1
|
Yu K, Zeng Z, Cheng S, Hu W, Gao C, Liu F, Chen J, Qian Y, Xu D, Zhao J, Liu X, Wang J. TPP1 Enhances the Therapeutic Effects of Transplanted Aged Mesenchymal Stem Cells in Infarcted Hearts via the MRE11/AKT Pathway. Front Cell Dev Biol 2020; 8:588023. [PMID: 33195247 PMCID: PMC7658181 DOI: 10.3389/fcell.2020.588023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/29/2020] [Indexed: 12/23/2022] Open
Abstract
Background Poor cell survival after transplantation restricts the therapeutic potential of mesenchymal stem cell (MSC) transplantation into infarcted hearts, particularly in older individuals. TPP1, a component of the shelterin complex that is involved in telomere protection, is highly expressed in young MSCs but declines in aged ones. Here, we explore whether TPP1 overexpression in aged mouse MSCs improves cell viability in vivo and in vitro. Methods Aged mouse MSCs overexpressing TPP1 were injected into the peri-infarct area of the mouse heart after left anterior descending coronary artery ligation. In parallel, to evaluate cellular-level effects, H2O2 was applied to MSCs in vitro to mimic the microenvironment of myocardial injury. Results In vivo, the transplantation of aged MSCs overexpressing TPP1 resulted in improved cell survival, enhanced cardiac function, and reduced fibrosis compared to unmodified aged MSCs. In vitro, TPP1 overexpression protected aged MSCs from H2O2-induced apoptosis and enhanced DNA double-strand break (DSB) repair. In addition, the phosphorylation of AKT and the key DSB repair protein MRE11 were both significantly upregulated in aged MSCs that overexpressed TPP1. Conclusions Our results reveal that TPP1 can enhance DNA repair through the AKT/MRE11 pathway, thereby improving the therapeutic effects of aged MSC transplantation and offering significant potential for the clinical application of autologous transplantation in aged patients.
Collapse
Affiliation(s)
- Kaixiang Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Zhiru Zeng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Si Cheng
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Wangxing Hu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Chenyang Gao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Feng Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jinyong Chen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Yi Qian
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Dilin Xu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, China
| |
Collapse
|
2
|
Hsu RYC, Lin YC, Redon C, Sun Q, Singh DK, Wang Y, Aggarwal V, Mitra J, Matur A, Moriarity B, Ha T, Aladjem MI, Prasanth KV, Prasanth SG. ORCA/LRWD1 Regulates Homologous Recombination at ALT-Telomeres by Modulating Heterochromatin Organization. iScience 2020; 23:101038. [PMID: 32344376 PMCID: PMC7186530 DOI: 10.1016/j.isci.2020.101038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 12/23/2022] Open
Abstract
Telomeres are maintained by telomerase or in a subset of cancer cells by a homologous recombination (HR)-based mechanism, Alternative Lengthening of Telomeres (ALT). The mechanisms regulating telomere-homeostasis in ALT cells remain unclear. We report that a replication initiator protein, Origin Recognition Complex-Associated (ORCA/LRWD1), by localizing at the ALT-telomeres, modulates HR activity. ORCA's localization to the ALT-telomeres is facilitated by its interaction to SUMOylated shelterin components. The loss of ORCA in ALT-positive cells elevates the levels of two mediators of HR, RPA and RAD51, and consistent with this, we observe increased ALT-associated promyelocytic leukemia body formation and telomere sister chromatid exchange. ORCA binds to RPA and modulates the association of RPA to telomeres. Finally, the loss of ORCA causes global chromatin decondensation, including at the telomeres. Our results demonstrate that ORCA acts as an inhibitor of HR by modulating RPA binding to ssDNA and inducing chromatin compaction.
