• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4698096)   Today's Articles (7956)
For: Bo S, Schmidt F, Eichhorn R, Volpe G. Measurement of anomalous diffusion using recurrent neural networks. Phys Rev E 2019;100:010102. [PMID: 31499844 DOI: 10.1103/physreve.100.010102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/07/2022]
Number Cited by Other Article(s)
1
Moores AN, Uphoff S. Robust Quantification of Live-Cell Single-Molecule Tracking Data for Fluorophores with Different Photophysical Properties. J Phys Chem B 2024;128:7291-7303. [PMID: 38859654 PMCID: PMC11301680 DOI: 10.1021/acs.jpcb.4c01454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
2
Mohamed NA, Wang Z, Liu Q, Chen P, Su X. Label-Free Light Scattering Imaging with Purified Brownian Motion Differentiates Small Extracellular Vesicles in Cell Microenvironments. Anal Chem 2024;96:6321-6328. [PMID: 38595097 DOI: 10.1021/acs.analchem.3c05889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
3
Seckler H, Metzler R, Kelty-Stephen DG, Mangalam M. Multifractal spectral features enhance classification of anomalous diffusion. Phys Rev E 2024;109:044133. [PMID: 38755826 DOI: 10.1103/physreve.109.044133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
4
Requena B, Masó-Orriols S, Bertran J, Lewenstein M, Manzo C, Muñoz-Gil G. Inferring pointwise diffusion properties of single trajectories with deep learning. Biophys J 2023;122:4360-4369. [PMID: 37853693 PMCID: PMC10698275 DOI: 10.1016/j.bpj.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]  Open
5
Zhang Y, Ge F, Lin X, Xue J, Song Y, Xie H, He Y. Extract latent features of single-particle trajectories with historical experience learning. Biophys J 2023;122:4451-4466. [PMID: 37885178 PMCID: PMC10698327 DOI: 10.1016/j.bpj.2023.10.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/30/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023]  Open
6
Waigh TA, Korabel N. Heterogeneous anomalous transport in cellular and molecular biology. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2023;86:126601. [PMID: 37863075 DOI: 10.1088/1361-6633/ad058f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 10/20/2023] [Indexed: 10/22/2023]
7
Janczura J, Magdziarz M, Metzler R. Parameter estimation of the fractional Ornstein-Uhlenbeck process based on quadratic variation. CHAOS (WOODBURY, N.Y.) 2023;33:103125. [PMID: 37832518 DOI: 10.1063/5.0158843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
8
Seckler H, Szwabiński J, Metzler R. Machine-Learning Solutions for the Analysis of Single-Particle Diffusion Trajectories. J Phys Chem Lett 2023;14:7910-7923. [PMID: 37646323 DOI: 10.1021/acs.jpclett.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
9
Prindle JR, de Cuba OIC, Gahlmann A. Single-molecule tracking to determine the abundances and stoichiometries of freely-diffusing protein complexes in living cells: Past applications and future prospects. J Chem Phys 2023;159:071002. [PMID: 37589409 PMCID: PMC10908566 DOI: 10.1063/5.0155638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/06/2023] [Indexed: 08/18/2023]  Open
10
Liang Y, Wang W, Metzler R. Anomalous diffusion, non-Gaussianity, and nonergodicity for subordinated fractional Brownian motion with a drift. Phys Rev E 2023;108:024143. [PMID: 37723819 DOI: 10.1103/physreve.108.024143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/11/2023] [Indexed: 09/20/2023]
11
Garibo-I-Orts Ò, Firbas N, Sebastiá L, Conejero JA. Gramian angular fields for leveraging pretrained computer vision models with anomalous diffusion trajectories. Phys Rev E 2023;107:034138. [PMID: 37072993 DOI: 10.1103/physreve.107.034138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023]
12
Verdier H, Laurent F, Cassé A, Vestergaard CL, Masson JB. Variational inference of fractional Brownian motion with linear computational complexity. Phys Rev E 2022;106:055311. [PMID: 36559393 DOI: 10.1103/physreve.106.055311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
13
Iakovlev IA, Deviatov AY, Lvov Y, Fakhrullina G, Fakhrullin RF, Mazurenko VV. Probing Diffusive Dynamics of Natural Tubule Nanoclays with Machine Learning. ACS NANO 2022;16:5867-5873. [PMID: 35349265 DOI: 10.1021/acsnano.1c11025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
14
Wang R, Fang F, Cui J, Zheng W. Learning self-driven collective dynamics with graph networks. Sci Rep 2022;12:500. [PMID: 35017588 PMCID: PMC8752591 DOI: 10.1038/s41598-021-04456-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023]  Open
15
