1
|
Roy P, Bhattacharyya D. MetBP: A Software Tool for Detection of Interaction between Metal Ion-RNA Base Pairs. Bioinformatics 2022; 38:3833-3834. [PMID: 35695777 DOI: 10.1093/bioinformatics/btac392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 06/10/2022] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The role of metals in shaping and functioning of RNA is a well established fact and the understanding of that through the analysis of structural data has biological relevance. Often metal ions bind to one or more atoms of the nucleobase of an RNA. This fact becomes more interesting when such bases form a base pair with any other base. Furthermore, when metal ions bind to any residue of an RNA, the secondary structural features of the residue (helix, loop, unpaired etc) are also biologically important. The available metal binding related software tools cannot address such type specific queries. RESULTS To fill this limitation, we have designed a software tool, called MetBP, that meets the goal. This tool is a stand-alone command line based tool and has no dependency on the other existing software. It accepts a structure file in mmCIF or PDB format and computes the base pairs and thereafter reports all metals that bind to one or more nucleotides that form pairs with another. It reports binding distance, angles along with base pair stability. It also reports several other important aspects, e.g. secondary structure of the residue in the RNA. MetBP can be used as a generalized metal binding site detection tool for Proteins and DNA as well. AVAILABILITY https://github.com/computational-biology/metbp. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Parthajit Roy
- The Department of Computer Science, The University of Burdwan, Burdwan 713104, West Bengal, India
| | | |
Collapse
|
2
|
Herschlag D, Allred BE, Gowrishankar S. From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function. Curr Opin Struct Biol 2015; 30:125-133. [PMID: 25744941 DOI: 10.1016/j.sbi.2015.02.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/11/2015] [Accepted: 02/11/2015] [Indexed: 12/18/2022]
Abstract
To understand RNA, it is necessary to move beyond a descriptive categorization towards quantitative predictions of its molecular conformations and functional behavior. An incisive approach to understanding the function and folding of biological RNA systems involves characterizing small, simple components that are largely responsible for the behavior of complex systems including helix-junction-helix elements and tertiary motifs. State-of-the-art methods have permitted unprecedented insight into the conformational ensembles of these elements revealing, for example, that conformations of helix-junction-helix elements are confined to a small region of the ensemble, that this region is highly dependent on the junction's topology, and that the correct alignment of tertiary motifs may be a rare conformation on the overall folding landscape. Further characterization of RNA components and continued development of experimental and computational methods with the goal of quantitatively predicting RNA folding and functional behavior will be critical to understanding biological RNA systems.
Collapse
Affiliation(s)
- Daniel Herschlag
- Department of Biochemistry, Beckman Center, B400, 279 W. Campus Dr. MC: 5307, Stanford University, Stanford, CA 94305, USA; Department of Chemistry, 333 Campus Drive, Mudd Building, Room 121, Stanford University, Stanford, CA 94305, USA; Department of Chemical Engineering, 443 Via Ortega, Room 129, Stanford University, Stanford, CA 94305, USA.
| | - Benjamin E Allred
- Department of Biochemistry, Beckman Center, B400, 279 W. Campus Dr. MC: 5307, Stanford University, Stanford, CA 94305, USA
| | - Seshadri Gowrishankar
- Department of Chemical Engineering, 443 Via Ortega, Room 129, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Abstract
The RNA folding trajectory features numerous off-pathway folding traps, which represent conformations that are often equally as stable as the native functional ones. Therefore, the conversion between these off-pathway structures and the native correctly folded ones is the critical step in RNA folding. This process, referred to as RNA refolding, is slow, and is represented by a transition state that has a characteristic high free energy. Because this kinetically limiting process occurs in vivo, proteins (called RNA chaperones) have evolved that facilitate the (re)folding of RNA molecules. Here, we present an overview of how proteins interact with RNA molecules in order to achieve properly folded states. In this respect, the discrimination between static and transient interactions is crucial, as different proteins have evolved a multitude of mechanisms for RNA remodeling. For RNA chaperones that act in a sequence-unspecific manner and without the use of external sources of energy, such as ATP, transient RNA–protein interactions represent the basis of the mode of action. By presenting stretches of positively charged amino acids that are positioned in defined spatial configurations, RNA chaperones enable the RNA backbone, via transient electrostatic interactions, to sample a wider conformational space that opens the route for efficient refolding reactions.
Collapse
Affiliation(s)
- Martina Doetsch
- Department of Biochemistry and Molecular Cell Biology, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
4
|
Karpel RL, Shirley MS, Holt SR. Interaction of the ruthenium red cation with nucleic acid double helices. Biophys Chem 2008; 13:151-65. [PMID: 17000164 DOI: 10.1016/0301-4622(81)80014-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/1980] [Indexed: 11/16/2022]
Abstract
The hexapositive complex cation ruthenium red very effectively stabilizes DNA and RNA double helices against thermal denaturation. In the presence of nucleic acid helices, this symmetric cation acquires an extrinsic CD spectrum near the wavelength of the dye's maximum absorbance. Competition experiments with single-stranded polyd(T) show this induced CD to be the result of selective binding to helical sites. The preferential affinity of ruthenium red for double helical binding sites is so great that it brings about biphasic absorbance- temperature profiles of polyd(A-T) at low [cation]: [polynucleotide phosphate]. The visible CD signal and fraction of helix melting at the upper transition increases with ruthenium red concentration until approximate charge neutrality is reached. These interactions, which have been studied in detail with the poly(U-U) helix as well as polyd(A-T), are likely largely electrostatic, since sufficient [NaCl] eliminates the bipliasic melting of polyd(A-T), renders the ultraviolet absorbance of poly (U) insensitive to ruthenium red, and abolishes the induced CD effects. The bipliasic melting of polyd(A-T) at intermediate [dye] is attributed to saturation of remaining double helical segments by cation migration from newly melted regions- Furthermore, virtually no change was observed in the induced CD upon melting through the first transition, whereas the effect is destroyed upon inciting through the second transition. A quantitative treatment of the data is used to obtain binding site size and association constant for the complex. The induced effect may prove useful in the exploration of exposed nucleic acid helical structure in such complex particles as nucleosomes or ribosomes.
Collapse
Affiliation(s)
- R L Karpel
- Department of Chemistry, University of Maryland Baltimore County, Calonsville, Maryland 21228, USA
| | | | | |
Collapse
|
5
|
Kisselev LL, Favorova OO. Aminoacyl-tRNA synthetases: sone recent results and achievements. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 40:141-238. [PMID: 4365538 DOI: 10.1002/9780470122853.ch5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Stefan LR, Zhang R, Levitan AG, Hendrix DK, Brenner SE, Holbrook SR. MeRNA: a database of metal ion binding sites in RNA structures. Nucleic Acids Res 2006; 34:D131-4. [PMID: 16381830 PMCID: PMC1347421 DOI: 10.1093/nar/gkj058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA 3D structures available from the PDB and Nucleic Acid Database. Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements, in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering. The MeRNA database is accessible at .
Collapse
Affiliation(s)
- Liliana R. Stefan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Rui Zhang
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Aaron G. Levitan
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
| | - Donna K. Hendrix
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Steven E. Brenner
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- Department of Plant and Microbial Biology111 Koshland Hall #3102University of California at BerkeleyBerkeley, CA 94720-3102, USA
| | - Stephen R. Holbrook
- Department of Structural Biology, Physical Biosciences Division, Lawrence Berkeley National LaboratoryBerkeley, CA 94720, USA
- To whom correspondence should be addressed. Tel: +1 510 486 4304; Fax: +1 510 486 6798;
| |
Collapse
|
7
|
Misra VK, Shiman R, Draper DE. A thermodynamic framework for the magnesium-dependent folding of RNA. Biopolymers 2003; 69:118-36. [PMID: 12717727 DOI: 10.1002/bip.10353] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The goal of this review is to present a unified picture of the relationship between ion binding and RNA folding based on recent theoretical and computational advances. In particular, we present a model describing how the association of magnesium ions is coupled to the tertiary structure folding of several well-characterized RNA molecules. This model is developed in terms of the nonlinear Poisson-Boltzmann (NLPB) equation, which provides a rigorous electrostatic description of the interaction between Mg(2+) and specific RNA structures. In our description, most of the ions surrounding an RNA behave as a thermally fluctuating ensemble distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. In some cases, however, individual ions near the RNA may shed some of their surrounding waters to optimize their Coulombic interactions with the negatively charged ligands on the RNA. These chelated ions are energetically distinct from the surrounding ensemble and must be treated explicitly. This model is used to explore several different RNA systems that interact differently with Mg(2+). In each case, the NLPB equation accurately describes the stoichiometric and energetic linkage between Mg(2+) binding and RNA folding without requiring any fitted parameters in the calculation. Based on this model, we present a physical description of how Mg(2+) binds and stabilizes specific RNA structures to promote the folding reaction.
Collapse
Affiliation(s)
- Vinod K Misra
- Department of Chemistry, The University of Michigan, 1924 Taubman Center, 1500 E. Medical Center Drive, Ann Arbor 48109-0318, USA.
| | | | | |
Collapse
|
8
|
Rangan P, Masquida B, Westhof E, Woodson SA. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme. Proc Natl Acad Sci U S A 2003; 100:1574-9. [PMID: 12574513 PMCID: PMC149874 DOI: 10.1073/pnas.0337743100] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Compact but non-native intermediates have been implicated in the hierarchical folding of several large RNAs, but there is little information on their structure. In this article, ribonuclease and hydroxyl radical cleavage protection assays showed that base pairing of core helices stabilize a compact state of a small group I ribozyme from Azoarcus pre-tRNA(ile). Base pairing of the ribozyme core requires 10-fold less Mg(2+) than stable tertiary interactions, indicating that assembly of helices in the catalytic core represents a distinct phase that precedes the formation of native tertiary structure. Tertiary folding occurs in <100 ms at 37 degrees C. Such rapid folding is unprecedented among group I ribozymes and illustrates the association between structural complexity and folding time. A 3D model of the Azoarcus ribozyme was constructed by identifying homologous sequence motifs in rRNA. The model reveals distinct structural features, such as a large interface between the P4-P6 and P3-P9 domains, that may explain the unusual stability of the Azoarcus ribozyme and the cooperativity of folding.
Collapse
Affiliation(s)
- Prashanth Rangan
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
9
|
Dawson W, Suzuki K, Yamamoto K. A physical origin for functional domain structure in nucleic acids as evidenced by cross-linking entropy: II. J Theor Biol 2001; 213:387-412. [PMID: 11735287 DOI: 10.1006/jtbi.2001.2437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Part I, cross-linking entropy (CLE) was proposed as a mechanism that limits the size of functional domains of RNA. To test this hypothesis, the theory is developed into an RNA secondary structure prediction filter which is applied to nearest-neighbor secondary structure (NNSS) algorithms that utilize a free energy (FE) minimization strategy. (The NNSS strategies are also referred to as the dynamic programming algorithm in the literature.) The cross-linking entropy for RNA is derived from a generalized Gaussian polymer chain model where the entropic contributions caused by the formation of base pairs (stacking) in RNA are analysed globally. Local entropic contributions are associated with the freezing out of degrees of freedom in the links. Both global and local entropic effects are strongly influenced by the persistence length. The cross-linking entropy provides a physical origin for the size of functional domains in long nucleic acid sequences and may go further to explain as to why the majority of the domain regions in typical sequences tend to be less than 600 nucleotides in length. In addition, improvements were observed in the "best guess" predictive capacity over NNSS prediction strategies. The thermodynamic distribution is more representative of the expected structures and is strongly governed by such physical parameters as the persistence length and the excluded volume. The CLE appears to generalize the tabulated penalties used in NNSS algorithms. The principal parameter influencing this entropy is the persistence length. The model is shown to accomodate a variable persistence length and is capable of describing the folding dynamics of RNA. A two-state kinetic model based on the CLE principle is used to help elucidate the folding kinetics of functional domains in the group I introns.
Collapse
Affiliation(s)
- W Dawson
- Department of Bioactive Molecules, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | | | | |
Collapse
|
10
|
Abstract
We describe a conceptual framework for understanding the way large RNA molecules fold based on the notion that their free-energy landscape is rugged. A key prediction of our theory is that RNA folding can be described by the kinetic partitioning mechanism (KPM). According to KPM a small fraction of molecules folds rapidly to the native state whereas the remaining fraction is kinetically trapped in a low free-energy non-native state. This model provides a unified description of the way RNA and proteins fold. Single-molecule experiments on Tetrahymena ribozyme, which directly validate our theory, are analyzed using KPM. We also describe the earliest events that occur on microsecond time scales in RNA folding. These must involve collapse of RNA molecules that are mediated by counterion-condensation. Estimates of time scales for the initial events in RNA folding are provided for the Tetrahymena ribozyme.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
11
|
Heilman-Miller SL, Pan J, Thirumalai D, Woodson SA. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics. J Mol Biol 2001; 309:57-68. [PMID: 11491301 DOI: 10.1006/jmbi.2001.4660] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Condensed counterions contribute to the stability of compact structures in RNA, largely by reducing electrostatic repulsion among phosphate groups. Varieties of cations induce a collapsed state in the Tetrahymena ribozyme that is readily transformed to the catalytically active structure in the presence of Mg2+. Native gel electrophoresis was used to compare the effects of the valence and size of the counterion on the kinetics of this transition. The rate of folding was found to decrease with the charge of the counterion. Transitions in monovalent ions occur 20- to 40-fold faster than transitions induced by multivalent metal ions. These results suggest that multivalent cations yield stable compact structures, which are slower to reorganize to the native conformation than those induced by monovalent ions. The folding kinetics are 12-fold faster in the presence of spermidine3+ than [Co(NH3)6]3+, consistent with less effective stabilization of long-range RNA interactions by polyamines. Under most conditions, the observed folding rate decreases with increasing counterion concentration. In saturating amounts of counterion, folding is accelerated by addition of urea. These observations indicate that reorganization of compact intermediates involves partial unfolding of the RNA. We find that folding of the ribozyme is most efficient in a mixture of monovalent salt and Mg2+. This is attributed to competition among counterions for binding to the RNA. The counterion dependence of the folding kinetics is discussed in terms of the ability of condensed ions to stabilize compact structures in RNA.
Collapse
Affiliation(s)
- S L Heilman-Miller
- Department of Chemistry, University of Maryland, College Park 20742-2021, USA
| | | | | | | |
Collapse
|
12
|
Heilman-Miller SL, Thirumalai D, Woodson SA. Role of counterion condensation in folding of the Tetrahymena ribozyme. I. Equilibrium stabilization by cations. J Mol Biol 2001; 306:1157-66. [PMID: 11237624 DOI: 10.1006/jmbi.2001.4437] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folding of RNA into an ordered, compact structure requires substantial neutralization of the negatively charged backbone by positively charged counterions. Using a native gel electrophoresis assay, we have examined the effects of counterion condensation upon the equilibrium folding of the Tetrahymena ribozyme. Incubation of the ribozyme in the presence of mono-, di- and trivalent ions induces a conformational state that is capable of rapidly forming the native structure upon brief exposure to Mg2+. The cation concentration dependence of this transition is directly correlated with the charge of the counterion used to induce folding. Substrate cleavage assays confirm the rapid onset of catalytic activity under these conditions. These results are discussed in terms of classical counterion condensation theory. A model for folding is proposed which predicts effects of charge, ionic radius and temperature on counterion-induced RNA folding transitions.
Collapse
Affiliation(s)
- S L Heilman-Miller
- Department of Chemistry, University of Mayland, College Park 20742-2021, USA
| | | | | |
Collapse
|
13
|
Abstract
Our current understanding of Mg(2+) binding to RNA, in both thermodynamic and structural terms, is largely based on classical studies of transfer RNAs. Based on these studies, it is clear that magnesium ions are crucial for stabilizing the folded structure of tRNA. We present here a rigorous theoretical model based on the nonlinear Poisson-Boltzmann (NLPB) equation for understanding Mg(2+) binding to yeast tRNA(Phe). We use this model to interpret a variety of experimental Mg(2+) binding data. In particular, we find that the NLPB equation provides a remarkably accurate description of both the overall stoichiometry and the free energy of Mg(2+) binding to yeast tRNA(Phe) without any fitted parameters. In addition, the model accurately describes the interaction of Mg(2+) with localized regions of the RNA as determined by the pK(a) shift of differently bound fluorophores. In each case, we find that the model also reproduces the univalent salt-dependence and the anticooperativity of Mg(2+) binding. Our results lead us to a thermodynamic description of Mg(2+) binding to yeast tRNA(Phe) based on the NLPB equation. In this model, Mg(2+) binding is simply explained by an ensemble of ions distributed according to a Boltzmann weighted average of the mean electrostatic potential around the RNA. It appears that the entire ensemble of electrostatically bound ions superficially mimics a few strongly coordinated ions. In this regard, we find that Mg(2+) stabilizes the tertiary structure of yeast tRNA(Phe) in part by accumulating in regions of high negative electrostatic potential. These regions of Mg(2+) localization correspond to bound ions that are observed in the X-ray crystallographic structures of yeast tRNA(Phe). Based on our results and the available thermodynamic data, there is no evidence that specifically coordinated Mg ions have a significant role in stabilizing the native tertiary structure of yeast tRNA(Phe) in solution.
