1
|
Pooranachithra M, Jyo EM, Brouilly N, Pujol N, Ernst AM, Chisholm AD. C. elegans epicuticlins define specific compartments in the apical extracellular matrix and function in wound repair. Development 2024; 151:dev204330. [PMID: 39373389 PMCID: PMC11529277 DOI: 10.1242/dev.204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/22/2024] [Indexed: 10/08/2024]
Abstract
The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.
Collapse
Affiliation(s)
- Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Erin M. Jyo
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | - Nathalie Pujol
- Aix-Marseille Université, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009, Marseille, France
| | - Andreas M. Ernst
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Pollard MG, Rockmill B, Oke A, Anderson CM, Fung JC. Kinetic analysis of synaptonemal complex dynamics during meiosis of yeast Saccharomyces cerevisiae reveals biphasic growth and abortive disassembly. Front Cell Dev Biol 2023; 11:1098468. [PMID: 36814598 PMCID: PMC9939684 DOI: 10.3389/fcell.2023.1098468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
The synaptonemal complex (SC) is a dynamic structure formed between chromosomes during meiosis which stabilizes and supports many essential meiotic processes such as pairing and recombination. In budding yeast, Zip1 is a functionally conserved element of the SC that is important for synapsis. Here, we directly measure the kinetics of Zip1-GFP assembly and disassembly in live cells of the yeast S. cerevisiae. The imaging of SC assembly in yeast is challenging due to the large number of chromosomes packed into a small nucleus. We employ a zip3Δ mutant in which only a few chromosomes undergo synapsis at any given time, initiating from a single site on each chromosome, thus allowing the assembly and disassembly kinetics of single SCs to be accurately monitored in living cells. SC assembly occurs with both monophasic and biphasic kinetics, in contrast to the strictly monophasic assembly seen in C. elegans. In wild-type cells, once maximal synapsis is achieved, programmed final disassembly rapidly follows, as Zip1 protein is actively degraded. In zip3Δ, this period is extended and final disassembly is prolonged. Besides final disassembly, we found novel disassembly events involving mostly short SCs that disappeared in advance of programmed final disassembly, which we termed "abortive disassembly." Abortive disassembly is distinct from final disassembly in that it occurs when Zip1 protein levels are still high, and exhibits a much slower rate of disassembly, suggesting a different mechanism for removal in the two types of disassembly. We speculate that abortive disassembly events represent defective or stalled SCs, possibly representing SC formation between non-homologs, that is then targeted for dissolution. These results reveal novel aspects of SC assembly and disassembly, potentially providing evidence of additional regulatory pathways controlling not just the assembly, but also the disassembly, of this complex cellular structure.
Collapse
Affiliation(s)
| | | | | | | | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, Center of Reproductive Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Kakui Y, Barrington C, Kusano Y, Thadani R, Fallesen T, Hirota T, Uhlmann F. Chromosome arm length, and a species-specific determinant, define chromosome arm width. Cell Rep 2022; 41:111753. [PMID: 36476849 DOI: 10.1016/j.celrep.2022.111753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/05/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Mitotic chromosomes in different organisms adopt various dimensions. What defines these dimensions is scarcely understood. Here, we compare mitotic chromosomes in budding and fission yeasts harboring similarly sized genomes distributed among 16 or 3 chromosomes, respectively. Hi-C analyses and superresolution microscopy reveal that budding yeast chromosomes are characterized by shorter-ranging mitotic chromatin contacts and are thinner compared with the thicker fission yeast chromosomes that contain longer-ranging mitotic contacts. These distinctions persist even after budding yeast chromosomes are fused to form three fission-yeast-length entities, revealing a species-specific organizing principle. Species-specific widths correlate with the known binding site intervals of the chromosomal condensin complex. Unexpectedly, within each species, we find that longer chromosome arms are always thicker and harbor longer-ranging contacts, a trend that we also observe with human chromosomes. Arm length as a chromosome width determinant informs mitotic chromosome formation models.
Collapse
Affiliation(s)
- Yasutaka Kakui
- Waseda Institute for Advanced Study, Waseda University, Tokyo 169-0051, Japan; Laboratory of Cytoskeletal Logistics, Center for Advanced Biomedical Sciences, Waseda University, Tokyo 162-8480, Japan; Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| | - Christopher Barrington
- Bioinformatics & Biostatistics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Yoshiharu Kusano
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Rahul Thadani
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Todd Fallesen
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
4
|
Del Rosario M, Heil HS, Mendes A, Saggiomo V, Henriques R. The Field Guide to 3D Printing in Optical Microscopy for Life Sciences. Adv Biol (Weinh) 2022; 6:e2100994. [PMID: 34693666 DOI: 10.1002/adbi.202100994] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/20/2021] [Indexed: 01/27/2023]
Abstract
The maker movement has reached the optics labs, empowering researchers to create and modify microscope designs and imaging accessories. 3D printing has a disruptive impact on the field, improving accessibility to fabrication technologies in additive manufacturing. This approach is particularly useful for rapid, low-cost prototyping, allowing unprecedented levels of productivity and accessibility. From inexpensive microscopes for education such as the FlyPi to the highly complex robotic microscope OpenFlexure, 3D printing is paving the way for the democratization of technology, promoting collaborative environments between researchers, as 3D designs are easily shared. This holds the unique possibility of extending the open-access concept from knowledge to technology, allowing researchers everywhere to use and extend model structures. Here, it is presented a review of additive manufacturing applications in optical microscopy for life sciences, guiding the user through this new and exciting technology and providing a starting point to anyone willing to employ this versatile and powerful new tool.