Huang P, Yin Z, Tian Y, Yang J, Zhong W, Li C, Lian C, Yang L, Liu H. Anomalous diffusion in zeolites. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Muñoz-Gil G, Volpe G, Garcia-March MA, Aghion E, Argun A, Hong CB, Bland T, Bo S, Conejero JA, Firbas N, Garibo I Orts Ò, Gentili A, Huang Z, Jeon JH, Kabbech H, Kim Y, Kowalek P, Krapf D, Loch-Olszewska H, Lomholt MA, Masson JB, Meyer PG, Park S, Requena B, Smal I, Song T, Szwabiński J, Thapa S, Verdier H, Volpe G, Widera A, Lewenstein M, Metzler R, Manzo C. Objective comparison of methods to decode anomalous diffusion. Nat Commun 2021;12:6253. [PMID: 34716305 PMCID: PMC8556353 DOI: 10.1038/s41467-021-26320-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022]  Open
17
Maizón HB, Barrantes FJ. A deep learning-based approach to model anomalous diffusion of membrane proteins: the case of the nicotinic acetylcholine receptor. Brief Bioinform 2021;23:6409696. [PMID: 34695840 DOI: 10.1093/bib/bbab435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022]  Open
18
Chen Z, Geffroy L, Biteen JS. NOBIAS: Analyzing Anomalous Diffusion in Single-Molecule Tracks With Nonparametric Bayesian Inference. FRONTIERS IN BIOINFORMATICS 2021;1. [PMID: 35498544 PMCID: PMC9053523 DOI: 10.3389/fbinf.2021.742073] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]  Open
19
Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion. Proc Natl Acad Sci U S A 2021;118:2104624118. [PMID: 34321355 PMCID: PMC8346862 DOI: 10.1073/pnas.2104624118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]  Open
20
Janczura J, Kowalek P, Loch-Olszewska H, Szwabiński J, Weron A. Classification of particle trajectories in living cells: Machine learning versus statistical testing hypothesis for fractional anomalous diffusion. Phys Rev E 2021;102:032402. [PMID: 33076015 DOI: 10.1103/physreve.102.032402] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
21
Gajowczyk M, Szwabiński J. Detection of Anomalous Diffusion with Deep Residual Networks. ENTROPY 2021;23:e23060649. [PMID: 34067344 PMCID: PMC8224696 DOI: 10.3390/e23060649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 12/17/2022]
22
Levin M, Bel G, Roichman Y. Measurements and characterization of the dynamics of tracer particles in an actin network. J Chem Phys 2021;154:144901. [PMID: 33858166 DOI: 10.1063/5.0045278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]  Open
23
Jamali V, Hargus C, Ben-Moshe A, Aghazadeh A, Ha HD, Mandadapu KK, Alivisatos AP. Anomalous nanoparticle surface diffusion in LCTEM is revealed by deep learning-assisted analysis. Proc Natl Acad Sci U S A 2021;118:e2017616118. [PMID: 33658362 PMCID: PMC7958372 DOI: 10.1073/pnas.2017616118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]  Open
24
Midtvedt B, Olsén E, Eklund F, Höök F, Adiels CB, Volpe G, Midtvedt D. Fast and Accurate Nanoparticle Characterization Using Deep-Learning-Enhanced Off-Axis Holography. ACS NANO 2021;15:2240-2250. [PMID: 33399450 PMCID: PMC7905872 DOI: 10.1021/acsnano.0c06902] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/21/2020] [Indexed: 05/28/2023]
25
Zhou Z, Joshi C, Liu R, Norton MM, Lemma L, Dogic Z, Hagan MF, Fraden S, Hong P. Machine learning forecasting of active nematics. SOFT MATTER 2021;17:738-747. [PMID: 33220675 DOI: 10.1039/d0sm01316a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
26
Impact of Feature Choice on Machine Learning Classification of Fractional Anomalous Diffusion. ENTROPY 2020;22:e22121436. [PMID: 33352694 PMCID: PMC7767296 DOI: 10.3390/e22121436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/15/2022]
27
Lim SH, Theo Giorgini L, Moon W, Wettlaufer JS. Predicting critical transitions in multiscale dynamical systems using reservoir computing. CHAOS (WOODBURY, N.Y.) 2020;30:123126. [PMID: 33380032 DOI: 10.1063/5.0023764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
28
Szarek D, Sikora G, Balcerek M, Jabłoński I, Wyłomańska A. Fractional Dynamics Identification via Intelligent Unpacking of the Sample Autocovariance Function by Neural Networks. ENTROPY 2020;22:e22111322. [PMID: 33287087 PMCID: PMC7712253 DOI: 10.3390/e22111322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 12/20/2022]
29
Cichos F, Gustavsson K, Mehlig B, Volpe G. Machine learning for active matter. NAT MACH INTELL 2020. [DOI: 10.1038/s42256-020-0146-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
30
Biferale L, Bonaccorso F, Buzzicotti M, Clark Di Leoni P, Gustavsson K. Zermelo's problem: Optimal point-to-point navigation in 2D turbulent flows using reinforcement learning. CHAOS (WOODBURY, N.Y.) 2019;29:103138. [PMID: 31675828 DOI: 10.1063/1.5120370] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA