1
|
Sarkar M, Hossain MT, Ewoldt RH, Laukaitis C, Johnson AW. Stiffening of a fibrous matrix after recovery of contracted inclusions. SOFT MATTER 2025; 21:3314-3330. [PMID: 40183246 DOI: 10.1039/d5sm00087d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Disordered fibrous matrices in living tissues are subjected to forces exerted by cells that contract to pull on matrix fibers. To maintain homeostasis or facilitate disease progression, contracted cells often push on matrix fibers as they recover their original sizes. Recent advances have shown that matrix geometry encodes loading history into mechanical memory independently of plasticity mechanisms such as inter-fiber cohesion or fiber yielding. Conceptualizing cells as inclusions undergoing sequential contraction and recovery, prior work documented matrix remodeling surrounding a solitary recovered inclusion. However, because the remodeling induced by the contraction of multiple inclusions differs from that caused by a single contracted inclusion, we investigate how matrix remodeling occurs when multiple contracted inclusions recover simultaneously, a scenario that more accurately reflects real tissues containing many closely spaced cells. Using mechanics-based computational models of fibrous matrices embedded with clusters of inclusions, we studied the mechanical remodeling of the matrix during the simultaneous recovery of inclusions after contraction. The results revealed permanent mechanical remodeling of the matrix within the cluster, with stiffening observed in areas of the matrix enclosed by closely spaced inclusions. This stiffening was driven by microstructural changes in matrix geometry and was corroborated in experiments, where collagen matrices permanently remodeled by the contraction and recovery of closely spaced embedded cells also exhibited stiffening. By enriching the understanding of memory formation in fibrous matrices, this study opens new possibilities for estimating cell forces on matrix substrates and refining metamaterial design strategies.
Collapse
Affiliation(s)
- Mainak Sarkar
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
| | - Mohammad Tanver Hossain
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
| | - Randy H Ewoldt
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, USA
| | - Christina Laukaitis
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Clinical Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- Carle Health, Urbana, Illinois, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, USA.
- Mechanical Science and Engineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, USA
- Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, USA
- CZ Biohub Chicago, LLC, Chicago, Illinois, USA
| |
Collapse
|
2
|
Merson J, Parvez N, Picu RC. Probing soft fibrous materials by indentation. Acta Biomater 2023; 163:25-34. [PMID: 35381401 PMCID: PMC9526757 DOI: 10.1016/j.actbio.2022.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/27/2022]
Abstract
Indentation is often used to measure the stiffness of soft materials whose main structural component is a network of filaments, such as the cellular cytoskeleton, connective tissue, gels, and the extracellular matrix. For elastic materials, the typical procedure requires fitting the experimental force-displacement curve with the Hertz model, which predicts that f=kδ1.5 and k is proportional to the reduced modulus of the indented material, E/(1-ν2). Here we show using explicit models of fiber networks that the Hertz model applies to indentation in network materials provided the indenter radius is larger than approximately 12lc, where lc is the mean segment length of the network. Using smaller indenters leads to a relation between force and indentation displacement of the form f=kδq, where q is observed to increase with decreasing indenter radius. Using the Hertz model to interpret results of indentations in network materials using small indenters leads to an inferred modulus smaller than the real modulus of the material. The origin of this departure from the classical Hertz model is investigated. A compacted, stiff network region develops under the indenter, effectively increasing the indenter size and modifying its shape. This modification is marginal when large indenters are used. However, when the indenter radius is small, the effect of the compacted layer is pronounced as it changes the indenter profile from spherical towards conical. This entails an increase of exponent q above the value of 1.5 corresponding to spherical indenters. STATEMENT OF SIGNIFICANCE: The article presents a study of indentation in network biomaterials and demonstrates a size effect which precludes the use of the Hertz model to infer the elastic constants of the material. The size effect occurs once the indenter radius is smaller than approximately 12 times the mean segment length of the network. This result provides guidelines for the selection of indentation conditions that guarantee the applicability of the Hertz model. At the same time, the finding may be used to infer the mean segment length of the network based on indentations with indenters of various sizes. Hence, the method can be used to evaluate this structural parameter which is not easily accessible in experiments.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - N Parvez
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States.
| |
Collapse
|
3
|
Lerner E, Bouchbinder E. Anomalous linear elasticity of disordered networks. SOFT MATTER 2023; 19:1076-1080. [PMID: 36661121 PMCID: PMC9906635 DOI: 10.1039/d2sm01253g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Continuum elasticity is a powerful tool applicable in a broad range of physical systems and phenomena. Yet, understanding how and on what scales material disorder may lead to the breakdown of continuum elasticity is not fully understood. We show, based on recent theoretical developments and extensive numerical computations, that disordered elastic networks near a critical rigidity transition, such as strain-stiffened fibrous biopolymer networks that are abundant in living systems, reveal an anomalous long-range linear elastic response below a correlation length. This emergent anomalous elasticity, which is non-affine in nature, is shown to feature a qualitatively different multipole expansion structure compared to ordinary continuum elasticity, and a slower spatial decay of perturbations. The potential degree of universality of these results, their implications (e.g. for cell-cell communication through biological extracellular matrices) and open questions are briefly discussed.
