1
|
Shim SK, Lee K, Han J, Shin DH, Lee SH, Cheong S, Jang YH, Hwang CS. Thresholding Computing with Heterogeneous Integration of Memristive Kernel with Metal-Oxide-Semiconductor Capacitor for Temporal Data Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410432. [PMID: 39350463 DOI: 10.1002/adma.202410432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Indexed: 12/13/2024]
Abstract
Precise event detection within time-series data is increasingly critical, particularly in noisy environments. Reservoir computing, a robust computing method widely utilized with memristive devices, is efficient in processing temporal signals. However, it typically lacks intrinsic thresholding mechanisms essential for precise event detection. This study introduces a new approach by integrating two Pt/HfO2/TiN (PHT) memristors and one Ni/HfO2/n-Si (NHS) metal-oxide-semiconductor capacitor (2M1MOS) to implement a tunable thresholding function. The current-voltage nonlinearity of memristors combined with the capacitance-voltage nonlinearity of the capacitor forms the basis of the 2M1MOS kernel system. The proposed kernel hardware effectively records feature-specified information of the input signal onto the memristors through capacitive thresholding. In electrocardiogram analysis, the memristive response exhibited a more than ten-fold difference between arrhythmia and normal beats. In isolated spoken digit classification, the kernel achieved an error rate of only 0.7% by tuning thresholds for various time-specific conditions. The kernel is also applied to biometric authentication by extracting personal features using various threshold times, presenting more complex and multifaceted uses of heartbeats and voice data as bio-indicators. These demonstrations highlight the potential of thresholding computing in a memristive framework with heterogeneous integration.
Collapse
Affiliation(s)
- Sung Keun Shim
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Keonuk Lee
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Janguk Han
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dong Hoon Shin
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soo Hyung Lee
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunwoo Cheong
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yoon Ho Jang
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheol Seong Hwang
- Department of Materials Science and Engineering and Inter-university Semiconductor Research Center, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
2
|
Roman M, L'Heureux I, Powanwe A, Longtin A. Threshold crossing time theory for quasicycles with application to brain rhythms. Phys Rev E 2024; 110:044313. [PMID: 39562869 DOI: 10.1103/physreve.110.044313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/06/2024] [Indexed: 11/21/2024]
Abstract
The amplitude of a two-dimensional Ornstein-Uhlenbeck colored noise process evolves according to the one-dimensional Rayleigh process. This is a general model for the random amplitude fluctuations of a quasicycle, i.e., of a noise-induced oscillation around an equilibrium with complex eigenvalues in physical and biological systems. We consider the probability density of time intervals during which the amplitude is either below or above a fixed threshold. The statistics of such first return times (FRTs) are of particular interest in neuroscience to characterize brain rhythm power excursions known as bursts, as well as avalanches and other branching processes. In contrast with the density of first passage times computed using Fokker-Planck theory between a start point and a different endpoint, the density of FRTs is non-normalizable. A recently proposed technique reframes the problem using an expansion of the Fokker-Planck eigenfunctions along with a correction to the normalization. Analytical expressions for the FRT density for the Rayleigh process are shown to be in good agreement with those computed from numerical realizations over a wide range of parameters, both for trajectories above and below threshold. Special care is required to evaluate the theory above threshold due to the crowded roots of the Tricomi confluent hypergeometric function. The results provide insight into the statistics of threshold crossing times in quasicycles generally, and in the stochastic Wilson-Cowan neural equations in particular. Surprisingly, FRTs are governed by a single meta-parameter Δ given by the ratio of the noise strength and the linear stability coefficient. We find the universal property that the mean FRT is invariant to the ratio of threshold to sqrt[Δ]. The FRT density further exhibits exponential behavior over medium to long timescales, and mixtures of exponentials at shorter FRTs, thereby establishing the absence of strict power-law scaling in these threshold-crossing statistics.
Collapse
|
3
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. Sci Rep 2024; 14:19329. [PMID: 39164334 PMCID: PMC11335857 DOI: 10.1038/s41598-024-70014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2, reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2, even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Porter Neuroscience Research Center, Rm 3A-1000, 35 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Srinivasan K, Ribeiro TL, Kells P, Plenz D. The recovery of parabolic avalanches in spatially subsampled neuronal networks at criticality. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582056. [PMID: 38464324 PMCID: PMC10925085 DOI: 10.1101/2024.02.26.582056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Scaling relationships are key in characterizing complex systems at criticality. In the brain, they are evident in neuronal avalanches-scale-invariant cascades of neuronal activity quantified by power laws. Avalanches manifest at the cellular level as cascades of neuronal groups that fire action potentials simultaneously. Such spatiotemporal synchronization is vital to theories on brain function yet avalanche synchronization is often underestimated when only a fraction of neurons is observed. Here, we investigate biases from fractional sampling within a balanced network of excitatory and inhibitory neurons with all-to-all connectivity and critical branching process dynamics. We focus on how mean avalanche size scales with avalanche duration. For parabolic avalanches, this scaling is quadratic, quantified by the scaling exponent, χ = 2 , reflecting rapid spatial expansion of simultaneous neuronal firing over short durations. However, in networks sampled fractionally, χ is significantly lower. We demonstrate that applying temporal coarse-graining and increasing a minimum threshold for coincident firing restores χ = 2 , even when as few as 0.1% of neurons are sampled. This correction crucially depends on the network being critical and fails for near sub- and supercritical branching dynamics. Using cellular 2-photon imaging, our approach robustly identifies χ = 2 over a wide parameter regime in ongoing neuronal activity from frontal cortex of awake mice. In contrast, the common 'crackling noise' approach fails to determine χ under similar sampling conditions at criticality. Our findings overcome scaling bias from fractional sampling and demonstrate rapid, spatiotemporal synchronization of neuronal assemblies consistent with scale-invariant, parabolic avalanches at criticality.
Collapse
Affiliation(s)
- Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Tiago L. Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Yang J, Feng P, Wu Y. Neuronal avalanche dynamics regulated by spike-timing-dependent plasticity under different topologies and heterogeneities. Cogn Neurodyn 2024; 18:1307-1321. [PMID: 38826660 PMCID: PMC11143121 DOI: 10.1007/s11571-023-09966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 06/04/2024] Open
Abstract
Neuronal avalanches, a critical state of network self-organization, have been widely observed in electrophysiological records at different signal levels and spatial scales of the brain, which has significant influence on information transmission and processing in the brain. In this paper, the collective behavior of neuron firing is studied based on Leaky Integrate-and-Fire model and we induce spike-timing-dependent plasticity (STDP) to update the connection weight through competition between adjacent neurons in different network topologies. The result shows that STDP can facilitate the synchronization of the network and increase the probability of large-scale neuron avalanche obviously. Moreover, both the structure of STDP and network connection density can affect the generation of avalanche critical states, specifically, learning rate has positive correlation effect on the slope of power-law distribution and time constant has negative correction on it. However, when we the increase of heterogeneity in network, STDP can only has obvious promotion in synchrony under suitable level of heterogeneity. And we find that the process of long-term potentiation is sensitive to the adjustment of time constant and learning rate, unlike long-term depression, which is only sensitive to learning rate in heterogeneity network. It is suggested that presented results could facilitate our understanding on synchronization in various neural networks under the effect of STDP learning rules.