Collapse
MESH Headings
- Binding Sites
- Crystallography, X-Ray
- Fluorescent Dyes/metabolism
- Ions
- Magnesium/metabolism
- Models, Molecular
- Nucleic Acid Conformation
- Poisson Distribution
- RNA Stability
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Salts/metabolism
- Solutions
- Static Electricity
- Thermodynamics
- Yeasts/genetics
Collapse
Affiliation(s)
- V K Misra
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | | |
Collapse
|
14
|
Nashimoto M. Correct folding of a ribozyme induced by nonspecific macromolecules. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:2738-45. [PMID: 10785397 DOI: 10.1046/j.1432-1327.2000.01294.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The 50-nucleotide hammerhead ribozyme HH-S was tested for self-cleavage. The self-cleavage was very inefficient, and only 13% of HH-S was transformed to its cleavage products. Surprisingly, the percentage of cleavage of HH-S was increased to 30% when 1 microg of tRNA was added to the reaction mixture (6 microL). Other macromolecules such as DNAs and proteins were examined to see if they also augmented cleavage of HH-S, and it was found that most of the macromolecules tested, except nucleotide monomers, did indeed enhance HH-S cleavage. The self-cleaving reaction was almost saturated in 30 min, and only 13% of HH-S was cleaved at 37 degrees C for a 70-min reaction, indicating that 87% of HH-S was in kinetically trapped inactive conformations. Time courses for the reaction of the HH-S self-cleavage were also measured in the presence of tRNA, an oligodeoxyribonucleotide, or BSA. Cleavage of HH-S, which had already reached a plateau of 13% cleaved, increased gradually after the addition of the effector molecules. The first-order rate constant for the self-cleavage reaction in the absence of an effector was comparable to that in the presence of BSA, indicating that the effector molecules do not affect the chemical step of self-cleavage. These results demonstrate that a variety of nonspecific macromolecules can induce conformational change of the hammerhead even in such a low concentration as 0.003% (w/v). This conformational change may occur by macromolecular collisions, or nonspecific weak interactions between HH-S and effectors. Alternatively, a molecular crowding effect may cause the conformational change.
Collapse
Affiliation(s)
- M Nashimoto
- Life Science Research Laboratory, Yokohama, Japan.
| |
Collapse
|
15
|
Pan J, Deras ML, Woodson SA. Fast folding of a ribozyme by stabilizing core interactions: evidence for multiple folding pathways in RNA. J Mol Biol 2000; 296:133-44. [PMID: 10656822 DOI: 10.1006/jmbi.1999.3439] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Folding of the Tetrahymena ribozyme under physiological conditions in vitro is limited by slow conversion of long-lived intermediates to the active structure. These intermediates arise because the most stable domain of the ribozyme folds 10-50 times more rapidly than the core region containing helix P3. Native gel electrophoresis and time-resolved X-ray-dependent hydroxyl radical cleavage revealed that mutations that weaken peripheral interactions between domains accelerated folding fivefold, while a point mutation that stabilizes P3 enabled 80 % of the mutant RNA to reach the native conformation within 30 seconds at 22 degrees C. The P3 mutation increased the folding rate of the catalytic core as much as 50-fold, so that both domains of the ribozyme were formed at approximately the same rate. The results show that the ribozyme folds rapidly without significantly populating metastable intermediates when native interactions in the ribozyme core are stabilized relative to peripheral structural elements.
Collapse
Affiliation(s)
- J Pan
- Department of Chemistry and Biochemistry, University of Maryland, MD 20904-2021, USA
| | | | | |
Collapse
|
16
|
Abstract
The powerful explanatory paradigm of molecular biology requiring form to co-evolve with function has again been proven successful when, over the recent two decades, a wealth of biological functions have been uncovered for RNA. Previously considered as a mere mediator of the genetic code, RNA is now acknowledged as a key player in a wide variety of cellular processes. Along with the discovery of novel biological functions of RNA molecules, a number of RNA three-dimensional structures have been solved which beautifully demonstrate the molecular adaptability which allows RNA to participate as a key player in these functions. A distinct repertoire of molecular motifs provides a basis for the assembly of complex RNA tertiary architectures.
Collapse
Affiliation(s)
- T Hermann
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | |
Collapse
|
17
|
Madore E, Florentz C, Giegé R, Lapointe J. Magnesium-dependent alternative foldings of active and inactive Escherichia coli tRNA(Glu) revealed by chemical probing. Nucleic Acids Res 1999; 27:3583-8. [PMID: 10446250 PMCID: PMC148604 DOI: 10.1093/nar/27.17.3583] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A stable conformer of Escherichia coli tRNA(Glu), obtained in the absence of Mg(2+), is inactive in the aminoacylation reaction. Probing it with diethylpyrocarbonate, dimethyl sulfate and ribonuclease V1 revealed that it has a hairpin structure with two internal loops; the helical segments at both extremities have the same structure as the acceptor stem and the anticodon arm of the native conformer of tRNA(Glu)and the middle helix is formed of nucleotides from the D-loop (G15-C20:2) and parts of the T-loop and stem (G51-C56), with G19 bulging out. This model is consistent with other known properties of this inactive conformer, including its capacity to dimerize. Therefore, this tRNA requires magnesium to acquire a conformation that can be aminoacylated, as others require a post-transcriptional modification to reach this active conformation.
Collapse
Affiliation(s)
- E Madore
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Québec G1K 7P4, Canada
| | | | | | | |
Collapse
|
18
|
|
19
|
Maglott EJ, Glick GD. A new method to monitor the rate of conformational transitions in RNA. Nucleic Acids Res 1997; 25:3297-301. [PMID: 9241244 PMCID: PMC146897 DOI: 10.1093/nar/25.16.3297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Many RNAs need Mg2+to produce stable tertiary structures. Here we describe a simple method to measure the rate and activation parameters of tertiary structure unfolding that exploits this Mg2+dependence. Our approach is based on mixing an RNA solution with excess EDTA in a stopped-flow instrument equipped with an absorbance detector, under conditions of temperature and ionic strength where, after chelation of Mg2+, tertiary structure unfolds. We have demonstrated the utility of this method by studying phenylalanine-specific transfer RNA from yeast (tRNAPhe) because the unfolding rates and the corresponding activation parameters have been determined previously and provide a benchmark for our technique. We find that within error, our stopped-flow method reproduces both the rate and activation enthalpy for tertiary unfolding of yeast tRNAPhe measured previously by temperature-jump relaxation kinetics. Since many different RNAs require divalent magnesium for tertiary structure stabilization, this technique should be applicable to study the folding of other RNAs.
Collapse
Affiliation(s)
- E J Maglott
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
20
|
Brion P, Westhof E. Hierarchy and dynamics of RNA folding. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1997; 26:113-37. [PMID: 9241415 DOI: 10.1146/annurev.biophys.26.1.113] [Citation(s) in RCA: 405] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The evidence showing that the self-assembly of complex RNAs occurs in discrete transitions, each relating to the folding of sub-systems of increasing size and complexity starting from a state with most of the secondary structure, is reviewed. The reciprocal influence of the concentration of magnesium ions and nucleotide mutations on tertiary structure is analyzed. Several observations demonstrate that detrimental mutations can be rescued by high magnesium concentrations, while stabilizing mutations lead to a lesser dependence on magnesium ion concentration. Recent data point to the central controlling and monitoring roles of RNA-binding proteins that can bind to the different folding stages, either before full establishment of the secondary structure or at the molten globule state before the cooperative transition to the final three-dimensional structure.
Collapse
Affiliation(s)
- P Brion
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, UPR 9002, Strasbourg, France
| | | |
Collapse
|
21
|
Klaff P, Riesner D, Steger G. RNA structure and the regulation of gene expression. PLANT MOLECULAR BIOLOGY 1996; 32:89-106. [PMID: 8980476 DOI: 10.1007/bf00039379] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
RNA secondary and tertiary structure is involved in post-transcriptional regulation of gene expression either by exposing specific sequences or through the formation of specific structural motifs. An overview of RNA secondary and tertiary structures known from biophysical studies is followed by a review of examples of the elements of RNA processing, mRNA stability and translation of the messenger. These structural elements comprise sense-antisense double-stranded RNA, hairpin and stem-loop structures, and more complex structures such as bifurcations, pseudoknots and triple-helical elements. Metastable structures formed during RNA folding pathway are also discussed. The examples presented are mostly chosen from plant systems, plant viruses, and viroids. Examples from bacteria or fungi are discussed only when unique regulatory properties of RNA structures have been elucidated in these systems.
Collapse
Affiliation(s)
- P Klaff
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | |
Collapse
|
22
|
Deerfield DW, Pedersen LG. The first solvation shell of magnesium and calcium ions in a model nucleic acid environment: an ab initio study. J Biomol Struct Dyn 1995; 13:167-80. [PMID: 8527028 DOI: 10.1080/07391102.1995.10508828] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The interaction of organophosphate anions with divalent metal ions is central to many biological catalytic events. While experimental structural studies can give insight into the likely geometries that can be adopted, quantum mechanics allows for a more complete exploration of the competing forms. Ab initio quantum mechanical calculations have been performed on a series of complexes comprised of dimethyl phosphate, a divalent metal ion (either Mg(II) or Ca(II)) and water of hydration. An additional series of complexes were studied that included a Cl(I) ion to provide for charge neutrality. The most stable orientation of the hydrated metal ion complexed with the phosphate anion occurs when the metal ion is in a unidentate, rather than bidentate, orientation. The question of whether the divalent metal ion is located in the phosphinyl (-PO2(-)-) plane depends on the identity of the divalent metal ion and on the charge state of the complex.
Collapse
|
23
|
Setlik RF, Garduno-Juarez R, Manchester JI, Shibata M, Ornstein RL, Rein R. Modeling study on the cleavage step of the self-splicing reaction in group I introns. J Biomol Struct Dyn 1993; 10:945-72. [PMID: 8357544 DOI: 10.1080/07391102.1993.10508689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A three-dimensional model of the Tetrahymena thermophila group I intron is used to further explore the catalytic mechanism of the transphosphorylation reaction of the cleavage step. Based on the coordinates of the catalytic core model proposed by Michel and Westhof (Michel, F., Westhof, E. J. Mol. Biol. 216, 585-610 (1990)), we first converted their ligation step model into a model of the cleavage step by the substitution of several bases and the removal of helix P9. Next, an attempt to place a trigonal bipyramidal transition state model in the active site revealed that this modified model for the cleavage step could not accommodate the transition state due to insufficient space. A lowering of P1 helix relative to surrounding helices provided the additional space required. Simultaneously, it provided a better starting geometry to model the molecular contacts proposed by Pyle et al. (Pyle, A. M., Murphy, F. L., Cech, T. R. Nature 358, 123-128. (1992)), based on mutational studies involving the J8/7 segment. Two hydrated Mg2+ complexes were placed in the active site of the ribozyme model, using the crystal structure of the functionally similar Klenow fragment (Beese, L.S., Steitz, T.A. EMBO J. 10, 25-33 (1991)) as a guide. The presence of two metal ions in the active site of the intron differs from previous models, which incorporate one metal ion in the catalytic site to fulfill the postulated roles of Mg2+ in catalysis. The reaction profile is simulated based on a trigonal bipyramidal transition state, and the role of the hydrated Mg2+ complexes in catalysis is further explored using molecular orbital calculations.