Collapse
Affiliation(s)
- Edan Lerner
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands.
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
4
|
Merson J, Picu RC. Random Fiber Network Loaded by a Point Force. JOURNAL OF APPLIED MECHANICS 2022; 89:044501. [PMID: 35783110 PMCID: PMC9247584 DOI: 10.1115/1.4053329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This article presents the displacement field produced by a point force acting on an athermal random fiber network (the Green function for the network). The problem is defined within the limits of linear elasticity, and the field is obtained numerically for nonaffine networks characterized by various parameter sets. The classical Green function solution applies at distances from the point force larger than a threshold which is independent of the network parameters in the range studied. At smaller distances, the nonlocal nature of fiber interactions modifies the solution.
Collapse
Affiliation(s)
- J Merson
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - R C Picu
- Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180
| |
Collapse
|
5
|
Grill MJ, Kernes J, Slepukhin VM, Wall WA, Levine AJ. Directed force propagation in semiflexible networks. SOFT MATTER 2021; 17:10223-10241. [PMID: 33367438 DOI: 10.1039/d0sm01177k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We consider the propagation of tension along specific filaments of a semiflexible filament network in response to the application of a point force using a combination of numerical simulations and analytic theory. We find the distribution of force within the network is highly heterogeneous, with a small number of fibers supporting a significant fraction of the applied load over distances of multiple mesh sizes surrounding the point of force application. We suggest that these structures may be thought of as tensile force chains, whose structure we explore via simulation. We develop self-consistent calculations of the point-force response function and introduce a transfer matrix approach to explore the decay of tension (into bending) energy and the branching of tensile force chains in the network.
Collapse
Affiliation(s)
- Maximilian J Grill
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Jonathan Kernes
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Valentin M Slepukhin
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, 85748 Garching, Germany
| | - Alex J Levine
- Department of Physics & Astronomy, University of California, Los Angeles, 90095, USA.
- Department of Chemistry & Biochemistry, University of California, Los Angeles, 90095, USA
- Department of Computational Medicine, University of California, Los Angeles, 90095, USA
| |
Collapse
|
6
|
Das D, Acharya P, Ramola K. Long-range correlations in pinned athermal networks. Phys Rev E 2021; 104:014503. [PMID: 34412209 DOI: 10.1103/physreve.104.014503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We derive exact results for displacement fields that develop as a response to external pinning forces in two-dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Green's function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as 1/r at large distances r away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a nontrivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.
Collapse
Affiliation(s)
- Debankur Das
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Pappu Acharya
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| | - Kabir Ramola
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500107, India
| |
Collapse
|
7
|
Kernes J, Levine AJ. Dynamics of undulatory fluctuations of semiflexible filaments in a network. Phys Rev E 2020; 102:062406. [PMID: 33465981 DOI: 10.1103/physreve.102.062406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 11/07/2022]
Abstract
We study the dynamics of a single semiflexible filament coupled to a Hookean spring at its boundary. The spring produces a fluctuating tensile force on the filament, the value of which depends on the filament's instantaneous end-to-end length. The spring thereby introduces a nonlinearity, which mixes the undulatory normal modes of the filament and changes their dynamics. We study these dynamics using the Martin-Siggia-Rose-Janssen-De Dominicis formalism, and compute the time-dependent correlation functions of transverse undulations and of the filament's end-to-end distance. The relaxational dynamics of the modes below a characteristic wavelength sqrt[κ/τ_{R}], set by the filament's bending modulus κ and spring-renormalized tension τ_{R}, are changed by the boundary spring. This occurs near the crossover frequency between tension- and bending-dominated modes of the system. The boundary spring can be used to represent the linear elastic compliance of the rest of the filament network to which the filament is cross linked. As a result, we predict that this nonlinear effect will be observable in the dynamical correlations of constituent filaments of networks and in the networks' collective shear response. The system's dynamic shear modulus is predicted to exhibit the well-known crossover with increasing frequency from ω^{1/2} to ω^{3/4}, but the inclusion of the network's compliance in the analysis of the individual filament dynamics shifts this transition to a higher frequency.