Collapse
Affiliation(s)
- Rosaline Y C Hsu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Yo-Chuen Lin
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Christophe Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda MD 20892, USA
| | - Qinyu Sun
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Yating Wang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | - Vasudha Aggarwal
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jaba Mitra
- Materials Engineering Department, UIUC, Urbana, IL 61801, USA
| | - Abhijith Matur
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA
| | | | - Taekjip Ha
- Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; Cancer Center at Illinois, UIUC, Urbana, IL 61801, USA
| | - Supriya G Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601S Goodwin Avenue, Urbana, IL 61801, USA; Cancer Center at Illinois, UIUC, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
D'Souza Y, Lauzon C, Chu TW, Autexier C. Regulation of telomere length and homeostasis by telomerase enzyme processivity. J Cell Sci 2012. [PMID: 23178942 DOI: 10.1242/jcs.119297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Telomerase is a ribonucleoprotein consisting of a catalytic subunit, the telomerase reverse transcriptase, TERT, and an integrally associated RNA, TR, which contains a template for the synthesis of short repetitive G-rich DNA sequences at the ends of telomeres. Telomerase can repetitively reverse transcribe its short RNA template, acting processively to add multiple telomeric repeats onto the same DNA substrate. The contribution of enzyme processivity to telomere length regulation in human cells is not well characterized. In cancer cells, under homeostatic telomere length-maintenance conditions, telomerase acts processively, while under nonequilibrium conditions, telomerase acts distributively on the shortest telomeres. To investigate the role of increased telomerase processivity on telomere length regulation in human cells with limited lifespan that are dependent on human TERT (hTERT) for lifespan extension and immortalization, we mutated the leucine at position 866 in the reverse transcriptase C motif of hTERT to a tyrosine (L866Y), which is the amino acid found at a similar position in HIV-1 reverse transcriptase. We report that, similar to the previously reported ‘gain of function’ Tetrahymena telomerase mutant (L813Y), the human telomerase variant displays increased processivity. hTERT-L866Y, like wild-type hTERT can immortalize and extend the lifespan of limited lifespan cells. Moreover, hTERT-L866Y expressing cells display heterogenous telomere lengths, telomere elongation, multiple telomeric signals indicative of fragile sites and replicative stress, and an increase in short telomeres, which is accompanied by telomere trimming events. Our results suggest that telomere length and homeostasis in human cells may be regulated by telomerase enzyme processivity.
Collapse
Affiliation(s)
- Yasmin D'Souza
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, Québec H3A 2B2, Canada
| | | | | | | |
Collapse
|
4
|
Cell cycle-dependent role of MRN at dysfunctional telomeres: ATM signaling-dependent induction of nonhomologous end joining (NHEJ) in G1 and resection-mediated inhibition of NHEJ in G2. Mol Cell Biol 2009; 29:5552-63. [PMID: 19667071 DOI: 10.1128/mcb.00476-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Here, we address the role of the MRN (Mre11/Rad50/Nbs1) complex in the response to telomeres rendered dysfunctional by deletion of the shelterin component TRF2. Using conditional NBS1/TRF2 double-knockout MEFs, we show that MRN is required for ATM signaling in response to telomere dysfunction. This establishes that MRN is the only sensor for the ATM kinase and suggests that TRF2 might block ATM signaling by interfering with MRN binding to the telomere terminus, possibly by sequestering the telomere end in the t-loop structure. We also examined the role of the MRN/ATM pathway in nonhomologous end joining (NHEJ) of damaged telomeres. NBS1 deficiency abrogated the telomere fusions that occur in G(1), consistent with the requirement for ATM and its target 53BP1 in this setting. Interestingly, NBS1 and ATM, but not H2AX, repressed NHEJ at dysfunctional telomeres in G(2), specifically at telomeres generated by leading-strand DNA synthesis. Leading-strand telomere ends were not prone to fuse in the absence of either TRF2 or MRN/ATM, indicating redundancy in their protection. We propose that MRN represses NHEJ by promoting the generation of a 3' overhang after completion of leading-strand DNA synthesis. TRF2 may ensure overhang formation by recruiting MRN (and other nucleases) to newly generated telomere ends. The activation of the MRN/ATM pathway by the dysfunctional telomeres is proposed to induce resection that protects the leading-strand ends from NHEJ when TRF2 is absent. Thus, the role of MRN at dysfunctional telomeres is multifaceted, involving both repression of NHEJ in G(2) through end resection and induction of NHEJ in G(1) through ATM-dependent signaling.