Collapse
Affiliation(s)
- Mario Del Rosario
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Hannah S Heil
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Afonso Mendes
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
| | - Vittorio Saggiomo
- Laboratory of BioNanoTechnology, Wageningen University and Research, Wageningen, 6708WG, The Netherlands
| | - Ricardo Henriques
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal
- Quantitative Imaging and Nanobiophysics, MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| |
Collapse
|
5
|
Phillips MA, Susano Pinto DM, Hall N, Mateos-Langerak J, Parton RM, Titlow J, Stoychev DV, Parks T, Susano Pinto T, Sedat JW, Booth MJ, Davis I, Dobbie IM. Microscope-Cockpit: Python-based bespoke microscopy for bio-medical science. Wellcome Open Res 2022; 6:76. [PMID: 37283605 PMCID: PMC10240544 DOI: 10.12688/wellcomeopenres.16610.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 12/12/2024] Open
Abstract
We have developed "Microscope-Cockpit" (Cockpit), a highly adaptable open source user-friendly Python-based Graphical User Interface (GUI) environment for precision control of both simple and elaborate bespoke microscope systems. The user environment allows next-generation near instantaneous navigation of the entire slide landscape for efficient selection of specimens of interest and automated acquisition without the use of eyepieces. Cockpit uses "Python-Microscope" (Microscope) for high-performance coordinated control of a wide range of hardware devices using open source software. Microscope also controls complex hardware devices such as deformable mirrors for aberration correction and spatial light modulators for structured illumination via abstracted device models. We demonstrate the advantages of the Cockpit platform using several bespoke microscopes, including a simple widefield system and a complex system with adaptive optics and structured illumination. A key strength of Cockpit is its use of Python, which means that any microscope built with Cockpit is ready for future customisation by simply adding new libraries, for example machine learning algorithms to enable automated microscopy decision making while imaging.
Collapse
Affiliation(s)
- Mick A. Phillips
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine,, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David Miguel Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nicholas Hall
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Richard M. Parton
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Josh Titlow
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Danail V. Stoychev
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Thomas Parks
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tiago Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - John W. Sedat
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, 94158, USA
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Ilan Davis
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ian M. Dobbie
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218, USA
| |
Collapse
|
6
|
Phillips MA, Susano Pinto DM, Hall N, Mateos-Langerak J, Parton RM, Titlow J, Stoychev DV, Parks T, Susano Pinto T, Sedat JW, Booth MJ, Davis I, Dobbie IM. Microscope-Cockpit: Python-based bespoke microscopy for bio-medical science. Wellcome Open Res 2022; 6:76. [PMID: 37283605 PMCID: PMC10240544 DOI: 10.12688/wellcomeopenres.16610.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 03/05/2025] Open
Abstract
We have developed "Microscope-Cockpit" (Cockpit), a highly adaptable open source user-friendly Python-based Graphical User Interface (GUI) environment for precision control of both simple and elaborate bespoke microscope systems. The user environment allows next-generation near instantaneous navigation of the entire slide landscape for efficient selection of specimens of interest and automated acquisition without the use of eyepieces. Cockpit uses "Python-Microscope" (Microscope) for high-performance coordinated control of a wide range of hardware devices using open source software. Microscope also controls complex hardware devices such as deformable mirrors for aberration correction and spatial light modulators for structured illumination via abstracted device models. We demonstrate the advantages of the Cockpit platform using several bespoke microscopes, including a simple widefield system and a complex system with adaptive optics and structured illumination. A key strength of Cockpit is its use of Python, which means that any microscope built with Cockpit is ready for future customisation by simply adding new libraries, for example machine learning algorithms to enable automated microscopy decision making while imaging.
