1
|
Li J, Wang H, Yang W. Tandem MutSβ binding to long extruded DNA trinucleotide repeats underpins pathogenic expansions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571350. [PMID: 38168405 PMCID: PMC10760016 DOI: 10.1101/2023.12.12.571350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Expansion of trinucleotide repeats causes Huntington's disease, Fragile X syndrome and over twenty other monogenic disorders1. How mismatch repair protein MutSβ and large repeats of CNG (N=A, T, C or G) cooperate to drive the expansion is poorly understood. Contrary to expectations, we find that MutSβ prefers to bind the stem of an extruded (CNG) hairpin rather than the hairpin end or hairpin-duplex junction. Structural analyses reveal that in the presence of MutSβ, CNG repeats with N:N mismatches adopt a B form-like pseudo-duplex, with one or two CNG repeats slipped out forming uneven bubbles that partly mimic insertion-deletion loops of mismatched DNA2. When the extruded hairpin exceeds 40-45 repeats, it can be bound by three or more MutSβ molecules, which are resistant to ATP-dependent dissociation. We envision that such MutSβ-CNG complexes recruit MutLγ endonuclease to nick DNA and initiate the repeat expansion process3,4. To develop drugs against the expansion diseases, we have identified lead compounds that prevent MutSβ binding to CNG repeats but not to mismatched DNA.
Collapse
Affiliation(s)
- Jun Li
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Huaibin Wang
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
2
|
Liu Y, Xu C, Zhou H, Wang W, Liu B, Li Y, Hu X, Yu F, He J. The crystal structures of Sau3AI with and without bound DNA suggest a self-activation-based DNA cleavage mechanism. Structure 2023; 31:1463-1472.e2. [PMID: 37652002 DOI: 10.1016/j.str.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The type II restriction endonuclease Sau3AI cleaves the sequence 5'-GATC-3' in double-strand DNA producing two sticky ends. Sau3AI cuts both DNA strands regardless of methylation status. Here, we report the crystal structures of the active site mutant Sau3AI-E64A and the C-terminal domain Sau3AI-C with a bound GATC substrate. Interestingly, the catalytic site of the N-terminal domain (Sau3AI-N) is spatially blocked by the C-terminal domain, suggesting a potential self-inhibition of the enzyme. Interruption of Sau3AI-C binding to substrate DNA disrupts Sau3AI function, suggesting a functional linkage between the N- and C-terminal domains. We propose that Sau3AI-C behaves as an allosteric effector binding one GATC substrate, which triggers a conformational change to open the N-terminal catalytic site, resulting in the subsequent GATC recognition by Sau3AI-N and cleavage of the second GATC site. Our data indicate that Sau3AI and UbaLAI might represent a new subclass of type IIE restriction enzymes.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chunyan Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Weiwei Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojian Hu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Ortega J, Lee GS, Gu L, Yang W, Li GM. Mispair-bound human MutS-MutL complex triggers DNA incisions and activates mismatch repair. Cell Res 2021; 31:542-553. [PMID: 33510387 PMCID: PMC8089094 DOI: 10.1038/s41422-021-00468-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/17/2020] [Indexed: 01/30/2023] Open
Abstract
DNA mismatch repair (MMR) relies on MutS and MutL ATPases for mismatch recognition and strand-specific nuclease recruitment to remove mispaired bases in daughter strands. However, whether the MutS-MutL complex coordinates MMR by ATP-dependent sliding on DNA or protein-protein interactions between the mismatch and strand discrimination signal is ambiguous. Using functional MMR assays and systems preventing proteins from sliding, we show that sliding of human MutSα is required not for MMR initiation, but for final mismatch removal. MutSα recruits MutLα to form a mismatch-bound complex, which initiates MMR by nicking the daughter strand 5' to the mismatch. Exonuclease 1 (Exo1) is then recruited to the nick and conducts 5' → 3' excision. ATP-dependent MutSα dissociation from the mismatch is necessary for Exo1 to remove the mispaired base when the excision reaches the mismatch. Therefore, our study has resolved a long-standing puzzle, and provided new insights into the mechanism of MMR initiation and mispair removal.