Collapse
|
5
|
Dheekollu J, Deng Z, Wiedmer A, Weitzman MD, Lieberman PM. A role for MRE11, NBS1, and recombination junctions in replication and stable maintenance of EBV episomes. PLoS One 2007; 2:e1257. [PMID: 18040525 PMCID: PMC2094660 DOI: 10.1371/journal.pone.0001257] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 11/07/2007] [Indexed: 11/18/2022] Open
Abstract
Recombination-like structures formed at origins of DNA replication may contribute to replication fidelity, sister chromatid cohesion, chromosome segregation, and overall genome stability. The Epstein-Barr Virus (EBV) origin of plasmid replication (OriP) provides episomal genome stability through a poorly understood mechanism. We show here that recombinational repair proteins MRE11 and NBS1 are recruited to the Dyad Symmetry (DS) region of OriP in a TRF2- and cell cycle-dependent manner. Depletion of MRE11 or NBS1 by siRNA inhibits OriP replication and destabilized viral episomes. OriP plasmid maintenance was defective in MRE11 and NBS1 hypomorphic fibroblast cell lines and only integrated, non-episomal forms of EBV were detected in a lympoblastoid cell line derived from an NBS1-mutated individual. Two-dimensional agarose gel analysis of OriP DNA revealed that recombination-like structures resembling Holliday-junctions form at OriP in mid S phase. MRE11 and NBS1 association with DS coincided with replication fork pausing and origin activation, which preceded the formation of recombination structures. We propose that NBS1 and MRE11 promote replication-associated recombination junctions essential for EBV episomal maintenance and genome stability.
Collapse
Affiliation(s)
- Jayaraju Dheekollu
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Zhong Deng
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Andreas Wiedmer
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | | | - Paul M. Lieberman
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
6
|
Wu Y, Xiao S, Zhu XD. MRE11-RAD50-NBS1 and ATM function as co-mediators of TRF1 in telomere length control. Nat Struct Mol Biol 2007; 14:832-40. [PMID: 17694070 DOI: 10.1038/nsmb1286] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/03/2007] [Indexed: 01/21/2023]
Abstract
Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.
Collapse
Affiliation(s)
- Yili Wu
- Department of Biology, LSB438 McMaster University, 1280 Main St. West, Hamilton, Ontario, Canada L8S4K1
| | | | | |
Collapse
|
7
|
Ohashi N, Yaar M, Eller MS, Truzzi F, Gilchrest BA. Features that determine telomere homolog oligonucleotide-induced therapeutic DNA damage-like responses in cancer cells. J Cell Physiol 2007; 210:582-95. [PMID: 17133364 DOI: 10.1002/jcp.20848] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cancer is the second leading cause of death in the USA, with metastatic disease proving a particular management challenge. Treatment modalities for patients with metastatic disease are limited, and survival beyond 5 years is uncommon. We have reported that an 11-base DNA oligonucleotide 100% homologous to the telomere 3' overhang can induce apoptosis, senescence and/or differentiation of several types of malignant cells in vitro and in vivo, while having minimal effect on normal cells. We now report that 22 oligonucleotides, 9-20 bases in length, with or without a 5' phosphate group and with varying homology (40-100%) to the 3' overhang, inhibit growth and induce apoptosis of human cell lines derived from breast cancers, pancreatic and ovarian carcinomas, and malignant melanoma, lines that lack p53 and/or p16 and harbor a variety of other abnormalities in key regulatory signaling pathways. Cytosine (C) content adversely affected oligonucleotide efficacy, decreasing their effect on cellular apoptosis by > or =80%. These data confirm and expand our earlier work suggesting that such telomere homolog oligonucleotides (T-oligos) target an innate anti-cancer defense system in human cells and may provide an effective treatment for cancers of multiple different cellular origins and genetic profile.
Collapse
Affiliation(s)
- Norio Ohashi
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118-2394, USA
| | | | | | | | | |
Collapse
|
8
|
Dong CK, Masutomi K, Hahn WC. Telomerase: regulation, function and transformation. Crit Rev Oncol Hematol 2005; 54:85-93. [PMID: 15843091 DOI: 10.1016/j.critrevonc.2004.12.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2004] [Indexed: 01/10/2023] Open
Abstract
Work from several laboratories over the past decade indicates that the acquisition of constitutive telomerase expression is a critical step during the malignant transformation of human cells. Normal human cells transiently express low levels of telomerase, the ribonucleoprotein responsible for extending and maintaining telomeres, and exhibit telomere shortening after extended passage, whereas most cancers exhibit constitutive telomerase expression and maintain telomeres at stable lengths. These observations establish a direct connection between immortalization and stabilization of telomere structure. However, recent work suggests that telomerase also contributes to cancer development beyond its role in maintaining stable telomere lengths. In this review, we summarize recent observations that support the concept that telomerase plays multiple roles in facilitating human cell transformation.