Collapse
Affiliation(s)
- Mick A. Phillips
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
- Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine,, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - David Miguel Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nicholas Hall
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Richard M. Parton
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Josh Titlow
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Danail V. Stoychev
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Thomas Parks
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tiago Susano Pinto
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - John W. Sedat
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, 94158, USA
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Ilan Davis
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Ian M. Dobbie
- Micron Advanced Bioimaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Integrated Imaging Center, Department of Biology, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland, 21218, USA
| |
Collapse
|
7
|
Cremer M, Brandstetter K, Maiser A, Rao SSP, Schmid VJ, Guirao-Ortiz M, Mitra N, Mamberti S, Klein KN, Gilbert DM, Leonhardt H, Cardoso MC, Aiden EL, Harz H, Cremer T. Cohesin depleted cells rebuild functional nuclear compartments after endomitosis. Nat Commun 2020; 11:6146. [PMID: 33262376 PMCID: PMC7708632 DOI: 10.1038/s41467-020-19876-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Cohesin plays an essential role in chromatin loop extrusion, but its impact on a compartmentalized nuclear architecture, linked to nuclear functions, is less well understood. Using live-cell and super-resolved 3D microscopy, here we find that cohesin depletion in a human colon cancer derived cell line results in endomitosis and a single multilobulated nucleus with chromosome territories pervaded by interchromatin channels. Chromosome territories contain chromatin domain clusters with a zonal organization of repressed chromatin domains in the interior and transcriptionally competent domains located at the periphery. These clusters form microscopically defined, active and inactive compartments, which likely correspond to A/B compartments, which are detected with ensemble Hi-C. Splicing speckles are observed nearby within the lining channel system. We further observe that the multilobulated nuclei, despite continuous absence of cohesin, pass through S-phase with typical spatio-temporal patterns of replication domains. Evidence for structural changes of these domains compared to controls suggests that cohesin is required for their full integrity.
Collapse
Affiliation(s)
- Marion Cremer
- Anthropology and Human Genomics, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany.
| | - Katharina Brandstetter
- Human Biology & BioImaging, Center for Molecular Biosystems, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Andreas Maiser
- Human Biology & BioImaging, Center for Molecular Biosystems, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Suhas S P Rao
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Structural Biology, Stanford University School of Medicine, California, USA
| | - Volker J Schmid
- Bayesian Imaging and Spatial Statistics Group, Department of Statistics, Ludwig-Maximilians-Universität München, München, Germany
| | - Miguel Guirao-Ortiz
- Human Biology & BioImaging, Center for Molecular Biosystems, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - Namita Mitra
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stefania Mamberti
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Kyle N Klein
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Heinrich Leonhardt
- Human Biology & BioImaging, Center for Molecular Biosystems, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany
| | - M Cristina Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Erez Lieberman Aiden
- Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Departments of Computer Science and Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Hartmann Harz
- Human Biology & BioImaging, Center for Molecular Biosystems, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany.
| | - Thomas Cremer
- Anthropology and Human Genomics, Department Biology II, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
8
|
Kounatidis I, Stanifer ML, Phillips MA, Paul-Gilloteaux P, Heiligenstein X, Wang H, Okolo CA, Fish TM, Spink MC, Stuart DI, Davis I, Boulant S, Grimes JM, Dobbie IM, Harkiolaki M. 3D Correlative Cryo-Structured Illumination Fluorescence and Soft X-ray Microscopy Elucidates Reovirus Intracellular Release Pathway. Cell 2020; 182:515-530.e17. [PMID: 32610083 PMCID: PMC7391008 DOI: 10.1016/j.cell.2020.05.051] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 01/15/2023]
Abstract
Imaging of biological matter across resolution scales entails the challenge of preserving the direct and unambiguous correlation of subject features from the macroscopic to the microscopic level. Here, we present a correlative imaging platform developed specifically for imaging cells in 3D under cryogenic conditions by using X-rays and visible light. Rapid cryo-preservation of biological specimens is the current gold standard in sample preparation for ultrastructural analysis in X-ray imaging. However, cryogenic fluorescence localization methods are, in their majority, diffraction-limited and fail to deliver matching resolution. We addressed this technological gap by developing an integrated, user-friendly platform for 3D correlative imaging of cells in vitreous ice by using super-resolution structured illumination microscopy in conjunction with soft X-ray tomography. The power of this approach is demonstrated by studying the process of reovirus release from intracellular vesicles during the early stages of infection and identifying intracellular virus-induced structures.
Collapse
Affiliation(s)
- Ilias Kounatidis
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Megan L Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michael A Phillips
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Perrine Paul-Gilloteaux
- Université de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France; Nantes Université, CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS3556, Nantes, France
| | | | - Hongchang Wang
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Chidinma A Okolo
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Thomas M Fish
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Matthew C Spink
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - David I Stuart
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ilan Davis
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany; Research Group "Cellular polarity and viral infection," German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jonathan M Grimes
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Ian M Dobbie
- Micron Advanced Imaging Consortium, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK.
| |
Collapse
|
9
|
Phillips MA, Harkiolaki M, Susano Pinto DM, Parton RM, Palanca A, Garcia-Moreno M, Kounatidis I, Sedat JW, Stuart DI, Castello A, Booth MJ, Davis I, Dobbie IM. CryoSIM: super-resolution 3D structured illumination cryogenic fluorescence microscopy for correlated ultrastructural imaging. OPTICA 2020; 7:802-812. [PMID: 34277893 PMCID: PMC8262592 DOI: 10.1364/optica.393203] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 05/19/2023]
Abstract
Rapid cryopreservation of biological specimens is the gold standard for visualizing cellular structures in their true structural context. However, current commercial cryo-fluorescence microscopes are limited to low resolutions. To fill this gap, we have developed cryoSIM, a microscope for 3D super-resolution fluorescence cryo-imaging for correlation with cryo-electron microscopy or cryo-soft X-ray tomography. We provide the full instructions for replicating the instrument mostly from off-the-shelf components and accessible, user-friendly, open-source Python control software. Therefore, cryoSIM democratizes the ability to detect molecules using super-resolution fluorescence imaging of cryopreserved specimens for correlation with their cellular ultrastructure.
Collapse
Affiliation(s)
- Michael A. Phillips
- Micron Advanced Bio-imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
- STRUBI, Division of Structural Biology, Wellcome Centre for Human Genetics, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN,
UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| | - David Miguel Susano Pinto
- Micron Advanced Bio-imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| | - Richard M. Parton
- Micron Advanced Bio-imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| | - Ana Palanca
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universidad de Cantabria, CP39011 Santander,
Spain
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| | - Ilias Kounatidis
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| | - John W. Sedat
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143,
USA
| | - David I. Stuart
- STRUBI, Division of Structural Biology, Wellcome Centre for Human Genetics, Old Road Campus, Roosevelt Drive, Oxford OX3 7BN,
UK
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE,
UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| | - Martin J. Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ,
UK
| | - Ilan Davis
- Micron Advanced Bio-imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
- e-mail:
| | - Ian M. Dobbie
- Micron Advanced Bio-imaging Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
UK
| |
Collapse
|
10
|
Ebrahimi H, Masuda H, Jain D, Cooper JP. Distinct 'safe zones' at the nuclear envelope ensure robust replication of heterochromatic chromosome regions. eLife 2018; 7:32911. [PMID: 29722648 PMCID: PMC5933923 DOI: 10.7554/elife.32911] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/30/2018] [Indexed: 12/24/2022] Open
Abstract
Chromosome replication and transcription occur within a complex nuclear milieu whose functional subdomains are beginning to be mapped out. Here we delineate distinct domains of the fission yeast nuclear envelope (NE), focusing on regions enriched for the inner NE protein, Bqt4, or the lamin interacting domain protein, Lem2. Bqt4 is relatively mobile around the NE and acts in two capacities. First, Bqt4 tethers chromosome termini and the mat locus to the NE specifically while these regions are replicating. This positioning is required for accurate heterochromatin replication. Second, Bqt4 mobilizes a subset of Lem2 molecules around the NE to promote pericentric heterochromatin maintenance. Opposing Bqt4-dependent Lem2 mobility are factors that stabilize Lem2 beneath the centrosome, where Lem2 plays a crucial role in kinetochore maintenance. Our data prompt a model in which Bqt4-rich nuclear subdomains are 'safe zones' in which collisions between transcription and replication are averted and heterochromatin is reassembled faithfully.
Collapse
Affiliation(s)
- Hani Ebrahimi
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Hirohisa Masuda
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Devanshi Jain
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| | - Julia Promisel Cooper
- Telomere Biology Section, Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, United States
| |
Collapse
|
11
|
Initial high-resolution microscopic mapping of active and inactive regulatory sequences proves non-random 3D arrangements in chromatin domain clusters. Epigenetics Chromatin 2017; 10:39. [PMID: 28784182 PMCID: PMC5547466 DOI: 10.1186/s13072-017-0146-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The association of active transcription regulatory elements (TREs) with DNAse I hypersensitivity (DHS[+]) and an 'open' local chromatin configuration has long been known. However, the 3D topography of TREs within the nuclear landscape of individual cells in relation to their active or inactive status has remained elusive. Here, we explored the 3D nuclear topography of active and inactive TREs in the context of a recently proposed model for a functionally defined nuclear architecture, where an active and an inactive nuclear compartment (ANC-INC) form two spatially co-aligned and functionally interacting networks. RESULTS Using 3D structured illumination microscopy, we performed 3D FISH with differently labeled DNA probe sets targeting either sites with DHS[+], apparently active TREs, or DHS[-] sites harboring inactive TREs. Using an in-house image analysis tool, DNA targets were quantitatively mapped on chromatin compaction shaped 3D nuclear landscapes. Our analyses present evidence for a radial 3D organization of chromatin domain clusters (CDCs) with layers of increasing chromatin compaction from the periphery to the CDC core. Segments harboring active TREs are significantly enriched at the decondensed periphery of CDCs with loops penetrating into interchromatin compartment channels, constituting the ANC. In contrast, segments lacking active TREs (DHS[-]) are enriched toward the compacted interior of CDCs (INC). CONCLUSIONS Our results add further evidence in support of the ANC-INC network model. The different 3D topographies of DHS[+] and DHS[-] sites suggest positional changes of TREs between the ANC and INC depending on their functional state, which might provide additional protection against an inappropriate activation. Our finding of a structural organization of CDCs based on radially arranged layers of different chromatin compaction levels indicates a complex higher-order chromatin organization beyond a dichotomic classification of chromatin into an 'open,' active and 'closed,' inactive state.
Collapse
|
12
|
Titlow JS, Yang L, Parton RM, Palanca A, Davis I. Super-Resolution Single Molecule FISH at the Drosophila Neuromuscular Junction. Methods Mol Biol 2017; 1649:163-175. [PMID: 29130196 PMCID: PMC6128253 DOI: 10.1007/978-1-4939-7213-5_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The lack of an effective, simple, and highly sensitive protocol for fluorescent in situ hybridization (FISH) at the Drosophila larval neuromuscular junction (NMJ) has hampered the study of mRNA biology. Here, we describe our modified single molecule FISH (smFISH) methods that work well in whole mount Drosophila NMJ preparations to quantify primary transcription and count individual cytoplasmic mRNA molecules in specimens while maintaining ultrastructural preservation. The smFISH method is suitable for high-throughput sample processing and 3D image acquisition using any conventional microscopy imaging modality and is compatible with the use of antibody colabeling and transgenic fluorescent protein tags in axons, glia, synapses, and muscle cells. These attributes make the method particularly amenable to super-resolution imaging. With 3D Structured Illumination Microscopy (3D-SIM), which increases spatial resolution by a factor of 2 in X, Y, and Z, we acquire super-resolution information about the distribution of single molecules of mRNA in relation to covisualized synaptic and cellular structures. Finally, we demonstrate the use of commercial and open source software for the quality control of single transcript expression analysis, 3D-SIM data acquisition and reconstruction as well as image archiving management and presentation. Our methods now allow the detailed mechanistic and functional analysis of sparse as well as abundant mRNAs at the NMJ in their appropriate cellular context.
Collapse
Affiliation(s)
- Joshua S. Titlow
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Lu Yang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Richard M. Parton
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ana Palanca
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU UK
| |
Collapse
|
13
|
Campbell K, Vowinckel J, Ralser M. Cell-to-cell heterogeneity emerges as consequence of metabolic cooperation in a synthetic yeast community. Biotechnol J 2016; 11:1169-78. [PMID: 27312776 PMCID: PMC5031204 DOI: 10.1002/biot.201500301] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022]
Abstract
Cells that grow together respond heterogeneously to stress even when they are genetically similar. Metabolism, a key determinant of cellular stress tolerance, may be one source of this phenotypic heterogeneity, however, this relationship is largely unclear. We used self‐establishing metabolically cooperating (SeMeCo) yeast communities, in which metabolic cooperation can be followed on the basis of genotype, as a model to dissect the role of metabolic cooperation in single‐cell heterogeneity. Cells within SeMeCo communities showed to be highly heterogeneous in their stress tolerance, while the survival of each cell under heat or oxidative stress, was strongly determined by its metabolic specialization. This heterogeneity emerged for all metabolite exchange interactions studied (histidine, leucine, uracil, and methionine) as well as oxidant (H2O2, diamide) and heat stress treatments. In contrast, the SeMeCo community collectively showed to be similarly tolerant to stress as wild‐type populations. Moreover, stress heterogeneity did not establish as sole consequence of metabolic genotype (auxotrophic background) of the single cell, but was observed only for cells that cooperated according to their metabolic capacity. We therefore conclude that phenotypic heterogeneity and cell to cell differences in stress tolerance are emergent properties when cells cooperate in metabolism.
Collapse
Affiliation(s)
- Kate Campbell
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jakob Vowinckel
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom
| | - Markus Ralser
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, United Kingdom. .,The Francis Crick Institute, Mill Hill laboratory, London, United Kingdom.