Collapse
Affiliation(s)
- R F Setlik
- Biophysics Department, Roswell Park Cancer Institute, Buffalo, New York 14263
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Abstract
The higher order folding process of the catalytic RNA derived from the self-splicing intron of Tetrahymena thermophila was monitored with the use of Fe(II)-EDTA-induced free radical chemistry. The overall tertiary structure of the RNA molecule forms cooperatively with the uptake of at least three magnesium ions. Local folding transitions display different metal ion dependencies, suggesting that the RNA tertiary structure assembles through a specific folding intermediate before the catalytic core is formed. Enzymatic activity, assayed with an RNA substrate that is complementary to the catalytic RNA active site, coincides with the cooperative structural transition. The higher order RNA foldings produced by Mg(II), Ca(II), and Sr(II) are similar; however, only the Mg(II)-stabilized RNA is catalytically active. Thus, these results directly demonstrate that divalent metal ions participate in general folding of the ribozyme tertiary structure, and further indicate a more specific involvement of Mg(II) in catalysis.
Collapse
Affiliation(s)
- D W Celander
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
26
|
Abstract
The biological function of zinc is governed by the composition of its tetrahedral coordination polyhedron in the metalloprotein, and each ligand group that coordinates to the metal ion does so with a well-defined stereochemical preference. Consequently, protein-zinc recognition and discrimination requires proper chemical composition and proper stereochemistry of the metal-ligand environment. However, it should be noted that the entire protein behaves as the "zinc ligand," since residues that are quite distant from the metal affect recognition and function by through-space (either solvent or the protein milieu) or through-hydrogen bond coulombic interactions. Additionally, long-range interactions across hydrogen bonds serve to orient ligands and therefore minimize the entropy loss incurred on metal binding. Since zinc is not subject to ligand field stabilization effects, it is easy for the tetrahedral protein-binding site to discriminate zinc from other first-row transition metal ions: It is only for Zn2+ that the change from an octahedral to a tetrahedral ligand field is not energetically disfavored. Structural considerations such as these must illuminate the engineering of de novo zinc-binding sites in proteins. Zinc serves chemical, structural, and regulatory roles in biological systems. In biological chemistry zinc serves as an electrophilic catalyst; that is, it stabilizes negative charges encountered during an enzyme-catalyzed reaction. The coordination polyhedron of catalytic zinc is usually dominated by histidine side chains. In biological structure zinc is typically sequestered from solvent, and its coordination polyhedron is almost exclusively dominated by cysteine thiolates. Structural or regulatory zinc is found as either a single metal ion or as part of a cluster of two or more metals. In multinuclear clusters cysteine thiolates either bridge two metal ions or serve as terminal ligands to a single metal ion. Even in complex multinuclear clusters, Zn2+ displays tetrahedral coordination. The structural biology of zinc continues to receive attention in catalytic and regulatory systems such as leucine aminopeptidase, alkaline phosphatase, transcription factors, and steroid receptors. For example, zinc-mediated hormone-receptor association has recently been demonstrated in the binding of human growth hormone to the extracellular binding domain of the human prolactin receptor (Cunningham et al., 1990). To be sure, structural studies of zinc in biology will continue to be a fruitful source of bioinorganic advances, as well as surprises, in the future.
Collapse
Affiliation(s)
- D W Christianson
- Department of Chemistry, University of Pennsylvania, Philadelphia 19104
| |
Collapse
|
27
|
Abstract
Ribozymes are RNA molecules that catalyze biochemical reactions. Fe(II)-EDTA, a solvent-based reagent which cleaves both double- and single-stranded RNA, was used to investigate the structure of the Tetrahymena ribozyme. Regions of cleavage alternate with regions of substantial protection along the entire RNA molecule. In particular, most of the catalytic core shows greatly reduced cleavage. These data constitute experimental evidence that an RNA enzyme, like a protein enzyme, has an interior and an exterior. Determination of positions where the phosphodiester backbone of the RNA is on the inside or on the outside of the molecule provides major constraints for modeling the three-dimensional structure of the Tetrahymena ribozyme. This approach should be generally informative for structured RNA molecules.
Collapse
Affiliation(s)
- J A Latham
- Howard Hughes Medical Institute, Department of Chemistry and Biochemistry, University of Colorado, Boulder 80309-0215
| | | |
Collapse
|
28
|
Schuhmann D, Kaba L. The influence of electrostatic interactions on the binding of bivalent cations to polynucleotides. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/0022-0728(86)80107-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Swerdlow H, Guthrie C. Structure of intron-containing tRNA precursors. Analysis of solution conformation using chemical and enzymatic probes. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(17)42975-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
|
31
|
Troutt A, Savin TJ, Curtiss WC, Celentano J, Vournakis JN. Secondary structure of Bombyx mori and Dictyostelium discoideum 5S rRNA from S1 nuclease and cobra venom ribonuclease susceptibility, and computer assisted analysis. Nucleic Acids Res 1982; 10:653-64. [PMID: 6278426 PMCID: PMC326164 DOI: 10.1093/nar/10.2.653] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The 5S rRNAs from Bombyx mori and Dictyostelium discoideum were end-labeled with [32-P] at either the 5' or 3' end and sequenced using enzymatic digestion. The secondary structure of these molecules was studied using the single-strand specific S1 nuclease and the base-pair specific cobra venom ribonuclease. Computer analysis of these results was performed and was used to generate a consensus secondary structure for each molecule. A comparison of these results with those of other workers is presented.
Collapse
|
32
|
Loftfield R, Eigner E, Pastuszyn A. The role of spermine in preventing misacylation by phenylalanyl-tRNA synthetase. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69052-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Abstract
The spin label method developed by McConnell 15 years ago is now widely used in studies of the structure and dynamic properties of a variety of the biological systems such as proteins and protein complexes, lipids and membranes, nucleic acids, nucleoproteins, etc.The ESR spectrum of the nitroxide radcal – the spin label – is very sensitive to its microenvironment and permits easy registration of even subtle alterations in it. If spin labels are attached to different sites of a macromolecule the information can be gained about conformational properties of all these local regions and, as a result, about the dynamic behaviour of the object as a whole.