Collapse
Affiliation(s)
- Carolyn K Dong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, 44 Binney Street, Boston, MA 02115, USA
| | | | | |
Collapse
|
9
|
Zhang Y, Lim CUK, Williams ES, Zhou J, Zhang Q, Fox MH, Bailey SM, Liber HL. NBS1 Knockdown by Small Interfering RNA Increases Ionizing Radiation Mutagenesis and Telomere Association in Human Cells. Cancer Res 2005; 65:5544-53. [PMID: 15994926 DOI: 10.1158/0008-5472.can-04-4368] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypomorphic mutations which lead to decreased function of the NBS1 gene are responsible for Nijmegen breakage syndrome, a rare autosomal recessive hereditary disorder that imparts an increased predisposition to development of malignancy. The NBS1 protein is a component of the MRE11/RAD50/NBS1 complex that plays a critical role in cellular responses to DNA damage and the maintenance of chromosomal integrity. Using small interfering RNA transfection, we have knocked down NBS1 protein levels and analyzed relevant phenotypes in two closely related human lymphoblastoid cell lines with different p53 status, namely wild-type TK6 and mutated WTK1. Both TK6 and WTK1 cells showed an increased level of ionizing radiation-induced mutation at the TK and HPRT loci, impaired phosphorylation of H2AX (gamma-H2AX), and impaired activation of the cell cycle checkpoint regulating kinase, Chk2. In TK6 cells, ionizing radiation-induced accumulation of p53/p21 and apoptosis were reduced. There was a differential response to ionizing radiation-induced cell killing between TK6 and WTK1 cells after NBS1 knockdown; TK6 cells were more resistant to killing, whereas WTK1 cells were more sensitive. NBS1 deficiency also resulted in a significant increase in telomere association that was independent of radiation exposure and p53 status. Our results provide the first experimental evidence that NBS1 deficiency in human cells leads to hypermutability and telomere associations, phenotypes that may contribute to the cancer predisposition seen among patients with this disease.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang RC, Smogorzewska A, de Lange T. Homologous recombination generates T-loop-sized deletions at human telomeres. Cell 2004; 119:355-68. [PMID: 15507207 DOI: 10.1016/j.cell.2004.10.011] [Citation(s) in RCA: 407] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Revised: 09/16/2004] [Accepted: 09/28/2004] [Indexed: 11/25/2022]
Abstract
The t-loop structure of mammalian telomeres is thought to repress nonhomologous end joining (NHEJ) at natural chromosome ends. Telomere NHEJ occurs upon loss of TRF2, a telomeric protein implicated in t-loop formation. Here we describe a mutant allele of TRF2, TRF2DeltaB, that suppressed NHEJ but induced catastrophic deletions of telomeric DNA. The deletion events were stochastic and occurred rapidly, generating dramatically shortened telomeres that were accompanied by a DNA damage response and induction of senescence. TRF2DeltaB-induced deletions depended on XRCC3, a protein implicated in Holliday junction resolution, and created t-loop-sized telomeric circles. These telomeric circles were also detected in unperturbed cells and suggested that t-loop deletion by homologous recombination (HR) might contribute to telomere attrition. Human ALT cells had abundant telomeric circles, pointing to frequent t-loop HR events that could promote rolling circle replication of telomeres in the absence of telomerase. These findings show that t-loop deletion by HR influences the integrity and dynamics of mammalian telomeres.
Collapse
Affiliation(s)
- Richard C Wang
- Laboratory for Cell Biology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
11
|
McMurray HR, McCance DJ. Degradation of p53, not telomerase activation, by E6 is required for bypass of crisis and immortalization by human papillomavirus type 16 E6/E7. J Virol 2004; 78:5698-706. [PMID: 15140967 PMCID: PMC415791 DOI: 10.1128/jvi.78.11.5698-5706.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bypass of two arrest points is essential in the process of cellular immortalization, one of the components of the transformation process. Expression of human papillomavirus type 16 E6 and E7 together can escape both senescence and crisis, processes which normally limit the proliferative capacity of primary human keratinocytes. Crisis is thought to be mediated by telomere shortening. Because E6 stimulates telomerase activity and exogenous expression of the TERT gene with E7 can immortalize keratinocytes, this function is thought to be important for E6 to cooperate with E7 to bypass crisis. However, it has also been reported that E6 dissociates increased telomerase activity from maintenance of telomere length and that a dominant-negative p53 molecule can substitute for E6 in cooperative immortalization of keratinocytes with E7. Thus, to determine which functions of E6 are required to allow bypass of crisis and immortalization of keratinocytes with E7, immortalization assays were performed using specific mutants of E6, in tandem with E7. In these experiments, every clone expressing an E6 mutant capable of degrading p53 was able to bypass crisis and immortalize, regardless of telomerase induction. All clones containing E6 mutants incapable of degrading p53 died at crisis. These results suggest that the ability of E6 to induce degradation of p53 compensates for continued telomere shortening in E6/E7 cells and demonstrate that degradation of p53 is required for immortalization by E6/E7, while increased telomerase activity is dispensable.
Collapse
Affiliation(s)
- H R McMurray
- University of Rochester, School of Medicine and Dentistry, 601 Elmwood Ave., Box 672, Rochester, NY 14642, USA
| | | |
Collapse
|
12
|
Affiliation(s)
- Titia de Lange
- Laboratory for Cell Biology and Genetics, Box 159, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA.
| |
Collapse
|
13
|
Murnane JP, Sabatier L. Chromosome rearrangements resulting from telomere dysfunction and their role in cancer. Bioessays 2004; 26:1164-74. [PMID: 15499579 DOI: 10.1002/bies.20125] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Telomeres play a vital role in protecting the ends of chromosomes and preventing chromosome fusion. The failure of cancer cells to properly maintain telomeres can be an important source of the chromosome instability involved in cancer cell progression. Telomere loss results in sister chromatid fusion and prolonged breakage/fusion/bridge (B/F/B) cycles, leading to extensive DNA amplification and large deletions. These B/F/B cycles end primarily when the unstable chromosome acquires a new telomere by translocation of the ends of other chromosomes. Many of these translocations are nonreciprocal, resulting in the loss of the telomere from the donor chromosome, providing a mechanism for transfer of instability from one chromosome to another until a chromosome acquires a telomere by a mechanism other than nonreciprocal translocation. B/F/B cycles can also result in other forms of chromosome rearrangements, including double-minute chromosomes and large duplications. Thus, the loss of a single telomere can result in instability in multiple chromosomes, and generate many of the types of rearrangements commonly associated with human cancer.
Collapse
Affiliation(s)
- John P Murnane
- Radiation Oncology Research Laboratory, University of California, San Francisco, CA 94103, USA.
| | | |
Collapse
|
14
|
Tauchi H, Matsuura S, Kobayashi J, Sakamoto S, Komatsu K. Nijmegen breakage syndrome gene, NBS1, and molecular links to factors for genome stability. Oncogene 2002; 21:8967-80. [PMID: 12483513 DOI: 10.1038/sj.onc.1206136] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA double-strand breaks represent the most potentially serious damage to a genome and hence, at least two pathways of DNA repair have evolved; namely, homologous recombination repair and non-homologous end joining. Defects in both rejoining processes result in genomic instability including chromosome rearrangements, LOH and gene mutations, which may lead to development of malignancies. Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation that induces double-strand breaks, and high frequency of malignancies. NBS1, the product of the gene underlying the disease, forms a multimeric complex with hMRE11/hRAD50 nuclease and recruits them to the vicinity of sites of DNA damage by direct binding to phosphorylated histone H2AX. The combination of the highly-conserved NBS1 forkhead associated domain and BRCA1 C-terminus domain has a crucial role for recognition of damaged sites. Thereafter, the NBS1-complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates. This process collaborates with cell-cycle checkpoints at S and G2 phase to facilitate DNA repair. NBS1 is also associated with telomere maintenance and DNA replication. Based on recent knowledge regarding NBS1, we propose here a two-step binding mechanism for damage recognition by repair proteins, and describe the molecular links to factors for genome stability.
