modeling in mice and zebrafish. Biochim Biophys Acta Rev Cancer 2024; 1879:189055. [PMID: 38104908 DOI: 10.1016/j.bbcan.2023.189055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Despite extensive research and refined therapeutic options, the survival for metastasized uveal melanoma (UM) patients has not improved significantly. UM, a malignant tumor originating from melanocytes in the uveal tract, can be asymptomatic and small tumors may be detected only during routine ophthalmic exams; making early detection and treatment difficult. UM is the result of a number of characteristic somatic alterations which are associated with prognosis. Although UM morphology and biology have been extensively studied, there are significant gaps in our understanding of the early stages of UM tumor evolution and effective treatment to prevent metastatic disease remain elusive. A better understanding of the mechanisms that enable UM cells to thrive and successfully metastasize is crucial to improve treatment efficacy and survival rates. For more than forty years, animal models have been used to investigate the biology of UM. This has led to a number of essential mechanisms and pathways involved in UM aetiology. These models have also been used to evaluate the effectiveness of various drugs and treatment protocols. Here, we provide an overview of the molecular mechanisms and pharmacological studies using mouse and zebrafish UM models. Finally, we highlight promising therapeutics and discuss future considerations using UM models such as optimal inoculation sites, use of BAP1mut-cell lines and the rise of zebrafish models.
Collapse
Affiliation(s)
- Quincy C C van den Bosch
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Section of Ophthalmic Pathology, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands; Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Emine Kiliç
- Department of Ophthalmology, Erasmus MC, Rotterdam, the Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, Rotterdam, The Netherlands; Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Beasley AB, de Bruyn DP, Calapre L, Al-Ogaili Z, Isaacs TW, Bentel J, Reid AL, Dwarkasing RS, Pereira MR, Khattak MA, Meniawy TM, Millward M, Brosens E, de Klein A, Chen FK, Kiliҫ E, Gray ES. Detection of metastases using circulating tumour DNA in uveal melanoma. J Cancer Res Clin Oncol 2023; 149:14953-14963. [PMID: 37608028 PMCID: PMC10602949 DOI: 10.1007/s00432-023-05271-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/09/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND Approximately 50% of uveal melanoma (UM) patients will develop metastatic disease depending on the genetic features of the primary tumour. Patients need 3-12 monthly scans, depending on their prognosis, which is costly and often non-specific. Circulating tumour DNA (ctDNA) quantification could serve as a test to detect and monitor patients for early signs of metastasis and therapeutic response. METHODS We assessed ctDNA as a biomarker in three distinct UM cohorts using droplet-digital PCR: (A) a retrospective analysis of primary UM patients to predict metastases; (B) a prospective analysis of UM patients after resolution of their primary tumour for early detection of metastases; and (C) monitoring treatment response in metastatic UM patients. RESULTS Cohort A: ctDNA levels were not associated with the development of metastases. Cohort B: ctDNA was detected in 17/25 (68%) with radiological diagnosis of metastases. ctDNA was the strongest predictor of overall survival in a multivariate analysis (HR = 15.8, 95% CI 1.7-151.2, p = 0.017). Cohort C: ctDNA monitoring of patients undergoing immunotherapy revealed a reduction in the levels of ctDNA in patients with combination immunotherapy. CONCLUSIONS Our proof-of-concept study shows the biomarker feasibility potential of ctDNA monitoring in for the clinical management of uveal melanoma patients.
Collapse
Affiliation(s)
- Aaron B Beasley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| | - Daniël P de Bruyn
- Department of Ophthalmology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Zeyad Al-Ogaili
- Department of Molecular Imaging and Therapy Service, Fiona Stanley Hospital, Murdoch, WA, 6150, Australia
| | - Timothy W Isaacs
- Perth Retina, Subiaco, WA, Australia
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
| | - Jacqueline Bentel
- Anatomical Pathology, PathWest Laboratory Medicine, Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Anna L Reid
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
| | - Roy S Dwarkasing
- Department of Radiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Michelle R Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Muhammad A Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
| | - Tarek M Meniawy
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Michael Millward
- School of Medicine, The University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Incorporating Lions Eye Institute), The University of Western Australia, Crawley, WA, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, VIC, Australia
| | - Emine Kiliҫ
- Department of Ophthalmology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Erasmus MC Cancer Institute, 3000 CA, Rotterdam, The Netherlands
| | - Elin S Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
- Centre for Precision Health, Edith Cowan University, Joondalup, WA, Australia.
| |
Collapse
|
11
|
He LF, Mou P, Yang CH, Huang C, Shen Y, Zhang JD, Wei RL. Single-cell sequencing in primary intraocular tumors: understanding heterogeneity, the microenvironment, and drug resistance. Front Immunol 2023; 14:1194590. [PMID: 37359513 PMCID: PMC10287964 DOI: 10.3389/fimmu.2023.1194590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 06/28/2023] Open
Abstract
Retinoblastoma (RB) and uveal melanoma (UM) are the most common primary intraocular tumors in children and adults, respectively. Despite continued increases in the likelihood of salvaging the eyeball due to advancements in local tumor control, prognosis remains poor once metastasis has occurred. Traditional sequencing technology obtains averaged information from pooled clusters of diverse cells. In contrast, single-cell sequencing (SCS) allows for investigations of tumor biology at the resolution of the individual cell, providing insights into tumor heterogeneity, microenvironmental properties, and cellular genomic mutations. SCS is a powerful tool that can help identify new biomarkers for diagnosis and targeted therapy, which may in turn greatly improve tumor management. In this review, we focus on the application of SCS for evaluating heterogeneity, microenvironmental characteristics, and drug resistance in patients with RB and UM.