| |
Collapse
|
14
|
Localized Translation of gurken/TGF-α mRNA during Axis Specification Is Controlled by Access to Orb/CPEB on Processing Bodies. Cell Rep 2016; 14:2451-62. [PMID: 26947065 PMCID: PMC4823467 DOI: 10.1016/j.celrep.2016.02.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/18/2015] [Accepted: 02/03/2016] [Indexed: 12/31/2022] Open
Abstract
In Drosophila oocytes, gurken/TGF-α mRNA is essential for establishing the future embryonic axes. gurken remains translationally silent during transport from its point of synthesis in nurse cells to its final destination in the oocyte, where it associates with the edge of processing bodies. Here we show that, in nurse cells, gurken is kept translationally silent by the lack of sufficient Orb/CPEB, its translational activator. Processing bodies in nurse cells have a similar protein complement and ultrastructure to those in the oocyte, but they markedly less Orb and do not associate with gurken mRNA. Ectopic expression of Orb in nurse cells at levels similar to the wild-type oocyte dorso-anterior corner at mid-oogenesis is sufficient to cause gurken mRNA to associate with processing bodies and translate prematurely. We propose that controlling the spatial distribution of translational activators is a fundamental mechanism for regulating localized translation. gurken mRNA is not silenced by known repressors during its transport In nurse cells, gurken mRNA is not associated with processing bodies In nurse cells, lack of sufficient Orb/CPEB silences gurken mRNA translation In oocytes, gurken mRNA is associated with Orb on processing bodies and translated
Collapse
|
15
|
Hübner B, Lomiento M, Mammoli F, Illner D, Markaki Y, Ferrari S, Cremer M, Cremer T. Remodeling of nuclear landscapes during human myelopoietic cell differentiation maintains co-aligned active and inactive nuclear compartments. Epigenetics Chromatin 2015; 8:47. [PMID: 26579212 PMCID: PMC4647504 DOI: 10.1186/s13072-015-0038-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 10/26/2015] [Indexed: 01/08/2023] Open
Abstract
Background Previous studies of higher order chromatin organization in nuclei of mammalian species revealed both structural consistency and species-specific differences between cell lines and during early embryonic development. Here, we extended our studies to nuclear landscapes in the human myelopoietic lineage representing a somatic cell differentiation system. Our longterm goal is a search for structural features of nuclei, which are restricted to certain cell types/species, as compared to features, which are evolutionary highly conserved, arguing for their basic functional roles in nuclear organization. Results Common human hematopoietic progenitors, myeloid precursor cells, differentiated monocytes and granulocytes analyzed by super-resolution fluorescence microscopy and electron microscopy revealed profound differences with respect to global chromatin arrangements, the nuclear space occupied by the interchromatin compartment and the distribution of nuclear pores. In contrast, we noted a consistent organization in all cell types with regard to two co-aligned networks, an active (ANC) and an inactive (INC) nuclear compartment delineated by functionally relevant hallmarks. The ANC is enriched in active RNA polymerase II, splicing speckles and histone signatures for transcriptionally competent chromatin (H3K4me3), whereas the INC carries marks for repressed chromatin (H3K9me3). Conclusions Our findings substantiate the conservation of the recently published ANC-INC network model of mammalian nuclear organization during human myelopoiesis irrespective of profound changes of the global nuclear architecture observed during this differentiation process. According to this model, two spatially co-aligned and functionally interacting active and inactive nuclear compartments (ANC and INC) pervade the nuclear space. Electronic supplementary material The online version of this article (doi:10.1186/s13072-015-0038-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Hübner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore, Singapore
| | - Mariana Lomiento
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Fabiana Mammoli
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Doris Illner
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany ; Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Yolanda Markaki
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena (Unimore), Modena, Italy
| | - Marion Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| | - Thomas Cremer
- Department Biology II, Biocenter, Ludwig Maximilians University (LMU), Grosshadernerstr. 2, 82152 Martinsried, Germany
| |
Collapse
|
16
|
The evolution of structured illumination microscopy in studies of HIV. Methods 2015; 88:20-7. [DOI: 10.1016/j.ymeth.2015.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 05/29/2015] [Accepted: 06/04/2015] [Indexed: 02/04/2023] Open
|
17
|
Dodgson J, Chessel A, Cox S, Carazo Salas RE. Super-Resolution Microscopy: SIM, STED and Localization Microscopy. Fungal Biol 2015. [DOI: 10.1007/978-3-319-22437-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Spéder P, Brand AH. Gap junction proteins in the blood-brain barrier control nutrient-dependent reactivation of Drosophila neural stem cells. Dev Cell 2014; 30:309-21. [PMID: 25065772 PMCID: PMC4139190 DOI: 10.1016/j.devcel.2014.05.021] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/15/2014] [Accepted: 05/24/2014] [Indexed: 01/27/2023]
Abstract
Neural stem cells in the adult brain exist primarily in a quiescent state but are reactivated in response to changing physiological conditions. How do stem cells sense and respond to metabolic changes? In the Drosophila CNS, quiescent neural stem cells are reactivated synchronously in response to a nutritional stimulus. Feeding triggers insulin production by blood-brain barrier glial cells, activating the insulin/insulin-like growth factor pathway in underlying neural stem cells and stimulating their growth and proliferation. Here we show that gap junctions in the blood-brain barrier glia mediate the influence of metabolic changes on stem cell behavior, enabling glia to respond to nutritional signals and reactivate quiescent stem cells. We propose that gap junctions in the blood-brain barrier are required to translate metabolic signals into synchronized calcium pulses and insulin secretion. Blood-brain barrier gap junctions are required for neural stem cell reactivation Gap junctions control both insulin transcription and secretion Calcium oscillations in the blood-brain barrier depend on gap junctions and nutrition Blood-brain barrier membrane polarization links calcium to insulin secretion
Collapse
Affiliation(s)
- Pauline Spéder
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
19
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
20
|
Renshaw MJ, Liu J, Lavoie BD, Wilde A. Anillin-dependent organization of septin filaments promotes intercellular bridge elongation and Chmp4B targeting to the abscission site. Open Biol 2014; 4:130190. [PMID: 24451548 PMCID: PMC3909275 DOI: 10.1098/rsob.130190] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final step of cytokinesis is abscission when the intercellular bridge (ICB) linking the two new daughter cells is broken. Correct construction of the ICB is crucial for the assembly of factors involved in abscission, a failure in which results in aneuploidy. Using live imaging and subdiffraction microscopy, we identify new anillin–septin cytoskeleton-dependent stages in ICB formation and maturation. We show that after the formation of an initial ICB, septin filaments drive ICB elongation during which tubules containing anillin–septin rings are extruded from the ICB. Septins then generate sites of further constriction within the mature ICB from which they are subsequently removed. The action of the anillin–septin complex during ICB maturation also primes the ICB for the future assembly of the ESCRT III component Chmp4B at the abscission site. These studies suggest that the sequential action of distinct contractile machineries coordinates the formation of the abscission site and the successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
21
|
Pampaloni F, Berge U, Marmaras A, Horvath P, Kroschewski R, Stelzer EHK. Tissue-culture light sheet fluorescence microscopy (TC-LSFM) allows long-term imaging of three-dimensional cell cultures under controlled conditions. Integr Biol (Camb) 2014; 6:988-98. [DOI: 10.1039/c4ib00121d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This novel system for the long-term fluorescence imaging of live three-dimensional cultures provides minimal photodamage, control of temperature, CO2, pH, and media flow.
Collapse
Affiliation(s)
- Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS)
- Institute for Cell Biology and Neurosciences (FB15, IZN)
- Goethe Universität Frankfurt am Main
- D-60438 Frankfurt am Main, Germany
| | - Ulrich Berge
- ETH Zürich
- Institute of Biochemistry
- CH-8093 Zürich, Switzerland
- Life Science Zurich Graduate School
- Molecular Life Science PhD program
| | | | - Peter Horvath
- ETH Zürich
- Light Microscopy Centre
- CH-8093 Zürich, Switzerland
| | | | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS)
- Institute for Cell Biology and Neurosciences (FB15, IZN)
- Goethe Universität Frankfurt am Main
- D-60438 Frankfurt am Main, Germany
| |
Collapse
|
22
|
Smeets D, Neumann J, Schermelleh L. Application of Three-Dimensional Structured Illumination Microscopy in Cell Biology: Pitfalls and Practical Considerations. NEUROMETHODS 2014. [DOI: 10.1007/978-1-62703-983-3_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Markaki Y, Smeets D, Cremer M, Schermelleh L. Fluorescence in situ hybridization applications for super-resolution 3D structured illumination microscopy. Methods Mol Biol 2013; 950:43-64. [PMID: 23086869 DOI: 10.1007/978-1-62703-137-0_4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Fluorescence in situ hybridization on three-dimensionally preserved cells (3D-FISH) is an efficient tool to analyze the subcellular localization and spatial arrangement of targeted DNA sequences and RNA transcripts at the single cell level. 3D reconstructions from serial optical sections obtained by confocal laser scanning microscopy (CLSM) have long been considered the gold standard for 3D-FISH analyses. Recent super-resolution techniques circumvent the diffraction-limit of optical resolution and have defined a new state-of-the-art in bioimaging. Three-dimensional structured illumination microscopy (3D-SIM) represents one of these technologies. Notably, 3D-SIM renders an eightfold improved volumetric resolution over conventional imaging, and allows the simultaneous visualization of differently labeled target structures. These features make this approach highly attractive for the analysis of spatial relations and substructures of nuclear targets that escape detection by conventional light microscopy. Here, we focus on the application of 3D-SIM for the visualization of subnuclear 3D-FISH preparations. In comparison with conventional fluorescence microscopy, the quality of 3D-SIM data is dependent to a much greater extent on the optimal sample preparation, labeling and acquisition conditions. We describe typical problems encountered with super-resolution imaging of in situ hybridizations in mammalian tissue culture cells and provide optimized DNA-/(RNA)-FISH protocols including combinations with immunofluorescence staining (Immuno-FISH) and DNA replication labeling using click chemistry.
