1
|
Paupelin-Vaucelle H, Boschiero C, Lazennec-Schurdevin C, Schmitt E, Mechulam Y, Marlière P, Pezo V. Cys-tRNAj as a Second Translation Initiator for Priming Proteins with Cysteine in Bacteria. ACS OMEGA 2025; 10:4548-4560. [PMID: 39959092 PMCID: PMC11822699 DOI: 10.1021/acsomega.4c08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 02/18/2025]
Abstract
We report the construction of an alternative protein priming system to recode genetic translation in Escherichia coli by designing, through trial and error, a chimeric initiator whose sequence identity points partly to elongator tRNACys and partly to initiator tRNAf Met. The elaboration of a selection based on the N-terminal cysteine imperative for the function of glucosamine-6-phosphate synthase, an essential enzyme in bacterial cell wall synthesis, was a crucial step to achieve the engineering of this Cys-tRNAj. Iterative improvement of successive versions of Cys-tRNAj was corroborated in vitro by using a biochemical luciferase assay and in vivo by selecting for translation priming of E. coli thymidylate synthase. Condensation assays using specific fluorescent reagent FITC-Gly-cyanobenzothiazole provided biochemical evidence of cysteine coding at the protein priming stage. We showed that translation can be initiated, by N-terminal incorporation of cysteine, at a codon other than UGC by expressing a tRNAj with the corresponding anticodon. The optimized tRNAj is now available to recode the priming of an arbitrary subset of proteins in the bacterial proteome with absolute control of their expression and to evolve the use of xenonucleotides and the emergence of a tXNAj in vivo.
Collapse
Affiliation(s)
- Humbeline Paupelin-Vaucelle
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claire Boschiero
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christine Lazennec-Schurdevin
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Emmanuelle Schmitt
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Yves Mechulam
- Laboratoire
de Biologie Structurale de la Cellule, BIOC, Ecole polytechnique,
CNRS, Institut Polytechnique de Paris, Bat 84, Route de Saclay, 91128 Palaiseau cedex, France
| | - Philippe Marlière
- TESSSI, 81 rue Réaumur, 75002 Paris, France
- Theraxen
SA, 296 route de Longwy, L-1940, Luxembourg, Luxembourg
| | - Valérie Pezo
- Génomique
Métabolique, Genoscope, Institut François Jacob, CEA,
CNRS, Univ Evry, Université Paris-Saclay, 2 rue Gaston Crémieux, 91057 Evry, France
| |
Collapse
|
2
|
Lahry K, Datta M, Varshney U. Genetic analysis of translation initiation in bacteria: An initiator tRNA-centric view. Mol Microbiol 2024; 122:772-788. [PMID: 38410838 DOI: 10.1111/mmi.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Translation of messenger RNA (mRNA) in bacteria occurs in the steps of initiation, elongation, termination, and ribosome recycling. The initiation step comprises multiple stages and uses a special transfer RNA (tRNA) called initiator tRNA (i-tRNA), which is first aminoacylated and then formylated using methionine and N10-formyl-tetrahydrofolate (N10-fTHF), respectively. Both methionine and N10-fTHF are produced via one-carbon metabolism, linking translation initiation with active cellular metabolism. The fidelity of i-tRNA binding to the ribosomal peptidyl-site (P-site) is attributed to the structural features in its acceptor stem, and the highly conserved three consecutive G-C base pairs (3GC pairs) in the anticodon stem. The acceptor stem region is important in formylation of the amino acid attached to i-tRNA and in its initial binding to the P-site. And, the 3GC pairs are crucial in transiting the i-tRNA through various stages of initiation. We utilized the feature of 3GC pairs to investigate the nuanced layers of scrutiny that ensure fidelity of translation initiation through i-tRNA abundance and its interactions with the components of the translation apparatus. We discuss the importance of i-tRNA in the final stages of ribosome maturation, as also the roles of the Shine-Dalgarno sequence, ribosome heterogeneity, initiation factors, ribosome recycling factor, and coevolution of the translation apparatus in orchestrating a delicate balance between the fidelity of initiation and/or its leakiness to generate proteome plasticity in cells to confer growth fitness advantages in response to the dynamic nutritional states.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Madhurima Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bengaluru, India
| |
Collapse
|
3
|
Mattingly JM, Nguyen HA, Roy B, Fredrick K, Dunham CM. Structural analysis of noncanonical translation initiation complexes. J Biol Chem 2024; 300:107743. [PMID: 39222680 PMCID: PMC11497404 DOI: 10.1016/j.jbc.2024.107743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Translation initiation is a highly regulated, multi-step process that is critical for efficient and accurate protein synthesis. In bacteria, initiation begins when mRNA, initiation factors, and a dedicated initiator fMet-tRNAfMet bind the small (30S) ribosomal subunit. Specific binding of fMet-tRNAfMet in the peptidyl (P) site is mediated by the inspection of the fMet moiety by initiation factor IF2 and of three conserved G-C base pairs in the tRNA anticodon stem by the 30S head domain. Tandem A-minor interactions form between 16S ribosomal RNA nucleotides A1339 and G1338 and tRNA base pairs G30-C40 and G29-C41, respectively. Swapping the G30-C40 pair of tRNAfMet with C-G (called tRNAfMet M1) reduces discrimination against the noncanonical start codon CUG in vitro, suggesting crosstalk between the gripping of the anticodon stem and recognition of the start codon. Here, we solved electron cryomicroscopy structures of Escherichia coli 70S initiation complexes containing the fMet-tRNAfMet M1 variant paired to the noncanonical CUG start codon, in the presence or absence of IF2 and the non-hydrolyzable GTP analog GDPCP, alongside structures of 70S initiation complexes containing this tRNAfMet variant paired to the canonical bacterial start codons AUG, GUG, and UUG. We find that the M1 mutation weakens A-minor interactions between tRNAfMet and 16S nucleotides A1339 and G1338, with IF2 strengthening the interaction of G1338 with the tRNA minor groove. These structures suggest how even slight changes to the recognition of the fMet-tRNAfMet anticodon stem by the ribosome can impact the start codon selection.