Collapse
Affiliation(s)
- Lin-feng He
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Pei Mou
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Chun-hui Yang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Cheng Huang
- 92882 Troops of the Chinese People’s Liberation Army, Qingdao, China
| | - Ya Shen
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Jin-di Zhang
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| | - Rui-li Wei
- Department of Ophthalmology, Changzheng Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
12
|
Xu L, Fan Y, Wang J, Shi R. Dysfunctional intercellular communication and metabolic signaling pathways in thin endometrium. Front Physiol 2022; 13:1050690. [PMID: 36505055 PMCID: PMC9729336 DOI: 10.3389/fphys.2022.1050690] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022] Open
Abstract
Background: The endometrial thickness is a key factor for successful implantation. Thin endometrium is associated with lower implantation rate and pregnancy rate. Lacking of a better understanding for the cellular and molecular mechanisms of thin endometrium, managing patients with thin endometrium still represents a major challenge for clinicians. Methods: In this study, we combined four single-cell RNA sequencing (scRNA-seq) and one bulk sequencing (bulk-seq) data for thin endometrium to perform an integrated analysis for endometrial cells in proliferating phase. Cell proportion and differentially expressed genes (DEGs) were analyzed to determine the disease-specific cell type and signaling pathways. The cell-cell communication among cell types were inferred by "CellChat" to illustrate the differential intercellular communication under normal and thin endometrium conditions. GSEA and GSVA were applied to identify dysfunctional signals and metabolic pathways before and after thin endometrium. Results: Integration of scRNA-seq identified eight cell types. The proportion of stromal cells showed a significant difference between normal and thin endometrial tissue. The DEGs in diverse cell types revealed enriched pathways in a cell-specific manner. Aberrant cell-cell signaling transduction was found in almost all cell types, especially in immune cells and epithelial cells. Furthermore, dysfunctional metabolic signaling pathways were induced in a cell-type dependent way. The down-regulation of carbohydrate metabolism and nucleotide metabolism was observed and the energy metabolism switch was indicated. Conclusion: Conclusively, we discover dysfunctional signals and metabolic pathways in thin endometrium, providing insight into mechanisms and therapeutic strategies for the atrophic endometrium.
Collapse
Affiliation(s)
- Liang Xu
- Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingying Fan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jianjun Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jianjun Wang, ; Rui Shi,
| | - Rui Shi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China,*Correspondence: Jianjun Wang, ; Rui Shi,
| |
Collapse
|
13
|
Gao G, Deng A, Liang S, Liu S, Fu X, Zhao X, Yu Z. Integration of Bulk RNA Sequencing and Single-Cell RNA Sequencing to Reveal Uveal Melanoma Tumor Heterogeneity and Cells Related to Survival. Front Immunol 2022; 13:898925. [PMID: 35865532 PMCID: PMC9294459 DOI: 10.3389/fimmu.2022.898925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Molecular classification based on transcriptional characteristics is often used to study tumor heterogeneity. Human cancer has different cell populations with distinct transcription in tumors, and their heterogeneity is the focus of tumor therapy. Our purpose was to explore the tumor heterogeneity of uveal melanoma (UM) through RNA sequencing (RNA-seq) and single-cell RNA sequencing (scRNA-seq). Based on the consensus clustering assays of the prognosis-related immune gene set, the immune subtype (IS) of UM and its corresponding immune characteristics were comprehensively analyzed. The heterogeneous cell groups and corresponding marker genes of UM were identified from GSE138433 using scRNA-seq analysis. Pseudotime trajectory analysis and SCENIC analysis were conducted to explore the trajectory of cell differentiation and the regulatory network of single-cell transcription factors (TFs). Based on 37 immune gene sets, UM was divided into two different immune subtypes (IS1 and IS2). The two kinds of ISs have different characteristics in prognosis, immune-related molecules, immune score, and immune cell infiltration. According to 11,988 cells of scRNA-seq data from six UM samples, 11 cell clusters and 10 cell types were identified. The subsets of C1, C4, C5, C8, and C9 were related to the prognosis of UM, and different TF–target gene regulatory networks were involved. These five cell subsets differentiated into 3 different states. Our results provided valuable information about the heterogeneity of UM tumors and the expression patterns of TFs in different cell types.
Collapse
|
14
|
Prognostic Biomarkers in Uveal Melanoma: The Status Quo, Recent Advances and Future Directions. Cancers (Basel) 2021; 14:cancers14010096. [PMID: 35008260 PMCID: PMC8749988 DOI: 10.3390/cancers14010096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Although rare, uveal melanoma (UM) is the most common cancer that develops inside adult eyes. The prognosis is poor, since 50% of patients will develop lethal metastases in the first decade, especially to the liver. Once metastases are detected, life expectancy is limited, given that the available treatments are mostly unsuccessful. Thus, there is a need to find methods that can accurately predict UM prognosis and also effective therapeutic strategies to treat this cancer. In this manuscript, we initially compile the current knowledge on epidemiological, clinical, pathological and molecular features of UM. Then, we cover the most relevant prognostic factors currently used for the evaluation and follow-up of UM patients. Afterwards, we highlight emerging molecular markers in UM published over the last three years. Finally, we discuss the problems preventing meaningful advances in the treatment and prognostication of UM patients, as well as forecast new roadblocks and paths of UM-related research. Abstract Uveal melanoma (UM) is the most common malignant intraocular tumour in the adult population. It is a rare cancer with an incidence of nearly five cases per million inhabitants per year, which develops from the uncontrolled proliferation of melanocytes in the choroid (≈90%), ciliary body (≈6%) or iris (≈4%). Patients initially present either with symptoms like blurred vision or photopsia, or without symptoms, with the tumour being detected in routine eye exams. Over the course of the disease, metastases, which are initially dormant, develop in nearly 50% of patients, preferentially in the liver. Despite decades of intensive research, the only approach proven to mildly control disease spread are early treatments directed to ablate liver metastases, such as surgical excision or chemoembolization. However, most patients have a limited life expectancy once metastases are detected, since there are limited therapeutic approaches for the metastatic disease, including immunotherapy, which unlike in cutaneous melanoma, has been mostly ineffective for UM patients. Therefore, in order to offer the best care possible to these patients, there is an urgent need to find robust models that can accurately predict the prognosis of UM, as well as therapeutic strategies that effectively block and/or limit the spread of the metastatic disease. Here, we initially summarized the current knowledge about UM by compiling the most relevant epidemiological, clinical, pathological and molecular data. Then, we revisited the most important prognostic factors currently used for the evaluation and follow-up of primary UM cases. Afterwards, we addressed emerging prognostic biomarkers in UM, by comprehensively reviewing gene signatures, immunohistochemistry-based markers and proteomic markers resulting from research studies conducted over the past three years. Finally, we discussed the current hurdles in the field and anticipated the future challenges and novel avenues of research in UM.
Collapse
|
15
|
Rossi E, Croce M, Reggiani F, Schinzari G, Ambrosio M, Gangemi R, Tortora G, Pfeffer U, Amaro A. Uveal Melanoma Metastasis. Cancers (Basel) 2021; 13:5684. [PMID: 34830841 PMCID: PMC8616038 DOI: 10.3390/cancers13225684] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Uveal melanoma (UM) is characterized by relatively few, highly incident molecular alterations and their association with metastatic risk is deeply understood. Nevertheless, this knowledge has so far not led to innovative therapies for the successful treatment of UM metastases or for adjuvant therapy, leaving survival after diagnosis of metastatic UM almost unaltered in decades. The driver mutations of UM, mainly in the G-protein genes GNAQ and GNA11, activate the MAP-kinase pathway as well as the YAP/TAZ pathway. At present, there are no drugs that target the latter and this likely explains the failure of mitogen activated kinase kinase inhibitors. Immune checkpoint blockers, despite the game changing effect in cutaneous melanoma (CM), show only limited effects in UM probably because of the low mutational burden of 0.5 per megabase and the unavailability of antibodies targeting the main immune checkpoint active in UM. The highly pro-tumorigenic microenvironment of UM also contributes to therapy resistance. However, T-cell redirection by a soluble T-cell receptor that is fused to an anti-CD3 single-chain variable fragment, local, liver specific therapy, new immune checkpoint blockers, and YAP/TAZ specific drugs give new hope to repeating the success of innovative therapy obtained for CM.
Collapse
Affiliation(s)
- Ernesto Rossi
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
| | - Michela Croce
- Laboratory of Biotherapies, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (R.G.)
| | - Francesco Reggiani
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Giovanni Schinzari
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
- Medical Oncology, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Marianna Ambrosio
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Rosaria Gangemi
- Laboratory of Biotherapies, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (M.C.); (R.G.)
| | - Giampaolo Tortora
- Medical Oncology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy; (E.R.); (G.S.); (G.T.)
- Medical Oncology, Università Cattolica del S. Cuore, 00168 Rome, Italy
| | - Ulrich Pfeffer
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| | - Adriana Amaro
- Laboratory of Epigenetics, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; (F.R.); (M.A.); (A.A.)
| |
Collapse
|