Collapse
Affiliation(s)
- Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Grace Sanghee Lee
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA ,Present Address: Division of Viral Hepatitis, National Center for HIV/AIDS, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX USA ,Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY USA
| |
Collapse
|
4
|
He W, Rao HBDP, Tang S, Bhagwat N, Kulkarni DS, Ma Y, Chang MAW, Hall C, Bragg JW, Manasca HS, Baker C, Verhees GF, Ranjha L, Chen X, Hollingsworth NM, Cejka P, Hunter N. Regulated Proteolysis of MutSγ Controls Meiotic Crossing Over. Mol Cell 2020; 78:168-183.e5. [PMID: 32130890 DOI: 10.1016/j.molcel.2020.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/03/2020] [Accepted: 01/31/2020] [Indexed: 01/04/2023]
Abstract
Crossover recombination is essential for accurate chromosome segregation during meiosis. The MutSγ complex, Msh4-Msh5, facilitates crossing over by binding and stabilizing nascent recombination intermediates. We show that these activities are governed by regulated proteolysis. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable by directly targeting proteasomal degradation. Activation of MutSγ requires the Dbf4-dependent kinase Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Genetic requirements for Msh4 phosphorylation indicate that DDK targets MutSγ only after it has bound to nascent joint molecules (JMs) in the context of synapsing chromosomes. Overexpression studies confirm that the steady-state level of Msh4, not phosphorylation per se, is the critical determinant for crossing over. At the DNA level, Msh4 phosphorylation enables the formation and crossover-biased resolution of double-Holliday Junction intermediates. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossing over.
Collapse
Affiliation(s)
- Wei He
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - H B D Prasada Rao
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Shangming Tang
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Nikhil Bhagwat
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Dhananjaya S Kulkarni
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Yunmei Ma
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Maria A W Chang
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christie Hall
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Junxi Wang Bragg
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Harrison S Manasca
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Christa Baker
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Gerrik F Verhees
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA
| | - Lepakshi Ranjha
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Xiangyu Chen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Nancy M Hollingsworth
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California, Davis, Davis, California, USA; Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, California, USA; Department of Molecular & Cellular Biology, University of California, Davis, Davis, California, USA; Department of Cell Biology & Human Anatomy, University of California, Davis, Davis, California, USA.
| |
Collapse
|
5
|
Bosshard L, Peischl S, Ackermann M, Excoffier L. Mutational and Selective Processes Involved in Evolution during Bacterial Range Expansions. Mol Biol Evol 2020; 36:2313-2327. [PMID: 31241150 DOI: 10.1093/molbev/msz148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial populations have been shown to accumulate deleterious mutations during spatial expansions that overall decrease their fitness and ability to grow. However, it is unclear if and how they can respond to selection in face of this mutation load. We examine here if artificial selection can counteract the negative effects of range expansions. We examined the molecular evolution of 20 mutator lines selected for fast expansions (SEL) and compared them to 20 other mutator lines freely expanding without artificial selection (CONTROL). We find that the colony size of all 20 SEL lines have increased relative to the ancestral lines, unlike CONTROL lines, showing that enough beneficial mutations are produced during spatial expansions to counteract the negative effect of expansion load. Importantly, SEL and CONTROL lines have similar numbers of mutations indicating that they evolved for the same number of generations and that increased fitness is not due to a purging of deleterious mutations. We find that loss of function mutations better explain the increased colony size of SEL lines than nonsynonymous mutations or a combination of the two. Interestingly, most loss of function mutations are found in simple sequence repeats (SSRs) located in genes involved in gene regulation and gene expression. We postulate that such potentially reversible mutations could play a major role in the rapid adaptation of bacteria to changing environmental conditions by shutting down expensive genes and adjusting gene expression.