Collapse
MESH Headings
- Escherichia coli/metabolism
- Escherichia coli/genetics
- RNA, Transfer, Met/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- Peptide Chain Initiation, Translational
- Cryoelectron Microscopy
- Escherichia coli Proteins/metabolism
- Escherichia coli Proteins/chemistry
- Escherichia coli Proteins/genetics
- Anticodon/metabolism
- Anticodon/chemistry
- Codon, Initiator/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Ribosome Subunits, Small, Bacterial/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Jacob M Mattingly
- Department of Chemistry, Emory University, Atlanta, Georgia, USA; Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Ha An Nguyen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
| | - Bappaditya Roy
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Kurt Fredrick
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
4
|
Huang L, Bai D, Su X. Altered expression of transfer RNAs and their possible roles in brain white matter injury. Neuroreport 2024; 35:536-541. [PMID: 38597261 DOI: 10.1097/wnr.0000000000002036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Transfer RNAs (tRNAs) can regulate cell behavior and are associated with neurological disorders. Here, we aimed to investigate the expression levels of tRNAs in oligodendrocyte precursor cells (OPCs) and their possible roles in the regulation of brain white matter injury (WMI). Newborn Sprague-Dawley rats (postnatal day 5) were used to establish a model that mimicked neonatal brain WMI. RNA-array analysis was performed to examine the expression of tRNAs in OPCs. psRNAtarget software was used to predict target mRNAs of significantly altered tRNAs. Gene ontology (GO) and KEGG were used to analyze the pathways for target mRNAs. Eighty-nine tRNAs were changed after WMI (fold change absolute ≥1.5, P < 0.01), with 31 downregulated and 58 upregulated. Among them, three significantly changed tRNAs were identified, with two being significantly increased (chr10.trna1314-ProTGG and chr2.trna2771-ProAGG) and one significantly decreased (chr10.trna11264-GlyTCC). Further, target mRNA prediction and GO/KEGG pathway analysis indicated that the target mRNAs of these tRNAs are mainly involved in G-protein coupled receptor signaling pathways and beta-alanine metabolism, which are both related to myelin formation. In summary, the expression of tRNAs in OPCs was significantly altered after brain WMI, suggesting that tRNAs may play important roles in regulating WMI. This improves the knowledge about WMI pathophysiology and may provide novel treatment targets for WMI.
Collapse
Affiliation(s)
- Lingyi Huang
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University
| | - Ding Bai
- Department of Orthodontics, West China College of Stomatology/State Key Laboratory of Oral Diseases, Sichuan University
| | - Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Savino RJ, Kempisty B, Mozdziak P. The Potential of a Protein Model Synthesized Absent of Methionine. Molecules 2022; 27:3679. [PMID: 35744804 PMCID: PMC9230714 DOI: 10.3390/molecules27123679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/20/2022] [Accepted: 06/03/2022] [Indexed: 11/17/2022] Open
Abstract
Methionine is an amino acid long thought to be essential, but only in the case of protein synthesis initiation. In more recent years, methionine has been found to play an important role in antioxidant defense, stability, and modulation of cell and protein activity. Though these findings have expanded the previously held sentiment of methionine having a singular purpose within cells and proteins, the essential nature of methionine can still be challenged. Many of the features that give methionine its newfound functions are shared by the other sulfur-containing amino acid: cysteine. While the antioxidant, stabilizing, and cell/protein modulatory functions of cysteine have already been well established, recent findings have shown a similar hydrophobicity to methionine which suggests cysteine may be able to replace methionine in all functions outside of protein synthesis initiation with little effect on cell and protein function. Furthermore, a number of novel mechanisms for alternative initiation of protein synthesis have been identified that suggest a potential to bypass the traditional methionine-dependent initiation during times of stress. In this review, these findings are discussed with a number of examples that demonstrate a potential model for synthesizing a protein in the absence of methionine.
Collapse
Affiliation(s)
- Ronald J. Savino
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| | - Bartosz Kempisty
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
- Department of Anatomy, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Histology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Department of Veterinary Surgery, Institute of Veterinary Sciences, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Paul Mozdziak
- Prestige Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; (B.K.); (P.M.)
| |
Collapse
|
6
|
Lahry K, Gopal A, Kumar Sahu A, Nora Marbaniang C, Ahmad Shah R, Mehta A, Varshney U. An alternative role of RluD in the fidelity of translation initiation in Escherichia coli. J Mol Biol 2022; 434:167588. [DOI: 10.1016/j.jmb.2022.167588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/21/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022]
|
7
|
Cheng-Guang H, Gualerzi CO. The Ribosome as a Switchboard for Bacterial Stress Response. Front Microbiol 2021; 11:619038. [PMID: 33584583 PMCID: PMC7873864 DOI: 10.3389/fmicb.2020.619038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/03/2020] [Indexed: 12/29/2022] Open
Abstract
As free-living organisms, bacteria are subject to continuous, numerous and occasionally drastic environmental changes to which they respond with various mechanisms which enable them to adapt to the new conditions so as to survive. Here we describe three situations in which the ribosome and its functions represent the sensor or the target of the stress and play a key role in the subsequent cellular response. The three stress conditions which are described are those ensuing upon: a) zinc starvation; b) nutritional deprivation, and c) temperature downshift.
Collapse
|
8
|
Lahry K, Gopal A, Sah S, Shah RA, Varshney U. Metabolic Flux of N 10-Formyltetrahydrofolate Plays a Critical Role in the Fidelity of Translation Initiation in Escherichia coli. J Mol Biol 2020; 432:5473-5488. [PMID: 32795532 DOI: 10.1016/j.jmb.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022]
Abstract
One-carbon metabolism produces methionine and N10-formyl-tetrahydrofolate (N10-fTHF) required for aminoacylation and formylation of initiator tRNA (i-tRNA), respectively. In Escherichia coli, N10-fTHF is made from 5, 10-methylene-THF by a two-step reaction using 5,10-methylene-THF dehydrogenase/cyclohydrolase (FolD). The i-tRNAs from all domains of life possess a highly conserved sequence of three consecutive G-C base pairs (3GC pairs) in their anticodon stem. A 3GC mutant i-tRNA (wherein the 3GC pairs are mutated to those found in elongator tRNAMet) is incompetent in initiation in E. coli (even though it is efficiently aminoacylated and formylated). Here, we show that E. coli strains having mutations in FolD (G122D or C58Y or P140L) allow a plasmid encoded 3GC mutant i-tRNA to participate in initiation. In vitro, the FolD mutants are highly compromised in their dehydrogenase/cyclohydrolase activities leading to reduced production of N10-fTHF and decreased rates of i-tRNA formylation. The perturbation of one-carbon metabolism by trimethoprim (inhibitor of dihydrofolate reductase) phenocopies FolD deficiency and allows initiation with the 3GC mutant i-tRNA. This study reveals an important crosstalk between one-carbon metabolism and the fidelity of translation initiation via formylation of i-tRNA, and suggests that augmentation of the age old sulfa drugs with FolD inhibitors could be an important antibacterial strategy.