Collapse
Affiliation(s)
- Jiayi Yang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shanxi China
| | - Peihua Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shanxi China
| | - Ying Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shanxi China
| |
Collapse
|
6
|
Curic D, Singh S, Nazari M, Mohajerani MH, Davidsen J. Spatial-Temporal Analysis of Neural Desynchronization in Sleeplike States Reveals Critical Dynamics. PHYSICAL REVIEW LETTERS 2024; 132:218403. [PMID: 38856286 DOI: 10.1103/physrevlett.132.218403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 02/26/2024] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
Sleep is characterized by nonrapid eye movement sleep, originating from widespread neuronal synchrony, and rapid eye movement sleep, with neuronal desynchronization akin to waking behavior. While these were thought to be global brain states, recent research suggests otherwise. Using time-frequency analysis of mesoscopic voltage-sensitive dye recordings of mice in a urethane-anesthetized model of sleep, we find transient neural desynchronization occurring heterogeneously across the cortex within a background of synchronized neural activity, in a manner reminiscent of a critical spreading process and indicative of an "edge-of-synchronization" phase transition.
Collapse
Affiliation(s)
- Davor Curic
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Surjeet Singh
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Mojtaba Nazari
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Majid H Mohajerani
- Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
7
|
Fontenele AJ, Sooter JS, Norman VK, Gautam SH, Shew WL. Low-dimensional criticality embedded in high-dimensional awake brain dynamics. SCIENCE ADVANCES 2024; 10:eadj9303. [PMID: 38669340 PMCID: PMC11051676 DOI: 10.1126/sciadv.adj9303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Whether cortical neurons operate in a strongly or weakly correlated dynamical regime determines fundamental information processing capabilities and has fueled decades of debate. We offer a resolution of this debate; we show that two important dynamical regimes, typically considered incompatible, can coexist in the same local cortical circuit by separating them into two different subspaces. In awake mouse motor cortex, we find a low-dimensional subspace with large fluctuations consistent with criticality-a dynamical regime with moderate correlations and multi-scale information capacity and transmission. Orthogonal to this critical subspace, we find a high-dimensional subspace containing a desynchronized dynamical regime, which may optimize input discrimination. The critical subspace is apparent only at long timescales, which explains discrepancies among some previous studies. Using a computational model, we show that the emergence of a low-dimensional critical subspace at large timescales agrees with established theory of critical dynamics. Our results suggest that the cortex leverages its high dimensionality to multiplex dynamical regimes across different subspaces.
Collapse
|
8
|
Capek E, Ribeiro TL, Kells P, Srinivasan K, Miller SR, Geist E, Victor M, Vakili A, Pajevic S, Chialvo DR, Plenz D. Parabolic avalanche scaling in the synchronization of cortical cell assemblies. Nat Commun 2023; 14:2555. [PMID: 37137888 PMCID: PMC10156782 DOI: 10.1038/s41467-023-37976-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2023] [Indexed: 05/05/2023] Open
Abstract
Neurons in the cerebral cortex fire coincident action potentials during ongoing activity and in response to sensory inputs. These synchronized cell assemblies are fundamental to cortex function, yet basic dynamical aspects of their size and duration are largely unknown. Using 2-photon imaging of neurons in the superficial cortex of awake mice, we show that synchronized cell assemblies organize as scale-invariant avalanches that quadratically grow with duration. The quadratic avalanche scaling was only found for correlated neurons, required temporal coarse-graining to compensate for spatial subsampling of the imaged cortex, and suggested cortical dynamics to be critical as demonstrated in simulations of balanced E/I-networks. The corresponding time course of an inverted parabola with exponent of χ = 2 described cortical avalanches of coincident firing for up to 5 s duration over an area of 1 mm2. These parabolic avalanches maximized temporal complexity in the ongoing activity of prefrontal and somatosensory cortex and in visual responses of primary visual cortex. Our results identify a scale-invariant temporal order in the synchronization of highly diverse cortical cell assemblies in the form of parabolic avalanches.
Collapse
Affiliation(s)
- Elliott Capek
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Tiago L Ribeiro
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Patrick Kells
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Keshav Srinivasan
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Elias Geist
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Mitchell Victor
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Ali Vakili
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Dante R Chialvo
- CEMSC3, Escuela de Ciencia y Tecnologia, UNSAM, San Martín, P. Buenos Aires, Argentina
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Neto JP, Spitzner FP, Priesemann V. Sampling effects and measurement overlap can bias the inference of neuronal avalanches. PLoS Comput Biol 2022; 18:e1010678. [PMID: 36445932 PMCID: PMC9733887 DOI: 10.1371/journal.pcbi.1010678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/09/2022] [Accepted: 10/24/2022] [Indexed: 12/02/2022] Open
Abstract
To date, it is still impossible to sample the entire mammalian brain with single-neuron precision. This forces one to either use spikes (focusing on few neurons) or to use coarse-sampled activity (averaging over many neurons, e.g. LFP). Naturally, the sampling technique impacts inference about collective properties. Here, we emulate both sampling techniques on a simple spiking model to quantify how they alter observed correlations and signatures of criticality. We describe a general effect: when the inter-electrode distance is small, electrodes sample overlapping regions in space, which increases the correlation between the signals. For coarse-sampled activity, this can produce power-law distributions even for non-critical systems. In contrast, spike recordings do not suffer this particular bias and underlying dynamics can be identified. This may resolve why coarse measures and spikes have produced contradicting results in the past.
Collapse
Affiliation(s)
- Joao Pinheiro Neto
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - F. Paul Spitzner
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Viola Priesemann
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, Göttingen, Germany
- Georg-August University Göttingen, Göttingen, Germany
- * E-mail:
| |
Collapse
|
10
|
Trejo EJA, Martin DA, De Zoysa D, Bowen Z, Grigera TS, Cannas SA, Losert W, Chialvo DR. Finite-size correlation behavior near a critical point: A simple metric for monitoring the state of a neural network. Phys Rev E 2022; 106:054313. [PMID: 36559402 DOI: 10.1103/physreve.106.054313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
In this article, a correlation metric κ_{c} is proposed for the inference of the dynamical state of neuronal networks. κ_{C} is computed from the scaling of the correlation length with the size of the observation region, which shows qualitatively different behavior near and away from the critical point of a continuous phase transition. The implementation is first studied on a neuronal network model, where the results of this new metric coincide with those obtained from neuronal avalanche analysis, thus well characterizing the critical state of the network. The approach is further tested with brain optogenetic recordings in behaving mice from a publicly available database. Potential applications and limitations for its use with currently available optical imaging techniques are discussed.
Collapse
Affiliation(s)
- Eyisto J Aguilar Trejo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Daniel A Martin
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| | - Dulara De Zoysa
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Zac Bowen
- Fraunhofer USA Center Mid-Atlantic, Riverdale, Maryland 20737, USA
| | - Tomas S Grigera
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Instituto de Física de Líquidos y Sistemas Biológicos (IFLySiB-CONICET) Universidad Nacional de La Plata, 1900, La Plata, Buenos Aires, Argentina.,Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, via dei Taurini 19, 00185 Rome, Italy
| | - Sergio A Cannas
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina.,Instituto de Física Enrique Gaviola (IFEG-CONICET), Facultad de Matemática Astronomía Física y Computación, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Wolfgang Losert
- Department of Physics & Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Dante R Chialvo
- Instituto de Ciencias Físicas (ICIFI-CONICET), Center for Complex Systems and Brain Sciences (CEMSC3), Escuela de Ciencia y Tecnología, Universidad Nacional de Gral. San Martín, Campus Miguelete, 25 de Mayo y Francia, 1650, San Martín, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, 1425, Buenos Aires, Argentina
| |
Collapse
|
11
|
Tian Y, Tan Z, Hou H, Li G, Cheng A, Qiu Y, Weng K, Chen C, Sun P. Theoretical foundations of studying criticality in the brain. Netw Neurosci 2022; 6:1148-1185. [PMID: 38800464 PMCID: PMC11117095 DOI: 10.1162/netn_a_00269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/12/2022] [Indexed: 05/29/2024] Open
Abstract
Criticality is hypothesized as a physical mechanism underlying efficient transitions between cortical states and remarkable information-processing capacities in the brain. While considerable evidence generally supports this hypothesis, nonnegligible controversies persist regarding the ubiquity of criticality in neural dynamics and its role in information processing. Validity issues frequently arise during identifying potential brain criticality from empirical data. Moreover, the functional benefits implied by brain criticality are frequently misconceived or unduly generalized. These problems stem from the nontriviality and immaturity of the physical theories that analytically derive brain criticality and the statistic techniques that estimate brain criticality from empirical data. To help solve these problems, we present a systematic review and reformulate the foundations of studying brain criticality, that is, ordinary criticality (OC), quasi-criticality (qC), self-organized criticality (SOC), and self-organized quasi-criticality (SOqC), using the terminology of neuroscience. We offer accessible explanations of the physical theories and statistical techniques of brain criticality, providing step-by-step derivations to characterize neural dynamics as a physical system with avalanches. We summarize error-prone details and existing limitations in brain criticality analysis and suggest possible solutions. Moreover, we present a forward-looking perspective on how optimizing the foundations of studying brain criticality can deepen our understanding of various neuroscience questions.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
- Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China
| | - Zeren Tan
- Institute for Interdisciplinary Information Science, Tsinghua University, Beijing, China
| | - Hedong Hou
- UFR de Mathématiques, Université de Paris, Paris, France
| | - Guoqi Li
- Institute of Automation, Chinese Academy of Science, Beijing, China
- University of Chinese Academy of Science, Beijing, China
| | - Aohua Cheng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Yike Qiu
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Kangyu Weng
- Tsien Excellence in Engineering Program, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Chun Chen
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| | - Pei Sun
- Department of Psychology & Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Beggs JM. Addressing skepticism of the critical brain hypothesis. Front Comput Neurosci 2022; 16:703865. [PMID: 36185712 PMCID: PMC9520604 DOI: 10.3389/fncom.2022.703865] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The hypothesis that living neural networks operate near a critical phase transition point has received substantial discussion. This “criticality hypothesis” is potentially important because experiments and theory show that optimal information processing and health are associated with operating near the critical point. Despite the promise of this idea, there have been several objections to it. While earlier objections have been addressed already, the more recent critiques of Touboul and Destexhe have not yet been fully met. The purpose of this paper is to describe their objections and offer responses. Their first objection is that the well-known Brunel model for cortical networks does not display a peak in mutual information near its phase transition, in apparent contradiction to the criticality hypothesis. In response I show that it does have such a peak near the phase transition point, provided it is not strongly driven by random inputs. Their second objection is that even simple models like a coin flip can satisfy multiple criteria of criticality. This suggests that the emergent criticality claimed to exist in cortical networks is just the consequence of a random walk put through a threshold. In response I show that while such processes can produce many signatures criticality, these signatures (1) do not emerge from collective interactions, (2) do not support information processing, and (3) do not have long-range temporal correlations. Because experiments show these three features are consistently present in living neural networks, such random walk models are inadequate. Nevertheless, I conclude that these objections have been valuable for refining research questions and should always be welcomed as a part of the scientific process.
Collapse
Affiliation(s)
- John M. Beggs
- Department of Physics, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- *Correspondence: John M. Beggs,
| |
Collapse
|
13
|
Savolainen J, Laurson L, Alava M. Effect of thresholding on avalanches and their clustering for interfaces with long-range elasticity. Phys Rev E 2022; 105:054152. [PMID: 35706318 DOI: 10.1103/physreve.105.054152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Avalanches are often defined as signals higher than some detection level in bursty systems. The choice of the detection threshold affects the number of avalanches, but it can also affect their temporal correlations. We simulated the depinning of a long-range elastic interface and applied different thresholds including a zero one on the data to see how the sizes and durations of events change and how this affects temporal avalanche clustering. Higher thresholds result in steeper size and duration distributions and cause the avalanches to cluster temporally. Using methods from seismology, the frequency of the events in the clusters was found to decrease as a power-law of time, and the size of an event in a cluster was found to help predict how many events it is followed by. The results bring closer theoretical studies of this class of models to real experiments, but also highlight how different phenomena can be obtained from the same set of data.
Collapse
Affiliation(s)
- Juha Savolainen
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33101 Tampere, Finland
| | - Mikko Alava
- Department of Applied Physics, Aalto University, PO Box 11000, 00076 Aalto, Finland
- NOMATEN Centre of Excellence, National Centre for Nuclear Research, A. Soltana 7, 05-400 Otwock-Swierk, Poland
| |
Collapse
|
14
|
Juanico DEO. Neuronal Population Transitions Across a Quiescent-to-Active Frontier and Bifurcation. Front Physiol 2022; 13:840546. [PMID: 35222095 PMCID: PMC8867020 DOI: 10.3389/fphys.2022.840546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanistic understanding of why neuronal population activity hovers on criticality remains unresolved despite the availability of experimental results. Without a coherent mathematical framework, the presence of power-law scaling is not straightforward to reconcile with findings implying epileptiform activity. Although multiple pictures have been proposed to relate the power-law scaling of avalanche statistics to phase transitions, the existence of a phase boundary in parameter space is until now an assumption. Herein, a framework based on differential inclusions, which departs from approaches constructed from differential equations, is shown to offer an adequate consolidation of evidences apparently connected to criticality and those linked to hyperexcitability. Through this framework, the phase boundary is elucidated in a parameter space spanned by variables representing levels of excitation and inhibition in a neuronal network. The interpretation of neuronal populations based on this approach offers insights on the role of pharmacological and endocrinal signaling in the homeostatic regulation of neuronal population activity.
Collapse
Affiliation(s)
- Drandreb Earl O. Juanico
- DataSc/ense TechnoCoRe, Technological Institute of the Philippines, Quezon City, Philippines
- NICER Program, Center for Advanced Batteries, Quezon City, Philippines
| |
Collapse
|
15
|
Critical behaviour of the stochastic Wilson-Cowan model. PLoS Comput Biol 2021; 17:e1008884. [PMID: 34460811 PMCID: PMC8432901 DOI: 10.1371/journal.pcbi.1008884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/10/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022] Open
Abstract
Spontaneous brain activity is characterized by bursts and avalanche-like dynamics, with scale-free features typical of critical behaviour. The stochastic version of the celebrated Wilson-Cowan model has been widely studied as a system of spiking neurons reproducing non-trivial features of the neural activity, from avalanche dynamics to oscillatory behaviours. However, to what extent such phenomena are related to the presence of a genuine critical point remains elusive. Here we address this central issue, providing analytical results in the linear approximation and extensive numerical analysis. In particular, we present results supporting the existence of a bona fide critical point, where a second-order-like phase transition occurs, characterized by scale-free avalanche dynamics, scaling with the system size and a diverging relaxation time-scale. Moreover, our study shows that the observed critical behaviour falls within the universality class of the mean-field branching process, where the exponents of the avalanche size and duration distributions are, respectively, 3/2 and 2. We also provide an accurate analysis of the system behaviour as a function of the total number of neurons, focusing on the time correlation functions of the firing rate in a wide range of the parameter space.
Collapse
|
16
|
Mariani B, Nicoletti G, Bisio M, Maschietto M, Oboe R, Leparulo A, Suweis S, Vassanelli S. Neuronal Avalanches Across the Rat Somatosensory Barrel Cortex and the Effect of Single Whisker Stimulation. Front Syst Neurosci 2021; 15:709677. [PMID: 34526881 PMCID: PMC8435673 DOI: 10.3389/fnsys.2021.709677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Since its first experimental signatures, the so called "critical brain hypothesis" has been extensively studied. Yet, its actual foundations remain elusive. According to a widely accepted teleological reasoning, the brain would be poised to a critical state to optimize the mapping of the noisy and ever changing real-world inputs, thus suggesting that primary sensory cortical areas should be critical. We investigated whether a single barrel column of the somatosensory cortex of the anesthetized rat displays a critical behavior. Neuronal avalanches were recorded across all cortical layers in terms of both multi-unit activities and population local field potentials, and their behavior during spontaneous activity compared to the one evoked by a controlled single whisker deflection. By applying a maximum likelihood statistical method based on timeseries undersampling to fit the avalanches distributions, we show that neuronal avalanches are power law distributed for both multi-unit activities and local field potentials during spontaneous activity, with exponents that are spread along a scaling line. Instead, after the tactile stimulus, activity switches to a transient across-layers synchronization mode that appears to dominate the cortical representation of the single sensory input.
Collapse
Affiliation(s)
- Benedetta Mariani
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Giorgio Nicoletti
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Marta Maschietto
- Department of Biomedical Science, University of Padova, Padova, Italy
| | - Roberto Oboe
- Department of Management and Engineering, University of Padova, Padova, Italy
| | | | - Samir Suweis
- Laboratory of Interdisciplinary Physics, Department of Physics and Astronomy, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Stefano Vassanelli
- Padova Neuroscience Center, University of Padova, Padova, Italy
- Department of Biomedical Science, University of Padova, Padova, Italy
| |
Collapse
|
17
|
Miller SR, Yu S, Pajevic S, Plenz D. Long-term stability of avalanche scaling and integrative network organization in prefrontal and premotor cortex. Netw Neurosci 2021; 5:505-526. [PMID: 34189375 PMCID: PMC8233112 DOI: 10.1162/netn_a_00188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
Ongoing neuronal activity in the brain establishes functional networks that reflect normal and pathological brain function. Most estimates of these functional networks suffer from low spatiotemporal resolution and indirect measures of neuronal population activity, limiting the accuracy and reliability in their reconstruction over time. Here, we studied the stability of neuronal avalanche dynamics and corresponding reconstructed functional networks in the adult brain. Using chronically implanted high-density microelectrode arrays, the local field potential (LFP) of resting-state activity was recorded in prefrontal and premotor cortex of awake nonhuman primates. Avalanche dynamics revealed stable scaling exhibiting an inverted parabolic profile and collapse exponent of 2 in line with a critical branching process over many days and weeks. Functional networks were based on a Bayesian-derived estimator and demonstrated stable integrative properties characterized by nontrivial high neighborhood overlap between strongly connected nodes and robustness to weak-link pruning. Entropy-based mixing analysis revealed significant changes in strong link weights over weeks. The long-term stability in avalanche scaling and integrative network organization in the face of individual link weight changes should support the development of noninvasive biomarkers to characterize normal and abnormal brain states in the adult brain. The brain is spontaneously active even in the absence of specific sensations or movements. This ongoing activity arises from the interactions among hundreds of thousands of neurons, which has been captured by a variety of distinct functional networks predictive of healthy and pathological brain functions. The global dynamical states and overarching network principles that underlie such ongoing brain activity are not well understood. Here we identify avalanche dynamics and “friendship” networks as two major features of ongoing activity in the frontal cortex of nonhuman primates. We demonstrate their stability over weeks in the face of local network changes. Deviation from avalanche dynamics and “friendship” organization might provide robust biomarkers to identify normal and pathological brain states.
Collapse
Affiliation(s)
- Stephanie R Miller
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Shan Yu
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| | - Sinisa Pajevic
- Section on Quantitative Imaging and Tissue Sciences, National Institute of Child Health and Development, NIH, Bethesda, MD, USA
| | - Dietmar Plenz
- Section on Critical Brain Dynamics, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
18
|
Gu L, Wu R. Robust cortical criticality and diverse dynamics resulting from functional specification. Phys Rev E 2021; 103:042407. [PMID: 34005915 DOI: 10.1103/physreve.103.042407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/23/2021] [Indexed: 11/07/2022]
Abstract
Despite the recognition of the layered structure and evident criticality in the cortex, how the specification of input, output, and computational layers affects the self-organized criticality has not been much explored. By constructing heterogeneous structures with a well-accepted model of leaky neurons, we find that the specification can lead to robust criticality rather insensitive to the strength of external stimuli. This naturally unifies the adaptation to strong inputs without extra synaptic plasticity mechanisms. Low degree of recurrence constitutes an alternative explanation to subcriticality other than the high-frequency inputs. Unlike fully recurrent networks where external stimuli always render subcriticality, the dynamics of networks with sufficient feedforward connections can be driven to criticality and supercriticality. These findings indicate that functional and structural specification and their interplay with external stimuli are of crucial importance for the network dynamics. The robust criticality puts forward networks of the leaky neurons as promising platforms for realizing artificial neural networks that work in the vicinity of critical points.
Collapse
Affiliation(s)
- Lei Gu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
19
|
Notarmuzi D, Castellano C, Flammini A, Mazzilli D, Radicchi F. Percolation theory of self-exciting temporal processes. Phys Rev E 2021; 103:L020302. [PMID: 33736024 DOI: 10.1103/physreve.103.l020302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/05/2021] [Indexed: 11/07/2022]
Abstract
We investigate how the properties of inhomogeneous patterns of activity, appearing in many natural and social phenomena, depend on the temporal resolution used to define individual bursts of activity. To this end, we consider time series of microscopic events produced by a self-exciting Hawkes process, and leverage a percolation framework to study the formation of macroscopic bursts of activity as a function of the resolution parameter. We find that the very same process may result in different distributions of avalanche size and duration, which are understood in terms of the competition between the 1D percolation and the branching process universality class. Pure regimes for the individual classes are observed at specific values of the resolution parameter corresponding to the critical points of the percolation diagram. A regime of crossover characterized by a mixture of the two universal behaviors is observed in a wide region of the diagram. The hybrid scaling appears to be a likely outcome for an analysis of the time series based on a reasonably chosen, but not precisely adjusted, value of the resolution parameter.
Collapse
Affiliation(s)
- Daniele Notarmuzi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Claudio Castellano
- Istituto dei Sistemi Complessi (ISC-CNR), Via dei Taurini 19, I-00185 Rome, Italy
| | - Alessandro Flammini
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Dario Mazzilli
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| | - Filippo Radicchi
- Center for Complex Networks and Systems Research, Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47408, USA
| |
Collapse
|
20
|
Phillip JM, Zamponi N, Phillip MP, Daya J, McGovern S, Williams W, Tschudi K, Jayatilaka H, Wu PH, Walston J, Wirtz D. Fractional re-distribution among cell motility states during ageing. Commun Biol 2021; 4:81. [PMID: 33469145 PMCID: PMC7815872 DOI: 10.1038/s42003-020-01605-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/15/2020] [Indexed: 11/11/2022] Open
Abstract
Ageing in humans is associated with the decreased capacity to regulate cell physiology. Cellular properties, such as cell morphology and mechanics, encode ageing information, and can therefore be used as robust biomarkers of ageing. Using a panel of dermal fibroblasts derived from healthy donors spanning a wide age range, we observe an age-associated decrease in cell motility. By taking advantage of the single-cell nature of our motility data, we classified cells based on spatial and activity patterns to define age-dependent motility states. We show that the age-dependent decrease in cell motility is not due to the reduced motility of all cells, but results from the fractional re-distribution among motility states. These findings highlight an important feature of ageing cells characterized by a reduction of cellular heterogeneity in older adults relative to post-adolescent/adults. Furthermore, these results point to a mechanistic framework of ageing, with potential applications in deciphering emergent ageing phenotypes and biomarker development.
Collapse
Affiliation(s)
- Jude M Phillip
- Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Nahuel Zamponi
- Department of Medicine, Hematology and Oncology Division, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Madonna P Phillip
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jena Daya
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Shaun McGovern
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Wadsworth Williams
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katherine Tschudi
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jeremy Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA
- Departments of Oncology and Pathology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|