Collapse
Affiliation(s)
- Lars Bosshard
- CMPG, Institute of Ecology an Evolution, University of Berne, Berne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Peischl
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Interfaculty Bioinformatics Unit, University of Berne, Berne, Switzerland
| | - Martin Ackermann
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zurich (ETH Zürich), Zürich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Laurent Excoffier
- CMPG, Institute of Ecology an Evolution, University of Berne, Berne, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
6
|
Bairwa NK, Saha A, Gochhait S, Pal R, Gupta V, Bamezai RNK. Microsatellite instability: an indirect assay to detect defects in the cellular mismatch repair machinery. Methods Mol Biol 2014; 1105:497-509. [PMID: 24623249 DOI: 10.1007/978-1-62703-739-6_35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The DNA mismatch repair (MMR) pathway plays a prominent role in the correction of errors made during DNA replication and genetic recombination and in the repair of small deletions and loops in DNA. Mismatched nucleotides can occur by replication errors, damage to nucleotide precursors, damage to DNA, or during heteroduplex formation between two homologous DNA molecules in the process of genetic recombination. Defects in MMR can precipitate instability in simple sequence repeats (SSRs), also referred to as microsatellite instability (MSI), which appears to be important in certain types of cancers, both spontaneous and hereditary. Variations in the highly polymorphic alleles of specific microsatellite repeats can be identified using PCR with primers derived from the unique flanking sequences. These PCR products are analyzed on denaturing polyacrylamide gels to resolve differences in allele sizes of >2 bp. Although (CA)n repeats are the most abundant class among dinucleotide SSRs, trinucleotide and tetranucleotide repeats are also frequent. These polymorphic repeats have the advantage of producing band patterns that are easy to analyze and can be used as an indication of a possible MMR defect in a cell. The presumed association between such allelic variation and an MMR defect should be confirmed by molecular analysis of the structure and/or expression of MMR genes.
Collapse
Affiliation(s)
- Narendra K Bairwa
- National Centre of Applied Human Genetics, Jawaharlal Nehru University, Delhi, India
| | | | | | | | | | | |
Collapse
|
7
|
Nagorska K, Silhan J, Li Y, Pelicic V, Freemont PS, Baldwin GS, Tang CM. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol Microbiol 2012; 83:1064-1079. [PMID: 22296581 PMCID: PMC3749813 DOI: 10.1111/j.1365-2958.2012.07989.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterized meningococcal base excision repair enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However, MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence shows that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes.
Collapse
Affiliation(s)
- Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Jan Silhan
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Vladimir Pelicic
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Paul S. Freemont
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Geoff S. Baldwin
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
8
|
Niedziela-Majka A, Maluf NK, Antony E, Lohman TM. Self-assembly of Escherichia coli MutL and its complexes with DNA. Biochemistry 2011; 50:7868-80. [PMID: 21793594 DOI: 10.1021/bi200753b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Escherichia coli MutL protein regulates the activity of several enzymes, including MutS, MutH, and UvrD, during methyl-directed mismatch repair of DNA. We have investigated the self-association properties of MutL and its binding to DNA using analytical sedimentation velocity and equilibrium. Self-association of MutL is quite sensitive to solution conditions. At 25 °C in Tris at pH 8.3, MutL assembles into a heterogeneous mixture of large multimers. In the presence of potassium phosphate at pH 7.4, MutL forms primarily stable dimers, with the higher-order assembly states suppressed. The weight-average sedimentation coefficient of the MutL dimer in this buffer ( ̅s(20,w)) is equal to 5.20 ± 0.08 S, suggesting a highly asymmetric dimer (f/f(o) = 1.58 ± 0.02). Upon binding the nonhydrolyzable ATP analogue, AMPPNP/Mg(2+), the MutL dimer becomes more compact ( ̅s(20,w) = 5.71 ± 0.08 S; f/f(o) = 1.45 ± 0.02), probably reflecting reorganization of the N-terminal ATPase domains. A MutL dimer binds to an 18 bp duplex with a 3'-(dT(20)) single-stranded flanking region, with apparent affinity in the micromolar range. AMPPNP binding to MutL increases its affinity for DNA by a factor of ∼10. These results indicate that the presence of phosphate minimizes further MutL oligomerization beyond a dimer and that differences in solution conditions likely explain apparent discrepancies in previous studies of MutL assembly.