Collapse
Affiliation(s)
- Kuldeep Lahry
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Aiswarya Gopal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Shivjee Sah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Riyaz Ahmad Shah
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India.
| |
Collapse
|
9
|
Rebelo-Guiomar P, Powell CA, Van Haute L, Minczuk M. The mammalian mitochondrial epitranscriptome. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:429-446. [PMID: 30529456 PMCID: PMC6414753 DOI: 10.1016/j.bbagrm.2018.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/16/2018] [Accepted: 11/23/2018] [Indexed: 01/08/2023]
Abstract
Correct expression of the mitochondrially-encoded genes is critical for the production of the components of the oxidative phosphorylation machinery. Post-transcriptional modifications of mitochondrial transcripts have been emerging as an important regulatory feature of mitochondrial gene expression. Here we review the current knowledge on how the mammalian mitochondrial epitranscriptome participates in regulating mitochondrial homeostasis. In particular, we focus on the latest breakthroughs made towards understanding the roles of the modified nucleotides in mitochondrially-encoded ribosomal and transfer RNAs, the enzymes responsible for introducing these modifications and on recent transcriptome-wide studies reporting modifications to mitochondrial messenger RNAs. This article is part of a Special Issue entitled: mRNA modifications in gene expression control edited by Dr. Matthias Soller and Dr. Rupert Fray.
Collapse
Affiliation(s)
- Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK; Graduate Program in Areas of Basic and Applied Biology (GABBA), University of Porto, Porto, Portugal
| | | | - Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Roy B, Liu Q, Shoji S, Fredrick K. IF2 and unique features of initiator tRNA fMet help establish the translational reading frame. RNA Biol 2017; 15:604-613. [PMID: 28914580 DOI: 10.1080/15476286.2017.1379636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Translation begins at AUG, GUG, or UUG codons in bacteria. Start codon recognition occurs in the P site, which may help explain this first-position degeneracy. However, the molecular basis of start codon specificity remains unclear. In this study, we measured the codon dependence of 30S•mRNA•tRNAfMet and 30S•mRNA•tRNAMet complex formation. We found that complex stability varies over a large range with initiator tRNAfMet, following the same trend as reported previously for initiation rate in vivo (AUG > GUG, UUG > CUG, AUC, AUA > ACG). With elongator tRNAMet, the codon dependence of binding differs qualitatively, with virtually no discrimination between GUG and CUG. A unique feature of initiator tRNAfMet is a series of three G-C basepairs in the anticodon stem, which are known to be important for efficient initiation in vivo. A mutation targeting the central of these G-C basepairs causes the mRNA binding specificity pattern to change in a way reminiscent of elongator tRNAMet. Unexpectedly, for certain complexes containing fMet-tRNAfMet, we observed mispositioning of mRNA, such that codon 2 is no longer programmed in the A site. This mRNA mispositioning is exacerbated by the anticodon stem mutation and suppressed by IF2. These findings suggest that both IF2 and the unique anticodon stem of fMet-tRNAfMet help constrain mRNA positioning to set the correct reading frame during initiation.
Collapse
Affiliation(s)
- Bappaditya Roy
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Qi Liu
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Shinichiro Shoji
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| | - Kurt Fredrick
- a Department of Microbiology and Center for RNA Biology , Ohio State University , Columbus , Ohio , USA
| |
Collapse
|
11
|
Bhattacharyya S, Varshney U. Evolution of initiator tRNAs and selection of methionine as the initiating amino acid. RNA Biol 2016; 13:810-9. [PMID: 27322343 DOI: 10.1080/15476286.2016.1195943] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Transfer RNAs (tRNAs) have been important in shaping biomolecular evolution. Initiator tRNAs (tRNAi), a special class of tRNAs, carry methionine (or its derivative, formyl-methionine) to ribosomes to start an enormously energy consuming but a highly regulated process of protein synthesis. The processes of tRNAi evolution, and selection of methionine as the universal initiating amino acid remain an enigmatic problem. We constructed phylogenetic trees using the whole sequence, the acceptor-TψC arm ('minihelix'), and the anticodon-dihydrouridine arm regions of tRNAi from 158 species belonging to all 3 domains of life. All the trees distinctly assembled into 3 domains of life. Large trees, generated using data for all the tRNAs of a vast number of species, fail to reveal the major evolutionary events and identity of the probable elongator tRNA sequences that could be ancestor of tRNAi. Therefore, we constructed trees using the minihelix or the whole sequence of species specific tRNAs, and iterated our analysis on 50 eubacterial species. We identified tRNA(Pro), tRNA(Glu), or tRNA(Thr) (but surprisingly not elongator tRNA(Met)) as probable ancestors of tRNAi. We then determined the factors imposing selection of methionine as the initiating amino acid. Overall frequency of occurrence of methionine, whose metabolic cost of synthesis is the highest among all amino acids, remains almost unchanged across the 3 domains of life. Our correlation analysis shows that its high metabolic cost is independent of many physicochemical properties of the side chain. Our results indicate that selection of methionine, as the initiating amino acid was possibly a consequence of the evolution of one-carbon metabolism, which plays an important role in regulating translation initiation.
Collapse
Affiliation(s)
- Souvik Bhattacharyya
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India
| | - Umesh Varshney
- a Department of Microbiology and Cell Biology , Indian Institute of Science , Bangalore , India.,b Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur , Bangalore , India
| |
Collapse
|
12
|
Shetty S, Bhattacharyya S, Varshney U. Is the cellular initiation of translation an exclusive property of the initiator tRNAs? RNA Biol 2016; 12:675-80. [PMID: 25996503 DOI: 10.1080/15476286.2015.1043507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Translation of mRNAs is the primary function of the ribosomal machinery. Although cells allow for a certain level of translational errors/mistranslation (which may well be a strategic need), maintenance of the fidelity of translation is vital for the cellular function and fitness. The P-site bound initiator tRNA selects the start codon in an mRNA and specifies the reading frame. A direct P-site binding of the initiator tRNA is a function of its special structural features, ribosomal elements, and the initiation factors. A highly conserved feature of the 3 consecutive G:C base pairs (3 GC pairs) in the anticodon stem of the initiator tRNAs is vital in directing it to the P-site. Mutations in the 3 GC pairs diminish/abolish initiation under normal physiological conditions. Using molecular genetics approaches, we have identified conditions that allow initiation with the mutant tRNAs in Escherichia coli. During our studies, we have uncovered a novel phenomenon of in vivo initiation by elongator tRNAs. Here, we recapitulate how the cellular abundance of the initiator tRNA, and nucleoside modifications in rRNA are connected with the tRNA selection in the P-site. We then discuss our recent finding of how a conserved feature in the mRNA, the Shine-Dalgarno sequence, influences tRNA selection in the P-site.
Collapse
Affiliation(s)
- Sunil Shetty
- a Department of Microbiology and Cell Biology; Indian Institute of Science ; Bangalore , India
| | | | | |
Collapse
|
13
|
Gualerzi CO, Pon CL. Initiation of mRNA translation in bacteria: structural and dynamic aspects. Cell Mol Life Sci 2015; 72:4341-67. [PMID: 26259514 PMCID: PMC4611024 DOI: 10.1007/s00018-015-2010-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 01/12/2023]
Abstract
Initiation of mRNA translation is a major checkpoint for regulating level and fidelity of protein synthesis. Being rate limiting in protein synthesis, translation initiation also represents the target of many post-transcriptional mechanisms regulating gene expression. The process begins with the formation of an unstable 30S pre-initiation complex (30S pre-IC) containing initiation factors (IFs) IF1, IF2 and IF3, the translation initiation region of an mRNA and initiator fMet-tRNA whose codon and anticodon pair in the P-site following a first-order rearrangement of the 30S pre-IC produces a locked 30S initiation complex (30SIC); this is docked by the 50S subunit to form a 70S complex that, following several conformational changes, positional readjustments of its ligands and ejection of the IFs, becomes a 70S initiation complex productive in initiation dipeptide formation. The first EF-G-dependent translocation marks the beginning of the elongation phase of translation. Here, we review structural, mechanistic and dynamical aspects of this process.
Collapse
MESH Headings
- Bacteria/genetics
- Bacteria/metabolism
- Binding Sites/genetics
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Models, Genetic
- Nucleic Acid Conformation
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
| | - Cynthia L Pon
- Laboratory of Genetics, University of Camerino, 62032, Camerino, Italy.
| |
Collapse
|
14
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
15
|
An extended Shine-Dalgarno sequence in mRNA functionally bypasses a vital defect in initiator tRNA. Proc Natl Acad Sci U S A 2014; 111:E4224-33. [PMID: 25246575 DOI: 10.1073/pnas.1411637111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Initiator tRNAs are special in their direct binding to the ribosomal P-site due to the hallmark occurrence of the three consecutive G-C base pairs (3GC pairs) in their anticodon stems. How the 3GC pairs function in this role, has remained unsolved. We show that mutations in either the mRNA or 16S rRNA leading to extended interaction between the Shine-Dalgarno (SD) and anti-SD sequences compensate for the vital need of the 3GC pairs in tRNA(fMet) for its function in Escherichia coli. In vivo, the 3GC mutant tRNA(fMet) occurred less abundantly in 70S ribosomes but normally on 30S subunits. However, the extended SD:anti-SD interaction increased its occurrence in 70S ribosomes. We propose that the 3GC pairs play a critical role in tRNA(fMet) retention in ribosome during the conformational changes that mark the transition of 30S preinitiation complex into elongation competent 70S complex. Furthermore, treating cells with kasugamycin, decreasing ribosome recycling factor (RRF) activity or increasing initiation factor 2 (IF2) levels enhanced initiation with the 3GC mutant tRNA(fMet), suggesting that the 70S mode of initiation is less dependent on the 3GC pairs in tRNA(fMet).
Collapse
|
16
|
Rodrígues-Poveda CA, Pérez-Moreno G, Vidal AE, Urbina JA, González-Pacanowska D, Ruiz-Pérez LM. Kinetic analyses and inhibition studies reveal novel features in peptide deformylase 1 from Trypanosoma cruzi. Mol Biochem Parasitol 2012; 182:83-7. [DOI: 10.1016/j.molbiopara.2011.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 11/27/2022]
|
17
|
Qin D, Liu Q, Devaraj A, Fredrick K. Role of helix 44 of 16S rRNA in the fidelity of translation initiation. RNA (NEW YORK, N.Y.) 2012; 18:485-95. [PMID: 22279149 PMCID: PMC3285936 DOI: 10.1261/rna.031203.111] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/08/2011] [Indexed: 05/30/2023]
Abstract
The molecular mechanisms that govern translation initiation to ensure accuracy remain unclear. Here, we provide evidence that the subunit-joining step of initiation is controlled in part by a conformational change in the 1408 region of helix h44. First, chemical probing of 30S initiation complexes formed with either a cognate (AUG) or near-cognate (AUC) start codon shows that an IF1-dependent enhancement at A1408 is reduced in the presence of AUG. This change in reactivity is due to a conformational change rather than loss of IF1, because other portions of the IF1 footprint are unchanged and high concentrations of IF1 fail to diminish the reactivity difference seen at A1408. Second, mutations in h44 such as A1413C stimulate 50S docking and cause reduced reactivity at A1408. Third, streptomycin, which has been shown by Rodnina and coworkers to stimulate 50S docking by reversing the inhibitory effects of IF1, also causes reduced reactivity at A1408. Collectively, these data support a model in which IF1 alters the A1408 region of h44 in a way that makes 50S docking unfavorable, and canonical codon-anticodon pairing in the P site restores h44 to a docking-favorable conformation. We also find that, in the absence of factors, the cognate 30S•AUG•fMet-tRNA ternary complex is >1000-fold more stable than the near-cognate 30S•AUC•fMet-tRNA complex. Hence, the selectivity of ternary complex formation is inherently high, exceeding that of initiation in vivo by more than 10-fold.