Collapse
Affiliation(s)
- Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University Munich(LMU), Munich, Germany
| | | | | | | |
Collapse
|
24
|
Chaumeil J, Micsinai M, Skok JA. Combined immunofluorescence and DNA FISH on 3D-preserved interphase nuclei to study changes in 3D nuclear organization. J Vis Exp 2013:e50087. [PMID: 23407477 DOI: 10.3791/50087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fluorescent in situ hybridization using DNA probes on 3-dimensionally preserved nuclei followed by 3D confocal microscopy (3D DNA FISH) represents the most direct way to visualize the location of gene loci, chromosomal sub-regions or entire territories in individual cells. This type of analysis provides insight into the global architecture of the nucleus as well as the behavior of specific genomic loci and regions within the nuclear space. Immunofluorescence, on the other hand, permits the detection of nuclear proteins (modified histones, histone variants and modifiers, transcription machinery and factors, nuclear sub-compartments, etc). The major challenge in combining immunofluorescence and 3D DNA FISH is, on the one hand to preserve the epitope detected by the antibody as well as the 3D architecture of the nucleus, and on the other hand, to allow the penetration of the DNA probe to detect gene loci or chromosome territories (1-5). Here we provide a protocol that combines visualization of chromatin modifications with genomic loci in 3D preserved nuclei.
Collapse
Affiliation(s)
- Julie Chaumeil
- Department of Pathology, New York University School of Medicine, NY, USA
| | | | | |
Collapse
|
25
|
Lawo S, Hasegan M, Gupta GD, Pelletier L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat Cell Biol 2012; 14:1148-58. [PMID: 23086237 DOI: 10.1038/ncb2591] [Citation(s) in RCA: 285] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 08/29/2012] [Indexed: 12/14/2022]
Abstract
The centrosome is the main microtubule organization centre of animal cells. It is composed of a centriole pair surrounded by pericentriolar material (PCM). Traditionally described as amorphous, the architecture of the PCM is not known, although its intricate mode of assembly alludes to the presence of a functional, hierarchical structure. Here we used subdiffraction imaging to reveal organizational features of the PCM. Interphase PCM components adopt a concentric toroidal distribution of discrete diameter around centrioles. Positional mapping of multiple non-overlapping epitopes revealed that pericentrin (PCNT) is an elongated molecule extending away from the centriole. We find that PCM components occupy separable spatial domains within mitotic PCM that are maintained in the absence of microtubule nucleation complexes and further implicate PCNT and CDK5RAP2 in the organization and assembly of PCM. Globally, this work highlights the role of higher-order PCM organization in the regulation of centrosome assembly and function.
Collapse
Affiliation(s)
- Steffen Lawo
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | | | | | | |
Collapse
|
26
|
Kaufmann D, Gassen A, Maiser A, Leonhardt H, Janzen CJ. Regulation and spatial organization of PCNA in Trypanosoma brucei. Biochem Biophys Res Commun 2012; 419:698-702. [PMID: 22387477 DOI: 10.1016/j.bbrc.2012.02.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/14/2012] [Indexed: 11/15/2022]
Abstract
As in most eukaryotic cells, replication is regulated by a conserved group of proteins in the early-diverged parasite Trypanosoma brucei. Only a few components of the replication machinery have been described in this parasite and regulation, sub-nuclear localization and timing of replication are not well understood. We characterized the proliferating cell nuclear antigen in T. brucei (TbPCNA) to establish a spatial and temporal marker for replication. Interestingly, PCNA distribution and regulation is different compared to the closely related parasites Trypanosoma cruzi and Leishmania donovani. TbPCNA foci are clearly detectable during S phase of the cell cycle but in contrast to T. cruzi they are not preferentially located at the nuclear periphery. Furthermore, PCNA seems to be degraded when cells enter G2 phase in T. brucei suggesting different modes of replication regulation or functions of PCNA in these closely related eukaryotes.
Collapse
Affiliation(s)
- Doris Kaufmann
- University of Munich (LMU), Department Biology I, Genetics, Großhaderner Str. 2-4, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
27
|
Weil TT, Parton RM, Davis I. Making the message clear: visualizing mRNA localization. Trends Cell Biol 2010; 20:380-90. [PMID: 20444605 PMCID: PMC2902723 DOI: 10.1016/j.tcb.2010.03.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/28/2022]
Abstract
Localized mRNA provides spatial and temporal protein expression essential to cell development and physiology. To explore the mechanisms involved, considerable effort has been spent in establishing new and improved methods for visualizing mRNA. Here, we discuss how these techniques have extended our understanding of intracellular mRNA localization in a variety of organisms. In addition to increased ease and specificity of detection in fixed tissue, in situ hybridization methods now enable examination of mRNA distribution at the ultrastructural level with electron microscopy. Most significantly, methods for following the movement of mRNA in living cells are now in widespread use. These include the introduction of labeled transcripts by microinjection, hybridization based methods using labeled antisense probes and complementary transgenic methods for tagging endogenous mRNAs using bacteriophage components. These technical innovations are now being coupled with super-resolution light microscopy methods and promise to revolutionize our understanding of the dynamics and complexity of the molecular mechanism of mRNA localization.
Collapse
|