Collapse
Affiliation(s)
- Anita Niedziela-Majka
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 South Euclid Avenue, Box 8231, St. Louis, Missouri 63110-1093, USA
| | | | | | | |
Collapse
|
9
|
Chen F, Liu WQ, Eisenstark A, Johnston RN, Liu GR, Liu SL. Multiple genetic switches spontaneously modulating bacterial mutability. BMC Evol Biol 2010; 10:277. [PMID: 20836863 PMCID: PMC2955026 DOI: 10.1186/1471-2148-10-277] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 09/13/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All life forms need both high genetic stability to survive as species and a degree of mutability to evolve for adaptation, but little is known about how the organisms balance the two seemingly conflicting aspects of life: genetic stability and mutability. The DNA mismatch repair (MMR) system is essential for maintaining genetic stability and defects in MMR lead to high mutability. Evolution is driven by genetic novelty, such as point mutation and lateral gene transfer, both of which require genetic mutability. However, normally a functional MMR system would strongly inhibit such genomic changes. Our previous work indicated that MMR gene allele conversion between functional and non-functional states through copy number changes of small tandem repeats could occur spontaneously via slipped-strand mis-pairing during DNA replication and therefore may play a role of genetic switches to modulate the bacterial mutability at the population level. The open question was: when the conversion from functional to defective MMR is prohibited, will bacteria still be able to evolve by accepting laterally transferred DNA or accumulating mutations? RESULTS To prohibit allele conversion, we "locked" the MMR genes through nucleotide replacements. We then scored changes in bacterial mutability and found that Salmonella strains with MMR locked at the functional state had significantly decreased mutability. To determine the generalizability of this kind of mutability 'switching' among a wider range of bacteria, we examined the distribution of tandem repeats within MMR genes in over 100 bacterial species and found that multiple genetic switches might exist in these bacteria and may spontaneously modulate bacterial mutability during evolution. CONCLUSIONS MMR allele conversion through repeats-mediated slipped-strand mis-pairing may function as a spontaneous mechanism to switch between high genetic stability and mutability during bacterial evolution.
Collapse
Affiliation(s)
- Fang Chen
- Genomics Research Center (one of The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
10
|
Arana ME, Holmes SF, Fortune JM, Moon AF, Pedersen LC, Kunkel TA. Functional residues on the surface of the N-terminal domain of yeast Pms1. DNA Repair (Amst) 2010; 9:448-57. [PMID: 20138591 PMCID: PMC2856611 DOI: 10.1016/j.dnarep.2010.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 01/07/2010] [Accepted: 01/07/2010] [Indexed: 01/21/2023]
Abstract
Saccharomyces cerevisiae MutLalpha is a heterodimer of Mlh1 and Pms1 that participates in DNA mismatch repair (MMR). Both proteins have weakly conserved C-terminal regions (CTDs), with the CTD of Pms1 harboring an essential endonuclease activity. These proteins also have conserved N-terminal domains (NTDs) that bind and hydrolyze ATP and bind to DNA. To better understand Pms1 functions and potential interactions with DNA and/or other proteins, we solved the 2.5A crystal structure of yeast Pms1 (yPms1) NTD. The structure is similar to the homologous NTDs of Escherichia coli MutL and human PMS2, including the site involved in ATP binding and hydrolysis. The structure reveals a number of conserved, positively charged surface residues that do not interact with other residues in the NTD and are therefore candidates for interactions with DNA, with the CTD and/or with other proteins. When these were replaced with glutamate, several replacements resulted in yeast strains with elevated mutation rates. Two replacements also resulted in NTDs with decreased DNA binding affinity in vitro, suggesting that these residues contribute to DNA binding that is important for mismatch repair. Elevated mutation rates also resulted from surface residue replacements that did not affect DNA binding, suggesting that these conserved residues serve other functions, possibly involving interactions with other MMR proteins.
Collapse
Affiliation(s)
- Mercedes E. Arana
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Shannon F. Holmes
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - John M. Fortune
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Andrea F. Moon
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Lars C. Pedersen
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| | - Thomas A. Kunkel
- Laboratory of Molecular Genetics, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
- Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina, 27709
| |
Collapse
|
11
|
Kim TG, Heo SD, Ku JK, Ban C. Functional properties of the thermostable mutL from Thermotoga maritima. BMB Rep 2009; 42:53-8. [PMID: 19192394 DOI: 10.5483/bmbrep.2009.42.1.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The methyl-directed mismatch repair (MMR) mechanism has been extensively studied in vitro and in vivo, but one of the difficulties in determining the biological relationships between the MMR-related proteins is the tendency of MutL to self-aggregate. The properties of a stable MutL homologue were investigated using a thermostable MutL (TmL) from Thermotoga maritima MSB8 and whose size exclusion chromatographic and crosslinking analyses were compatible with a dimeric form of TmL. TmL underwent conformational changes in the presence of nucleotides and single-stranded DNA (ssDNA) with ATP binding not requiring ssDNA binding activity of TmL, while ADPnP-stimulated TmL showed a high ssDNA binding affinity. Finally, TmL interacted with the T. maritima MutS (TmS), increasing the affinity of TmS to mismatched DNA base pairs and suggesting that the role of TmL in the formation of a mismatched DNA-TmS complex may be a pivotal observation for the study of the initial MMR system. [BMB reports 2009; 42(1): 53-58].