Collapse
MESH Headings
- Codon, Initiator/genetics
- Codon, Initiator/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational/drug effects
- RNA, Messenger/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 16S/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Ribosome Subunits, Small, Bacterial/metabolism
- Streptomycin/pharmacology
Collapse
Affiliation(s)
- Daoming Qin
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Qi Liu
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Aishwarya Devaraj
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kurt Fredrick
- Department of Microbiology, Ohio State Biochemistry Program, and Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis. Nat Struct Mol Biol 2011; 18:1043-51. [PMID: 21857664 PMCID: PMC3167956 DOI: 10.1038/nsmb.2098] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 06/14/2011] [Indexed: 01/27/2023]
Abstract
Translocation of transfer RNAs (tRNAs) through the ribosome during protein synthesis involves large-scale structural rearrangements of the ribosome and the ribosome-bound tRNAs that are accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. The contributions that rearranging individual tRNA-ribosome interactions make to directing tRNA movements during translocation, however, remain largely unknown. To address this question, we have used single-molecule fluorescence resonance energy transfer to characterize the dynamics of ribosomal pre-translocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate with which the PRE complex rearranges into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. More interestingly, our results suggest that the conformational flexibility of the tRNA molecule itself plays a crucial role in directing the structural dynamics of the PRE complex during translocation.
Collapse
|
19
|
Fabret C, Dervyn E, Dalmais B, Guillot A, Marck C, Grosjean H, Noirot P. Life without the essential bacterial tRNAIle2-lysidine synthetase TilS: a case of tRNA gene recruitment in Bacillus subtilis. Mol Microbiol 2011; 80:1062-74. [DOI: 10.1111/j.1365-2958.2011.07630.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Lithgow T, Schneider A. Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 2010; 365:799-817. [PMID: 20124346 PMCID: PMC2817224 DOI: 10.1098/rstb.2009.0167] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
All eukaryotes require mitochondria for survival and growth. The origin of mitochondria can be traced down to a single endosymbiotic event between two probably prokaryotic organisms. Subsequent evolution has left mitochondria a collection of heterogeneous organelle variants. Most of these variants have retained their own genome and translation system. In hydrogenosomes and mitosomes, however, the entire genome was lost. All types of mitochondria import most of their proteome from the cytosol, irrespective of whether they have a genome or not. Moreover, in most eukaryotes, a variable number of tRNAs that are required for mitochondrial translation are also imported. Thus, import of macromolecules, both proteins and tRNA, is essential for mitochondrial biogenesis. Here, we review what is known about the evolutionary history of the two processes using a recently revised eukaryotic phylogeny as a framework. We discuss how the processes of protein import and tRNA import relate to each other in an evolutionary context.
Collapse
Affiliation(s)
- Trevor Lithgow
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| |
Collapse
|
21
|
Kolitz SE, Lorsch JR. Eukaryotic initiator tRNA: finely tuned and ready for action. FEBS Lett 2009; 584:396-404. [PMID: 19925799 DOI: 10.1016/j.febslet.2009.11.047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 11/11/2009] [Accepted: 11/12/2009] [Indexed: 12/17/2022]
Abstract
The initiator tRNA must serve functions distinct from those of other tRNAs, evading binding to elongation factors and instead binding directly to the ribosomal P site with the aid of initiation factors. It plays a key role in decoding the start codon, setting the frame for translation of the mRNA. Sequence elements and modifications of the initiator tRNA distinguish it from the elongator methionyl tRNA and help it to perform its varied tasks. These identity elements appear to finely tune the structure of the initiator tRNA, and growing evidence suggests that the body of the tRNA is involved in transmitting the signal that the start codon has been found to the rest of the pre-initiation complex.
Collapse
Affiliation(s)
- Sarah E Kolitz
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
22
|
Lusic H, Gustilo EM, Vendeix FAP, Kaiser R, Delaney MO, Graham WD, Moye VA, Cantara WA, Agris PF, Deiters A. Synthesis and investigation of the 5-formylcytidine modified, anticodon stem and loop of the human mitochondrial tRNAMet. Nucleic Acids Res 2008; 36:6548-57. [PMID: 18927116 PMCID: PMC2582600 DOI: 10.1093/nar/gkn703] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human mitochondrial methionine transfer RNA (hmtRNA(Met)(CAU)) has a unique post-transcriptional modification, 5-formylcytidine, at the wobble position-34 (f(5)C(34)). The role of this modification in (hmtRNA(Met)(CAU)) for the decoding of AUA, as well as AUG, in both the peptidyl- and aminoacyl-sites of the ribosome in either chain initiation or chain elongation is still unknown. We report the first synthesis and analyses of the tRNA's anticodon stem and loop domain containing the 5-formylcytidine modification. The modification contributes to the tRNA's anticodon domain structure, thermodynamic properties and its ability to bind codons AUA and AUG in translational initiation and elongation.
Collapse
Affiliation(s)
- Hrvoje Lusic
- Department of Chemistry, Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695 and Dharmacon, 2650 Crescent Drive #100, Lafayette, CO 80026, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goto Y, Murakami H, Suga H. Initiating translation with D-amino acids. RNA (NEW YORK, N.Y.) 2008; 14:1390-8. [PMID: 18515548 PMCID: PMC2441986 DOI: 10.1261/rna.1020708] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/30/2008] [Indexed: 05/19/2023]
Abstract
Here we report experimental evidence that the translation initiation apparatus accepts D-amino acids ((D)aa), as opposed to only L-methionine, as initiators. Nineteen (D)aa, as the stereoisomers to their natural L-amino acids, were charged onto initiator tRNA(fMet)(CAU) using flexizyme technology and tested for initiation in a reconstituted Escherichia coli translation system lacking methionine, i.e., the initiator was reprogrammed from methionine to (D)aa. Remarkably, all (D)aa could initiate translation while the efficiency of initiation depends upon the type of side chain. The peptide product initiated with (D)aa was generally in a nonformylated form, indicating that methionyl-tRNA formyltransferase poorly formylated the corresponding (D)aa-tRNA(fMet)(CAU). Although the inefficient formylation of (D)aa-tRNA(fMet)(CAU) resulted in modest expression of the corresponding peptide, preacetylation of (D)aa-tRNA(fMet)(CAU) dramatically increased expression level, implying that the formylation efficiency is one of the critical determinants of initiation efficiency with (D)aa. Our findings provide not only the experimental evidence that translation initiation tolerates (D)aa, but also a new means for the mRNA-directed synthesis of peptides capped with (D)aa or acyl-(D)aa at the N terminus.