Collapse
|
34
|
Burton DR, Forsén S, Reimarsson P. The interaction of polyamines with DNA: a 23Na NMR study. Nucleic Acids Res 1981; 9:1219-28. [PMID: 7232215 PMCID: PMC326747 DOI: 10.1093/nar/9.5.1219] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The interaction between a variety of polyamines, both naturally occurring and synthetic, and calf thymus DNA has been studied using 23Na NMR. The relaxation behaviour of 23Na reflects the extent of interaction of Na+ with DNA phosphate groups and therefore the extent of charge neutralisation of DNA phosphate groups (P) by polyamine amino and imino groups (N) in solutions of DNa, polyamine and Na+. The studies reveal that whereas spermine and spermidine are capable of expelling nearly all of the Na+ ions from DNA at N/P approximately 1, diamines such as putrescine and homologues of spermine and spermidine are capable of neutralising only roughly 50% of DNA phosphates. The results provide a challenge to current models of DNA-polyamine interactions.
Collapse
|
35
|
Abstract
Three chemical reactions can probe the secondary and tertiary interactions of RNA molecules in solution. Dimethyl sulfate monitors the N-7 of guanosines and senses tertiary interactions there, diethyl pyrocarbonate detects stacking of adenosines, and an alternate dimethyl sulfate reaction examines the N-3 of cytidines and thus probes base pairing. The reactions work between 0 degrees C and 90 degrees C and at pH 4.5--8.5 in a variety of buffers. As an example we follow the progressive denaturation of yeast tRNAPhe terminally labeled with 32P as the tertiary and secondary structures sequentially melt out. A single autoradiograph of a terminally labeled molecule locates regions of higher-order structure and identifies the bases involved.
Collapse
|
36
|
Chavancy G, Chevallier A, Fournier A, Garel JP. Adaptation of iso-tRNA concentration to mRNA codon frequency in the eukaryote cell. Biochimie 1979; 61:71-8. [PMID: 435560 DOI: 10.1016/s0300-9084(79)80314-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Swaminathan V, Sundaralingam M. The crystal structures of metal complexes of nucleic acids and their constituents. CRC CRITICAL REVIEWS IN BIOCHEMISTRY 1979; 6:245-336. [PMID: 378535 DOI: 10.3109/10409237909102565] [Citation(s) in RCA: 82] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Lövgren T, Petersson A, Loftfield R. The mechanism of aminoacylation of transfer ribonucleic acid. The role of magnesium and spermine in the synthesis of isoleucyl-tRNA. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)37975-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Dickerson PE, Trim AR. Conformational states of cowpea chlorotic mottle virus ribonucleic acid components. Nucleic Acids Res 1978; 5:987-98. [PMID: 643624 PMCID: PMC342038 DOI: 10.1093/nar/5.3.987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The conditions determining conformational changes in the four ribonucleic acid components of cowpea chlorotic mottle virus have been studied. All four components have at least two electrophoretically separable conformers, the occurrence of which can be regulated by both monovalent and polyvalent cations. This phenomenon also occurs, in a much less striking way, in the ribonucleic acids of the two other members of the bromovirus group, brome mosaic virus and broad bean mottle virus. Although specific in some respects, these changes have much in common with effects which have been observed in tRNAs, 55 RNAs and rRNAs. A provisional interpretation of the conformational behaviour of the viral RNAs is given in terms which have been proposed for certain tRNAs which have been studied in great detail.
Collapse
|
40
|
Abstract
In this paper previous binding studies of Mg2+ and Mn2+ ions to tRNA's are reconsidered. Binding data of some representative examples are interpreted including interactions between charges located on the macroion. Both curved and bell-shaped Scatchard plots can be accounted for quantitatively if corrections are made for electrostatic interactions and, if necessary, for the effect of conformational changes on these interactions. It appears that there is no need to invoke more than one class of binding sites on tRNA's, meaning that the experimental binding data can be described using the same intrinsic pK value for all phosphate groups.
Collapse
|
41
|
Bloch JC, Garel JP. Influence of modified nucleosides in E. coli transfer ribonucleic acids on chromatographic mobilities of transfer RNA. J Chromatogr A 1977; 137:93-109. [PMID: 330553 DOI: 10.1016/s0021-9673(00)89244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
42
|
|
43
|
Abstract
This review is concerned primarily with the physical structure and changes in the structure of RNA molecules. It will be evident that we have not attempted comprehensive coverage of what amounts to a vast literature. We have tried to stay away from particular areas that have been recently reviewed elsewhere. Citations to and information from them are included, however, so that access to the literature is available. Much of what we treat in depth deals with the crystal structures and solution behaviour of model RNA compounds, including synthetic polymers and molecular fragments such as dinucleoside phosphates. Sequence data on natural RNA are cited, but not in detail. Similarly, apart from tRNA, natural RNAs the structural determinations of which are presently not so far advanced, are not dwelt upon. We have tried to present in detail the available structural data with scaled drawings that permit facile comparisons of molecular geometries.
Collapse
|
44
|
Rigler R, Ehrenberg M, Wintermeyer W. Structural dynamics of tRNA. A fluorescence relaxation study of tRNA Phe yeast. MOLECULAR BIOLOGY, BIOCHEMISTRY, AND BIOPHYSICS 1977; 24:219-44. [PMID: 333269 DOI: 10.1007/978-3-642-81117-3_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Strom R, Crifo C, Rossi-Fanelli A, Mondovi B. Biochemical aspects of heat sensitivity of tumour cells. Recent Results Cancer Res 1977:7-35. [PMID: 331418 DOI: 10.1007/978-3-642-81080-0_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
46
|
Jacobson AB. Studies on secondary structure of single-stranded RNA from bacteriophage MS2 by electron microscopy. Proc Natl Acad Sci U S A 1976; 73:307-11. [PMID: 1061134 PMCID: PMC335896 DOI: 10.1073/pnas.73.2.307] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A method allowing the demonstration and study by electron microscopy of secondary structure of viral RNA has been developed. Single-stranded RNA from the bacteriophage MS2 has been analyzed in the electron microscope in the presence of various concentrations of MgCl2. Depending on the salt concentration, the molecules display one to three large open loops which range in size from 10 to 20% of the total RNA length, and smaller closed loops which are approximately 3-5% of the total RNA length. Within one spreading, the conformation of the molecules is variable. However, the average complexity of the molecules increases with increasing salt, and individual loops which are infrequent at low salt increase in frequency with increasing salt. By analyzing the manner in which the individual loop appeared, it was possible to show that all molecules could be described by one basic pattern of secondary structure formation.