Collapse
Affiliation(s)
- Tae Gyun Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Korea
| | | | | | | |
Collapse
|
12
|
Tessmer I, Yang Y, Zhai J, Du C, Hsieh P, Hingorani MM, Erie DA. Mechanism of MutS searching for DNA mismatches and signaling repair. J Biol Chem 2008; 283:36646-54. [PMID: 18854319 PMCID: PMC2606009 DOI: 10.1074/jbc.m805712200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/10/2008] [Indexed: 11/06/2022] Open
Abstract
DNA mismatch repair is initiated by the recognition of mismatches by MutS proteins. The mechanism by which MutS searches for and recognizes mismatches and subsequently signals repair remains poorly understood. We used single-molecule analyses of atomic force microscopy images of MutS-DNA complexes, coupled with biochemical assays, to determine the distributions of conformational states, the DNA binding affinities, and the ATPase activities of wild type and two mutants of MutS, with alanine substitutions in the conserved Phe-Xaa-Glu mismatch recognition motif. We find that on homoduplex DNA, the conserved Glu, but not the Phe, facilitates MutS-induced DNA bending, whereas at mismatches, both Phe and Glu promote the formation of an unbent conformation. The data reveal an unusual role for the Phe residue in that it promotes the unbending, not bending, of DNA at mismatch sites. In addition, formation of the specific unbent MutS-DNA conformation at mismatches appears to be required for the inhibition of ATP hydrolysis by MutS that signals initiation of repair. These results provide a structural explanation for the mechanism by which MutS searches for and recognizes mismatches and for the observed phenotypes of mutants with substitutions in the Phe-Xaa-Glu motif.
Collapse
Affiliation(s)
- Ingrid Tessmer
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim TG, Cha HJ, Lee HJ, Heo SD, Choi KY, Ku JK, Ban C. Structural insights of the nucleotide-dependent conformational changes of Thermotoga maritima MutL using small-angle X-ray scattering analysis. J Biochem 2008; 145:199-206. [PMID: 19029144 DOI: 10.1093/jb/mvn157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MutL is required to assist the mismatch repair protein MutS during initiation of the methyl-directed mismatch repair (MMR) response in various organisms ranging from prokaryotes to eukaryotes. Despite this necessity, the inherent propensity of MutL to aggregate has led to significant difficulties in determining its biological relationship with other MMR-related proteins. Here, we perform analysis on the thermostable MutL protein found in Thermotoga maritima MSB8 (TmL). Size exclusion chromatographic analysis indicates the lack of aggregated forms with the exception of a dimeric TmL. Small-angle X-ray scattering (SAXS) analysis reveals that the solution structures of the full-length TmL and its corresponding complexes with nucleotides and ssDNA undergo conformational changes. The elucidated TmL SAXS model is superimposed to the crystal structure of the C-terminal domain of Escherichia coli MutL. In addition, the N-terminal SAXS model of TmL exists as monomeric form, indicating that TmL has a structurally flexible N-terminal domain. TmL SAXS analysis can suggest a considerable possibility on a new 3D view of the previously unresolved full-length MutL molecule.
Collapse
Affiliation(s)
- Tae Gyun Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 790-784, Korea
| | | | | | | | | | | | | |
Collapse
|
14
|
Gong J, Liu WQ, Liu GR, Chen F, Li JQ, Xu GM, Wang L, Johnston RN, Eisenstark A, Liu SL. Spontaneous conversion between mutL and 6 bpΔmutL in Salmonella typhimurium LT7: Association with genome diversification and possible roles in bacterial adaptation. Genomics 2007; 90:542-9. [PMID: 17689047 DOI: 10.1016/j.ygeno.2007.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 06/02/2007] [Accepted: 06/26/2007] [Indexed: 10/23/2022]
Abstract
Previously, we reported the phenomenon of genome diversification in Salmonella typhimurium LT7, i.e., individual strains derived from LT7 kept changing the genome structure by inversions, translocations, duplications, and mutations. To elucidate the genetic basis, we sequenced selected genes of the mismatch repair (MMR) system for correlations between MMR defects and genome diversification. We chose S. typhimurium LT7 mutants 8111F2 and 9052D1 for mut gene sequence analyses and found that both mutants had a deletion of one of three tandem 6-bp repeats, GCTGGC GCTGGC GCTGGC, within mutL, which was designated 6 bpDeltamutL. mutS and mutH genes were unchanged in the mutants analyzed. Some sublines of 8111F2 and 9052D1 spontaneously stopped the genome diversification process at certain stages during single-colony restreaking passages, and in these strains the 6 bpDeltamutL genotype also became wild-type mutL. We conclude that conversion between mutL and 6 bpDeltamutL occurs spontaneously and that transient defects of mutL facilitate genome diversification without leading to the accumulation of multiple detrimental genetic changes. Spontaneous conversion between mutL and 6 bpDeltamutL may be an important mechanism used by bacteria to regulate genetic stability in adaptation to changing environments.