Collapse
Affiliation(s)
- Yuki Goto
- Research Center of Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | | | | |
Collapse
|
24
|
Brandi L, Fabbretti A, Pon CL, Dahlberg AE, Gualerzi CO. Initiation of protein synthesis: a target for antimicrobials. Expert Opin Ther Targets 2008; 12:519-34. [PMID: 18410237 DOI: 10.1517/14728222.12.5.519] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Translation initiation is a basic and universal biological process that employs significantly different components and displays substantially different mechanisms in bacterial, archaeal and eukaryotic cells. A large amount of detailed mechanistic and structural information on the bacterial translation initiation apparatus has been uncovered in recent years. OBJECTIVE to understand which translation initiation steps could represent a novel or underexploited target for the discovery of new and specific antibacterial drugs. METHODS Brief descriptions of the properties and mechanism of action of the major antibiotics that have a documented direct inhibitory effect on bacterial translation initiation are presented. RESULTS/CONCLUSIONS Considerations and predictions concerning a future scenario for research and identification of bacterial translation initiation inhibitors are presented.
Collapse
|
25
|
Walker SE, Fredrick K. Preparation and evaluation of acylated tRNAs. Methods 2008; 44:81-6. [PMID: 18241790 DOI: 10.1016/j.ymeth.2007.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 09/17/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022] Open
Abstract
In the cell, the activity of tRNA is governed by its acylation state. Interactions with the ribosome, translation factors, and regulatory elements are strongly influenced by the acyl group, and presumably other cellular components that interact with tRNA also use the acyl group as a specificity determinant. Thus, those using biochemical approaches to study any aspect of tRNA biology should be familiar with effective methods to prepare and evaluate acylated tRNA reagents. Here, methods to prepare aminoacyl-tRNA, N-acetyl-aminoacyl-tRNA, and fMet-tRNA(fMet) and to assess their homogeneity are described. Using these methods, acylated tRNAs of high homogeneity can be reliably obtained.
Collapse
Affiliation(s)
- Sarah E Walker
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
26
|
Das G, Thotala DK, Kapoor S, Karunanithi S, Thakur SS, Singh NS, Varshney U. Role of 16S ribosomal RNA methylations in translation initiation in Escherichia coli. EMBO J 2008; 27:840-51. [PMID: 18288206 DOI: 10.1038/emboj.2008.20] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 01/18/2008] [Indexed: 11/09/2022] Open
Abstract
Translation initiation from the ribosomal P-site is the specialty of the initiator tRNAs (tRNA(fMet)). Presence of the three consecutive G-C base pairs (G29-C41, G30-C40 and G31-C39) in their anticodon stems, a highly conserved feature of the initiator tRNAs across the three kingdoms of life, has been implicated in their preferential binding to the P-site. How this feature is exploited by ribosomes has remained unclear. Using a genetic screen, we have isolated an Escherichia coli strain, carrying a G122D mutation in folD, which allows initiation with the tRNA(fMet) containing mutations in one, two or all the three G-C base pairs. The strain shows a severe deficiency of methionine and S-adenosylmethionine, and lacks nucleoside methylations in rRNA. Targeted mutations in the methyltransferase genes have revealed a connection between the rRNA modifications and the fundamental process of the initiator tRNA selection by the ribosome.
Collapse
Affiliation(s)
- Gautam Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | | | | | | | | | | |
Collapse
|
27
|
Köhrer C, RajBhandary UL. The many applications of acid urea polyacrylamide gel electrophoresis to studies of tRNAs and aminoacyl-tRNA synthetases. Methods 2008; 44:129-38. [PMID: 18241794 PMCID: PMC2277081 DOI: 10.1016/j.ymeth.2007.10.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022] Open
Abstract
Here we describe the many applications of acid urea polyacrylamide gel electrophoresis (acid urea PAGE) followed by Northern blot analysis to studies of tRNAs and aminoacyl-tRNA synthetases. Acid urea PAGE allows the electrophoretic separation of different forms of a tRNA, discriminated by changes in bulk, charge, and/or conformation that are brought about by aminoacylation, formylation, or modification of a tRNA. Among the examples described are (i) analysis of the effect of mutations in the Escherichia coli initiator tRNA on its aminoacylation and formylation; (ii) evidence of orthogonality of suppressor tRNAs in mammalian cells and yeast; (iii) analysis of aminoacylation specificity of an archaeal prolyl-tRNA synthetase that can aminoacylate archaeal tRNA(Pro) with cysteine, but does not aminoacylate archaeal tRNA(Cys) with cysteine; (iv) identification and characterization of the AUA-decoding minor tRNA(Ile) in archaea; and (v) evidence that the archaeal minor tRNA(Ile) contains a modified base in the wobble position different from lysidine found in the corresponding eubacterial tRNA.