Collapse
|
47
|
Daniel WE, Cohn M. Proton nuclear magnetic resonance of spin-labeled Escherichia coli tRNAf1MET. Proc Natl Acad Sci U S A 1975; 72:2582-6. [PMID: 1101259 PMCID: PMC432813 DOI: 10.1073/pnas.72.7.2582] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Thiouridine at position 8 (s4U8) of tRNAf1Met was spin-labeled with the nitroxide free radical, N-(1-oxyl-2,2,5,5-Tetramethyl-3-pyrrolidinyl) bromacetamide, for proton nuclear magnetic resonance spectroscopic studies. The well-resolved methyl peak of ribothymidine is unperturbed, but the peak tentatively assigned to the C-5 methylene group of dihydrouridine is considerably broadened in spin-labeled tRNAf1Met. Of the approximately 27 slowly exchanging protons observed in the region between 11 and 15 ppm downfield from 4,4-dimethyl-4-silapentane-1-sulfonic acid, the equivalent of about five protons apparently disappeared in spin-labeled tRNAf1Met. The well-resolved single proton at 14.8 ppm was missing not only in the paramagnetic species, but also in the diamagnetic reduced form of spin-labeled tRNAf1Met, and was unequivocally identified as a hydrogen bond involving s4U8 by comparison of several forms of tRNAf1Met specifically modified at s4U. Evidence that the perturbation of a second single proton resonance at 14.6 ppm (shift and broadening) is coupled to the loss of a tertiary hydrogen bond involving residue 8, arises from the same modified forms. The resolved resonances in the methyl and N-H regions, particularly the resonance at 14.6 ppm as well as the four N-bonded proton resonances at higher field which are broadened solely due to their proximity to the unpaired electron of the spin label, provide specific indicators of the geometry of tRNAf1Met structure in solution. Their observability by nuclear magnetic resonance spectroscopy opens up the possibility of monitoring distance changes among the base residues of spin-labeled tRNAf1Met upon its interaction with aminoacyl-tRNA synthetase and other enzymes.
Collapse
|
48
|
Römer R, Hach R. tRNA conformation and magnesium binding. A study of a yeast phenylalanine-specific tRNA by a fluorescent indicator and differential melting curves. EUROPEAN JOURNAL OF BIOCHEMISTRY 1975; 55:271-84. [PMID: 1100382 DOI: 10.1111/j.1432-1033.1975.tb02160.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The binding of Mg2+ to tRNAPhe (yeast) in three conformational states was studied at 10, 30, 45, and 70 degrees C by the fluorescence indicator 8-hydroxyquinoline 5-sulphonic acid in the presence of 0.032 M monovalent cations (Na+). At temperatures below those characteristic for early melting (completely folded tRNA) the Scatchard plots are biphasic. They were well fitted by two classes of noninteracting binding sites with stability constants independent of temperature (KA = 9X10(4), KB = 6X10(3) M-1). In partially unfolded tRNA the strong binding process is co-operative. A single class of weak sites was found in the statistically coiled conformation at 70 degrees C (KB = 3.3X103 M-1). The total number of binding sites is 23 +/- 5; differences for the folded and unfolded conformations are smaller than 1. The influence of Mg2+ on the stability of the conformational elements of tRNAPhe (yeast) and its CCA-half (i.e. nucleotides 38--76) was determined by differential ultraviolet absorbance and depolarisation melting curves using the fluorescence of the Y base. Tertiary structure corresponding to early melting is stabilized by strongly bound Mg2+, whereas all other melting transitions are only influenced by Mg2+ bound at weak sites. The stability constants of tertiary structure obtained from the melting experiments can quantitatively be described by assuming that 5 +/- 1 non-interacting strong sites as characterized by the fluorescence titrations are converted to weak sites upon unfolding of the tertiary structure. Co-operative interaction of Mg2+ with the 5 strong sites in the folded conformation of tRNA can be ruled out. Strong binding of Mg2+ to completely folded tRNA does not produce a conformational transition changing ultraviolet absorbance, circular dichroism and sedimentation coefficient.
Collapse
|
49
|
Abstract
We report a method for predicting the most stable secondary structure of RNA from its primary sequence of nucleotides. The technique consists of a series of three computer programs interfaced to take the nucleotide sequence of any RNA and (a) list all possible helical regions, using modified Watson-Crick base-pairing rules; (b) create all possible secondary structures by forming permutations of compatible helical regions; and (c)evaluate each structure for total free energy of formation from a completely extended chain. A free energy distribution and the base-by-base bonding interactions of each possible structure are catalogued by the system and are readily available for examination. The method has been applied to 62 tRNA sequences. The total free-energy of the predicted most stable structures ranged from -19 to -41 kcal/mole (-22 to -49 kJ/mole). The number of structures created was also highly sequence-dependent and ranged from 200 to 13,000. In nearly all cases the cloverleaf is predicted to be the structure with the lowest free energy of formation.
Collapse
|
50
|
Aoki K. Crystallographic Studies of Interaction between Nucleotides and Metal Ions. I. Crystal Structures of the 1:1 Complexes of Cobalt and Nickel with Inosine 5′-Phosphate. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1975. [DOI: 10.1246/bcsj.48.1260] [Citation(s) in RCA: 42] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|