Collapse
Affiliation(s)
- Jun Gong
- Department of Microbiology, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Swinger KK, Rice PA. Structure-based analysis of HU-DNA binding. J Mol Biol 2006; 365:1005-16. [PMID: 17097674 PMCID: PMC1945228 DOI: 10.1016/j.jmb.2006.10.024] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/25/2006] [Accepted: 10/07/2006] [Indexed: 11/29/2022]
Abstract
HU and IHF are prokaryotic proteins that induce very large bends in DNA. They are present in high concentrations in the bacterial nucleoid and aid in chromosomal compaction. They also function as regulatory cofactors in many processes, such as site-specific recombination and the initiation of replication and transcription. HU and IHF have become paradigms for understanding DNA bending and indirect readout of sequence. While IHF shows significant sequence specificity, HU binds preferentially to certain damaged or distorted DNAs. However, none of the structurally diverse HU substrates previously studied in vitro is identical with the distorted substrates in the recently published Anabaena HU(AHU)-DNA cocrystal structures. Here, we report binding affinities for AHU and the DNA in the cocrystal structures. The binding free energies for formation of these AHU-DNA complexes range from approximately 10-14.5 kcal/mol, representing K(d) values in the nanomolar to low picomolar range, and a maximum stabilization of at least approximately 6.3 kcal/mol relative to complexes with undistorted, non-specific DNA. We investigated IHF binding and found that appropriate structural distortions can greatly enhance its affinity. On the basis of the coupling of structural and relevant binding data, we estimate the amount of conformational strain in an IHF-mediated DNA kink that is relieved by a nick (at least 0.76 kcal/mol) and pinpoint the location of the strain. We show that AHU has a sequence preference for an A+T-rich region in the center of its DNA-binding site, correlating with an unusually narrow minor groove. This is similar to sequence preferences shown by the eukaryotic nucleosome.
Collapse
|
16
|
Matson SW, Robertson AB. The UvrD helicase and its modulation by the mismatch repair protein MutL. Nucleic Acids Res 2006; 34:4089-97. [PMID: 16935885 PMCID: PMC1616947 DOI: 10.1093/nar/gkl450] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
UvrD is a superfamily I DNA helicase with well documented roles in excision repair and methyl-directed mismatch repair (MMR) in addition to poorly understood roles in replication and recombination. The MutL protein is a homodimeric DNA-stimulated ATPase that plays a central role in MMR in Escherichia coli. This protein has been characterized as the master regulator of mismatch repair since it interacts with and modulates the activity of several other proteins involved in the mismatch repair pathway including MutS, MutH and UvrD. Here we present a brief summary of recent studies directed toward arriving at a better understanding of the interaction between MutL and UvrD, and the impact of this interaction on the activity of UvrD and its role in mismatch repair.