Collapse
Affiliation(s)
- Hiroshi Tauchi
- Department of Environmental Sciences, Ibaraki University, Mito, Ibaraki 310-8512, Japan
| | | | | | | | | |
Collapse
|
15
|
Bender CF, Sikes ML, Sullivan R, Huye LE, Le Beau MM, Roth DB, Mirzoeva OK, Oltz EM, Petrini JHJ. Cancer predisposition and hematopoietic failure in Rad50(S/S) mice. Genes Dev 2002; 16:2237-51. [PMID: 12208847 PMCID: PMC186667 DOI: 10.1101/gad.1007902] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mre11, Rad50, and Nbs1 function in a protein complex that is central to the metabolism of chromosome breaks. Null mutants of each are inviable. We demonstrate here that hypomorphic Rad50 mutant mice (Rad50(S/S) mice) exhibited growth defects and cancer predisposition. Rad50(S/S) mice died with complete bone marrow depletion as a result of progressive hematopoietic stem cell failure. Similar attrition occurred in spermatogenic cells. In both contexts, attrition was substantially mitigated by p53 deficiency, whereas the tumor latency of p53(-/-) and p53(+/-) animals was reduced by Rad50(S/S). Indices of genotoxic stress and chromosomal rearrangements were evident in Rad50(S/S) cultured cells, as well as in Rad50(S/S) and p53(-/-) Rad50(S/S) lymphomas, suggesting that the Rad50(S/S) phenotype was attributable to chromosomal instability. These outcomes were not associated with overt defects in the Mre11 complex's previously established double strand break repair and cell cycle checkpoint regulation functions. The data indicate that even subtle perturbation of Mre11 complex functions results in severe genotoxic stress, and that the complex is critically important for homeostasis of proliferative tissues.
Collapse
Affiliation(s)
- Carla F Bender
- Laboratory of Genetics, University of Wisconsin Medical School, Madison, Wisconsin 53706 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Telomeres allow cells to distinguish natural chromosome ends from damaged DNA. When telomere function is disrupted, a potentially lethal DNA damage response can ensue, DNA repair activities threaten the integrity of chromosome ends, and extensive genome instability can arise. It is not clear exactly how the structure of telomere ends differs from sites of DNA damage and how telomeres protect chromosome ends from DNA repair activities. What are the defining structural features of telomeres and through which mechanisms do they ensure chromosome end protection? What is the molecular basis of the telomeric cap and how does it act to sequester the chromosome end? Here I discuss data gathered in the last few years, suggesting that the protection of human chromosome ends primarily depends on the telomeric protein TRF2 and that telomere capping involves the formation of a higher order structure, the telomeric loop or t-loop.
Collapse
Affiliation(s)
- Titia de Lange
- Laboratory for Cell Biology and Genetics, The Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
17
|
Muñoz-Jordán JL, Cross GA, de Lange T, Griffith JD. t-loops at trypanosome telomeres. EMBO J 2001; 20:579-88. [PMID: 11157764 PMCID: PMC133480 DOI: 10.1093/emboj/20.3.579] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2000] [Revised: 12/05/2000] [Accepted: 12/06/2000] [Indexed: 12/19/2022] Open
Abstract
Mammalian telomeres form large duplex loops (t-loops) that may sequester chromosome ends by invasion of the 3' TTAGGG overhang into the duplex TTAGGG repeat array. Here we document t-loops in Trypanosoma brucei, a kinetoplastid protozoan with abundant telomeres due to the presence of many minichromosomes. These telomeres contained 10-20 kb duplex TTAGGG repeats and a 3' TTAGGG overhang. Electron microscopy of psoralen/UV cross-linked DNA revealed t-loops in enriched telomeric restriction fragments and at the ends of isolated minichromosomes. In mammals, t-loops are large (up to 25 kb), often comprising most of the telomere. Despite similar telomere lengths, trypanosome t-loops were much smaller (approximately 1 kb), indicating that t-loop sizes are regulated. Coating of non-cross-linked minichromosomes with Escherichia coli single-strand binding protein (SSB) often revealed 3' overhangs at both telomeres and several cross-linked minichromosomes had t-loops at both ends. These results suggest that t-loops and their prerequisite 3' tails can be formed on the products of both leading and lagging strand synthesis. We conclude that t-loops are a conserved feature of eukaryotic telomeres.
Collapse
Affiliation(s)
- J L Muñoz-Jordán
- Laboratory of Molecular Parasitology and Laboratory of Cell Biology and Genetics, Box 159, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|