Collapse
MESH Headings
- Amino Acyl-tRNA Synthetases/analysis
- Animals
- Archaea/metabolism
- Blotting, Northern/methods
- Electrophoresis, Polyacrylamide Gel/methods
- Humans
- Hydrogen-Ion Concentration
- Lysine/analogs & derivatives
- Lysine/biosynthesis
- Protein Engineering/methods
- Pyrimidine Nucleosides/biosynthesis
- RNA, Bacterial/isolation & purification
- RNA, Transfer/analysis
- RNA, Transfer/isolation & purification
- RNA, Transfer, Cys/biosynthesis
- RNA, Transfer, Ile/metabolism
- RNA, Transfer, Met/metabolism
- Urea
Collapse
Affiliation(s)
- Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Uttam L. RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Qin D, Abdi NM, Fredrick K. Characterization of 16S rRNA mutations that decrease the fidelity of translation initiation. RNA (NEW YORK, N.Y.) 2007; 13:2348-55. [PMID: 17942743 PMCID: PMC2080605 DOI: 10.1261/rna.715307] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In bacteria, initiation of translation is kinetically controlled by factors IF1, IF2, and IF3, which work in conjunction with the 30S subunit to ensure accurate selection of the initiator tRNA (fMet-tRNA(fMet)) and the start codon. Here, we show that mutations G1338A and A790G of 16S rRNA decrease initiation fidelity in vivo and do so in distinct ways. Mutation G1338A increases the affinity of tRNA(fMet) for the 30S subunit, suggesting that G1338 normally forms a suboptimal Type II interaction with fMet-tRNA(fMet). By stabilizing fMet-tRNA(fMet) in the preinitiation complex, G1338A may partially compensate for mismatches in the codon-anti-codon helix and thereby increase spurious initiation. Unlike G1338A, A790G decreases the affinity of IF3 for the 30S subunit. This may indirectly stabilize fMet-tRNA(fMet) in the preinitiation complex and/or promote premature docking of the 50S subunit, resulting in increased levels of spurious initiation.
Collapse
Affiliation(s)
- Daoming Qin
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
29
|
Bouzaidi-Tiali N, Giglione C, Bulliard Y, Pusnik M, Meinnel T, Schneider A. Type 3 peptide deformylases are required for oxidative phosphorylation in Trypanosoma brucei. Mol Microbiol 2007; 65:1218-28. [PMID: 17651388 DOI: 10.1111/j.1365-2958.2007.05867.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide deformylase (PDF) catalyses the removal of the formyl group from the first methionine of nascent proteins. Type 1 PDFs are found in bacteria and have orthologues in most eukaryotes. Type 2 PDFs are restricted to bacteria. Type 3 enzymes are found in Archaea and trypanosomatids and have not been studied experimentally yet. Thus, TbPDF1 and TbPDF2, the two PDF orthologues of the parasitic protozoa Trypanosoma brucei, are of type 3. An experimental analysis of these enzymes shows that both are mitochondrially localized, but that only TbPDF1 is essential for normal growth. Recombinant TbPDF1 exhibits PDF activity with a substrate specificity identical to that of bacterial enzymes. Consistent with these results, TbPDF1 is required for oxidative but not for mitochondrial substrate-level phosphorylation. Ablation of TbPDF2, in contrast, does neither affect growth on standard medium nor oxidative phosphorylation. However, a reduced level of TbPDF2 slows down growth in a medium that selects for highly efficient oxidative phosphorylation. Furthermore, combined ablation of TbPDF1 and TbPDF2 results in an earlier growth arrest than is observed by downregulation of TbPDF1 alone. These results suggest that TbPDF2 is functionally linked to TbPDF1, and that it can influence the efficiency of oxidative phosphorylation.
Collapse
Affiliation(s)
- Nabile Bouzaidi-Tiali
- Department of Biology/Cell and Developmental Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Kapp LD, Kolitz SE, Lorsch JR. Yeast initiator tRNA identity elements cooperate to influence multiple steps of translation initiation. RNA (NEW YORK, N.Y.) 2006; 12:751-64. [PMID: 16565414 PMCID: PMC1440903 DOI: 10.1261/rna.2263906] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
All three kingdoms of life employ two methionine tRNAs, one for translation initiation and the other for insertion of methionines at internal positions within growing polypeptide chains. We have used a reconstituted yeast translation initiation system to explore the interactions of the initiator tRNA with the translation initiation machinery. Our data indicate that in addition to its previously characterized role in binding of the initiator tRNA to eukaryotic initiation factor 2 (eIF2), the initiator-specific A1:U72 base pair at the top of the acceptor stem is important for the binding of the eIF2.GTP.Met-tRNA(i) ternary complex to the 40S ribosomal subunit. We have also shown that the initiator-specific G:C base pairs in the anticodon stem of the initiator tRNA are required for the strong thermodynamic coupling between binding of the ternary complex and mRNA to the ribosome. This coupling reflects interactions that occur within the complex upon recognition of the start codon, suggesting that these initiator-specific G:C pairs influence this step. The effect of these anticodon stem identity elements is influenced by bases in the T loop of the tRNA, suggesting that conformational coupling between the D-loop-T-loop substructure and the anticodon stem of the initiator tRNA may occur during AUG codon selection in the ribosomal P-site, similar to the conformational coupling that occurs in A-site tRNAs engaged in mRNA decoding during the elongation phase of protein synthesis.
Collapse
MESH Headings
- Base Sequence
- Conserved Sequence
- Eukaryotic Initiation Factor-1/isolation & purification
- Eukaryotic Initiation Factor-1/metabolism
- Eukaryotic Initiation Factor-2/isolation & purification
- Eukaryotic Initiation Factor-2/metabolism
- Eukaryotic Initiation Factor-5/isolation & purification
- Eukaryotic Initiation Factor-5/metabolism
- Eukaryotic Initiation Factors/isolation & purification
- Eukaryotic Initiation Factors/metabolism
- Guanosine Triphosphate/metabolism
- Molecular Sequence Data
- Mutation
- Nucleic Acid Conformation
- Peptide Chain Initiation, Translational
- Protein Biosynthesis
- Protein Structure, Tertiary
- Puromycin/analogs & derivatives
- Puromycin/analysis
- Puromycin/biosynthesis
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Transfer, Met/chemistry
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205-2185, USA
| | | | | |
Collapse
|
31
|
Ardell DH, Andersson SGE. TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase. Nucleic Acids Res 2006; 34:893-904. [PMID: 16473847 PMCID: PMC1363771 DOI: 10.1093/nar/gkj449] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We present TFAM, an automated, statistical method to classify the identity of tRNAs. TFAM, currently optimized for bacteria, classifies initiator tRNAs and predicts the charging identity of both typical and atypical tRNAs such as suppressors with high confidence. We show statistical evidence for extensive variation in tRNA identity determinants among bacterial genomes due to variation in overall tDNA base content. With TFAM we have detected the first case of eukaryotic-like tRNA identity rules in bacteria. An α-proteobacterial clade encompassing Rhizobiales, Caulobacter crescentus and Silicibacter pomeroyi, unlike a sister clade containing the Rickettsiales, Zymomonas mobilis and Gluconobacter oxydans, uses the eukaryotic identity element A73 instead of the highly conserved prokaryotic element C73. We confirm divergence of bacterial histidylation rules by demonstrating perfect covariation of α-proteobacterial tRNAHis acceptor stems and residues in the motif IIb tRNA-binding pocket of their histidyl-tRNA synthetases (HisRS). Phylogenomic analysis supports lateral transfer of a eukaryotic-like HisRS into the α-proteobacteria followed by in situ adaptation of the bacterial tDNAHis and identity rule divergence. Our results demonstrate that TFAM is an effective tool for the bioinformatics, comparative genomics and evolutionary study of tRNA identity.
Collapse
MESH Headings
- Alphaproteobacteria/classification
- Alphaproteobacteria/enzymology
- Alphaproteobacteria/genetics
- DNA, Bacterial/classification
- Databases, Nucleic Acid
- Evolution, Molecular
- Gene Transfer, Horizontal
- Genetic Variation
- Genome, Bacterial
- Genomics
- Histidine-tRNA Ligase/classification
- Histidine-tRNA Ligase/genetics
- Models, Statistical
- Phylogeny
- RNA, Transfer/classification
- RNA, Transfer/genetics
- RNA, Transfer, His/chemistry
- RNA, Transfer, His/classification
- RNA, Transfer, His/genetics
- RNA, Transfer, Met/classification
Collapse
Affiliation(s)
- David H Ardell
- Department of Molecular Evolution, Evolutionary Biology Center Norbyvägen 18C Uppsala University SE-752 36 Uppsala Sweden.
| | | |
Collapse
|
32
|
Wolfson A, Knight R. Occurrence of the aminoacyl-tRNA synthetases in high-molecular weight complexes correlates with the size of substrate amino acids. FEBS Lett 2005; 579:3467-72. [PMID: 15963508 DOI: 10.1016/j.febslet.2005.05.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/06/2005] [Accepted: 05/11/2005] [Indexed: 11/16/2022]
Abstract
One of the distinctive and mysterious features of mammalian aminoacyl-tRNA synthetases (AARSs) is the existence of stable high-molecular weight complexes containing 10 out of 20 AARSs. The composition and structure of these complexes are conserved among multicellular animals. No specific function associated with these structures has been found, and there is no evident rationale for a particular separation of AARSs in "complex-bound" and "free" forms. We have demonstrated a strong association between the occurrence of AARSs in the complexes and the volume of their substrate amino acids. The significance of this association is discussed in terms of the structural organization of translation in the living cell.
Collapse
Affiliation(s)
- Alexey Wolfson
- Department of Chemistry and Biochemistry, University of Colorado, UCB 215, Boulder, CO 80309, USA.
| | | |
Collapse
|
33
|
Das G, Dineshkumar TK, Thanedar S, Varshney U. Acquisition of a stable mutation in metY allows efficient initiation from an amber codon in Escherichia coli. Microbiology (Reading) 2005; 151:1741-1750. [PMID: 15941983 DOI: 10.1099/mic.0.27915-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Escherichia colistrains harbouring elongator tRNAs that insert amino acids in response to a termination codon during elongation have been generated for various applications. Additionally, it was shown that expression of an initiator tRNA containing a CUA anticodon from a multicopy plasmid inE. coliresulted in initiation from an amber codon. Even though the initiation-based system remedies toxicity-related drawbacks, its usefulness has remained limited for want of a strain with a chromosomally encoded initiator tRNA ‘suppressor’.E. coliK strains possess four initiator tRNA genes: themetZ,metWandmetVgenes, located at a single locus, encode tRNA1fMet, and a distantly locatedmetYgene encodes a variant, tRNA2fMet. In this study, a stable strain ofE. coliK-12 that affords efficient initiation from an amber initiation codon was isolated. Genetic analysis revealed that themetYgene in this strain acquired mutations to encode tRNA2fMetwith a CUA anticodon (a U35A36 mutation). The acquisition of the mutations depended on the presence of a plasmid-borne copy of the mutantmetYandrecA+host background. The mutations were observed when the plasmid-borne gene encoded tRNA2fMet(U35A36) with additional changes in the acceptor stem (G72; G72G73) but not in the anticodon stem (U29C30A31/U35A36/ψ39G40A41). The usefulness of this strain, and a possible role for multiple tRNA1fMetgenes inE. coliin safeguarding their intactness, are discussed.
Collapse
Affiliation(s)
- Gautam Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - T K Dineshkumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Swapna Thanedar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
34
|
Kapp LD, Lorsch JR. GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J Mol Biol 2004; 335:923-36. [PMID: 14698289 DOI: 10.1016/j.jmb.2003.11.025] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G-protein that functions as a central switch in the initiation of protein synthesis. In its GTP-bound state it delivers the methionyl initiator tRNA (Met-tRNA(i)) to the small ribosomal subunit and releases it upon GTP hydrolysis following the recognition of the initiation codon. We have developed a complete thermodynamic framework for the assembly of the Saccharomyces cerevisiae eIF2.GTP.Met-tRNA(i) ternary complex and have determined the effect of the conversion of GTP to GDP on eIF2's affinity for Met-tRNA(i) in solution. In its GTP-bound state the factor forms a positive interaction with the methionine moiety on Met-tRNA(i) that is disrupted when GTP is replaced with GDP, while contacts between the factor and the body of the tRNA remain intact. This positive interaction with the methionine residue on the tRNA may serve to ensure that only charged initiator tRNA enters the initiation pathway. The toggling on and off of the factor's interaction with the methionine residue is likely to play an important role in the mechanism of initiator tRNA release upon initiation codon recognition. In addition, we show that the conserved base-pair A1:U72, which is known to be a critical identity element distinguishing initiator from elongator methionyl tRNA, is required for recognition of the methionine moiety by eIF2. Our data suggest that a role of this base-pair is to orient the methionine moiety on the initiator tRNA in its recognition pocket on eIF2.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street 625 WBSB, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|