Collapse
Affiliation(s)
- Steven W Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
17
|
López de Saro FJ, Marinus MG, Modrich P, O'Donnell M. The beta sliding clamp binds to multiple sites within MutL and MutS. J Biol Chem 2006; 281:14340-9. [PMID: 16546997 DOI: 10.1074/jbc.m601264200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The MutL and MutS proteins are the central components of the DNA repair machinery that corrects mismatches generated by DNA polymerases during synthesis. We find that MutL interacts directly with the beta sliding clamp, a ring-shaped dimeric protein that confers processivity to DNA polymerases by tethering them to their substrates. Interestingly, the interaction of MutL with beta only occurs in the presence of single-stranded DNA. We find that the interaction occurs via a loop in MutL near the ATP-binding site. The binding site of MutL on beta locates to the hydrophobic pocket between domains two and three of the clamp. Site-specific replacement of two residues in MutL diminished interaction with beta without disrupting MutL function with helicase II. In vivo studies reveal that this mutant MutL is no longer functional in mismatch repair. In addition, the human MLH1 has a close match to the proliferating cell nuclear antigen clamp binding motif in the region that corresponds to the beta interaction site in Escherichia coli MutL, and a peptide corresponding to this site binds proliferating cell nuclear antigen. The current report also examines in detail the interaction of beta with MutS. We find that two distinct regions of MutS interact with beta. One is located near the C terminus and the other is close to the N terminus, within the mismatch binding domain. Complementation studies using genes encoding different MutS mutants reveal that the N-terminal beta interaction motif on MutS is essential for activity in vivo, but the C-terminal interaction site for beta is not. In light of these results, we propose roles for the beta clamp in orchestrating the sequence of events that lead to mismatch repair in the cell.
Collapse
|
18
|
Abstract
DNA mismatch repair (MMR) is an evolutionarily conserved process that corrects mismatches generated during DNA replication and escape proofreading. MMR proteins also participate in many other DNA transactions, such that inactivation of MMR can have wide-ranging biological consequences, which can be either beneficial or detrimental. We begin this review by briefly considering the multiple functions of MMR proteins and the consequences of impaired function. We then focus on the biochemical mechanism of MMR replication errors. Emphasis is on structure-function studies of MMR proteins, on how mismatches are recognized, on the process by which the newly replicated strand is identified, and on excision of the replication error.
Collapse
Affiliation(s)
- Thomas A Kunkel
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
19
|
Robert J, Morvan VL, Smith D, Pourquier P, Bonnet J. Predicting drug response and toxicity based on gene polymorphisms. Crit Rev Oncol Hematol 2005; 54:171-96. [PMID: 15890268 DOI: 10.1016/j.critrevonc.2005.01.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/01/2005] [Accepted: 01/28/2005] [Indexed: 12/16/2022] Open
Abstract
The sequencing of the human genome has allowed the identification of thousands of gene polymorphisms, most often single nucleotide polymorphims (SNP), which may play an important role in the expression level and activity of the corresponding proteins. When these polymorphisms occur at the level of drug metabolising enzymes or transporters, the disposition of the drug may be altered and, consequently, its efficacy may be compromised or its toxicity enhanced. Polymorphisms can also occur at the level of proteins directly involved in drug action, either when the protein is the target of the drug or when the protein is involved in the repair of drug-induced lesions. There again, these polymorphisms may lead to alterations in drug efficacy and/or toxicity. The identification of functional polymorphisms in patients undergoing chemotherapy may help the clinician prescribe the optimal drug combination or schedule and predict with more accuracy the response to these prescriptions. We have recorded in this review the polymorphisms that have been identified up till now in genes involved in anticancer drug activity. Some of them appear especially important in predicting drug toxicity and should be determined in routine before drug administration; this is the case of the most common variations of thiopurine methyltransferase for 6-mercaptopurine and of dihydropyrimidine dehydrogenase for fluorouracil. Other appear determinant for drug response, such as the common SNPs found in glutathione S-transferase P1 or xereoderma pigmentosum group D enzyme for the activity of oxaliplatin. However, confusion factors may exist between the role of gene polymorphisms in cancer risk or overall prognosis and their role in drug response.
Collapse
Affiliation(s)
- Jacques Robert
- Institut Bergonié and Université Victor Segalen Bordeaux 2, 229 cours de l'Argonne, 33076 Bordeaux-Cedex, France.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Exposure of yeast cells to low concentrations of cadmium results in elevated mutation rates due to loss of mismatch repair (MMR), and cadmium inhibits MMR activity in extracts of human cells. Here we show that cadmium inhibits both Msh2-Msh6- and Msh2-Msh3-dependent human MMR activity in vitro. This inhibition, which occurs at a step or steps preceding repair DNA synthesis, is observed for repair directed by either a 3' or a 5' nick. In an attempt to identify the protein target(s) of cadmium inhibition, we show that cadmium inhibition of MMR is not reversed by addition of zinc to the repair reaction, suggesting that the target is not a zinc metalloprotein. We then show that cadmium inhibits ATP hydrolysis by yeast Msh2-Msh6 but has no effect on ATPase hydrolysis by yeast Mlh1-Pms1. Steady state kinetic analysis with wild type Msh2-Msh6, and with heterodimers containing subunit-specific Glu to Ala replacements inferred to inactivate the ATPase activity of either Msh2 or Msh6, suggest that cadmium inhibits ATP hydrolysis by Msh6 but not Msh2. Cadmium also reduces DNA binding by Msh2-Msh6 and more so for mismatched than matched duplexes. These data indicate that eukaryotic Msh2-Msh3 and Msh2-Msh6 complexes are targets for inhibition of MMR by cadmium, a human lung carcinogen that is ubiquitous in the environment.
Collapse
Affiliation(s)
- Alan B Clark
- Laboratory of Molecular Genetics, NIEHS, Research Triangle Park, North Carolina 27709, USA
| | | |
Collapse
|
21
|
Guarné A, Ramon-Maiques S, Wolff EM, Ghirlando R, Hu X, Miller JH, Yang W. Structure of the MutL C-terminal domain: a model of intact MutL and its roles in mismatch repair. EMBO J 2004; 23:4134-45. [PMID: 15470502 PMCID: PMC524388 DOI: 10.1038/sj.emboj.7600412] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 08/20/2004] [Indexed: 12/19/2022] Open
Abstract
MutL assists the mismatch recognition protein MutS to initiate and coordinate mismatch repair in species ranging from bacteria to humans. The MutL N-terminal ATPase domain is highly conserved, but the C-terminal region shares little sequence similarity among MutL homologs. We report here the crystal structure of the Escherichia coli MutL C-terminal dimerization domain and the likelihood of its conservation among MutL homologs. A 100-residue proline-rich linker between the ATPase and dimerization domains, which generates a large central cavity in MutL dimers, tolerates sequence substitutions and deletions of one-third of its length with no functional consequences in vivo or in vitro. Along the surface of the central cavity, residues essential for DNA binding are located in both the N- and C-terminal domains. Each domain of MutL interacts with UvrD helicase and is required for activating the helicase activity. The DNA-binding capacity of MutL is correlated with the level of UvrD activation. A model of how MutL utilizes its ATPase and DNA-binding activities to mediate mismatch-dependent activation of MutH endonuclease and UvrD helicase is proposed.
Collapse
Affiliation(s)
- Alba Guarné
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Santiago Ramon-Maiques
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erika M Wolff
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaojian Hu
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Building 5, Rm B1-03, Bethesda, MD 20892, USA. Tel.: +1 301 402 4645; Fax: +1 301 496 0201; E-mail:
| |
Collapse
|
22
|
Kimura S, Tahira Y, Ishibashi T, Mori Y, Mori T, Hashimoto J, Sakaguchi K. DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells. Nucleic Acids Res 2004; 32:2760-7. [PMID: 15150342 PMCID: PMC419598 DOI: 10.1093/nar/gkh591] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Revised: 04/02/2004] [Accepted: 04/15/2004] [Indexed: 11/13/2022] Open
Abstract
We investigated expression patterns of DNA repair genes such as the CPD photolyase, UV-DDB1, CSB, PCNA, RPA32 and FEN-1 genes by northern hybridization analysis and in situ hybridization using a higher plant, rice (Oryza sativa L. cv. Nipponbare). We found that all the genes tested were expressed in tissues rich in proliferating cells, but only CPD photolyase was expressed in non-proliferating tissue such as the mature leaves and elongation zone of root. The removal of DNA damage, cyclobutane pyrimidine dimers and (6-4) photoproducts, in both mature leaves and the root apical meristem (RAM) was observed after UV irradiation under light. In the dark, DNA damage in mature leaves was not repaired efficiently, but that in the RAM was removed rapidly. Using a rice 22K custom oligo DNA microarray, we compared global gene expression patterns in the shoot apical meristem (SAM) and mature leaves. Most of the excision repair genes were more strongly expressed in SAM. These results suggested that photoreactivation is the major DNA repair pathway for the major UV-induced damage in non-proliferating cells, while both photoreactivation and excision repair are active in proliferating cells.
Collapse
Affiliation(s)
- Seisuke Kimura
- Department of Applied Biological Science, Faculty of Science and Technology, Science University of Tokyo, 2641 Yamazaki, Noda-shi, Chiba, 278-8510, Japan
| | | | | | | | | | | | | |
Collapse
|