Collapse
Affiliation(s)
- Jonathan Kernes
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - Alex J Levine
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA.,Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.,Department of Computational Medicine, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
8
|
Beroz F, Zhou D, Mao X, Lubensky DK. Physical limits to sensing material properties. Nat Commun 2020; 11:5170. [PMID: 33056989 PMCID: PMC7560877 DOI: 10.1038/s41467-020-18995-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/25/2020] [Indexed: 12/03/2022] Open
Abstract
All materials respond heterogeneously at small scales, which limits what a sensor can learn. Although previous studies have characterized measurement noise arising from thermal fluctuations, the limits imposed by structural heterogeneity have remained unclear. In this paper, we find that the least fractional uncertainty with which a sensor can determine a material constant λ0 of an elastic medium is approximately [Formula: see text] for a ≫ d ≫ ξ, [Formula: see text], and D > 1, where a is the size of the sensor, d is its spatial resolution, ξ is the correlation length of fluctuations in λ0, Δλ is the local variability of λ0, and D is the dimension of the medium. Our results reveal how one can construct devices capable of sensing near these limits, e.g. for medical diagnostics. We use our theoretical framework to estimate the limits of mechanosensing in a biopolymer network, a sensory process involved in cellular behavior, medical diagnostics, and material fabrication.
Collapse
Affiliation(s)
- Farzan Beroz
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Di Zhou
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoming Mao
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
9
|
Zheng Y, Nan H, Liu Y, Fan Q, Wang X, Liu R, Liu L, Ye F, Sun B, Jiao Y. Modeling cell migration regulated by cell extracellular-matrix micromechanical coupling. Phys Rev E 2020; 100:043303. [PMID: 31770879 DOI: 10.1103/physreve.100.043303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Indexed: 01/24/2023]
Abstract
Cell migration in fibrous extracellular matrix (ECM) is crucial to many physiological and pathological processes such as tissue regeneration, immune response, and cancer progression. During migration, individual cells can generate active pulling forces via actomyosin contraction, which are transmitted to the ECM fibers through focal adhesion complexes, remodel the ECM, and eventually propagate to and can be sensed by other cells in the system. The microstructure and physical properties of the ECM can also significantly influence cell migration, e.g., via durotaxis and contact guidance. Here, we develop a computational model for two-dimensional cell migration regulated by cell-ECM micromechanical coupling. Our model explicitly takes into account a variety of cellular-level processes, including focal adhesion formation and disassembly, active traction force generation and cell locomotion due to actin filament contraction, transmission and propagation of tensile forces in the ECM, as well as the resulting ECM remodeling. We validate our model by accurately reproducing single-cell dynamics of MCF-10A breast cancer cells migrating on collagen gels and show that the durotaxis and contact guidance effects naturally arise as a consequence of the cell-ECM micromechanical interactions considered in the model. Moreover, our model predicts strongly correlated multicellular migration dynamics, which are resulted from the ECM-mediated mechanical coupling among the migrating cell and are subsequently verified in in vitro experiments using MCF-10A cells. Our computational model provides a robust tool to investigate emergent collective dynamics of multicellular systems in complex in vivo microenvironment and can be utilized to design in vitro microenvironments to guide collective behaviors and self-organization of cells.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yanping Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Qihui Fan
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochen Wang
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matte Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yang Jiao
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA.,Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
10
|
Nan H, Zheng Y, Lin YH, Chen S, Eddy CZ, Tian J, Xu W, Sun B, Jiao Y. Absorbing-active transition in a multi-cellular system regulated by a dynamic force network. SOFT MATTER 2019; 15:6938-6945. [PMID: 31432887 DOI: 10.1039/c9sm01244c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Collective cell migration in 3D extracellular matrix (ECM) is crucial to many physiological and pathological processes. Migrating cells can generate active pulling forces via actin filament contraction, which are transmitted to the ECM fibers and lead to a dynamically evolving force network in the system. Here, we elucidate the role of this force network in regulating collective cell behaviors using a minimal active-particle-on-network (APN) model, in which active particles can pull the fibers and hop between neighboring nodes of the network following local durotaxis. Our model reveals a dynamic transition as the particle number density approaches a critical value, from an "absorbing" state containing isolated stationary small particle clusters, to an "active" state containing a single large cluster undergoing constant dynamic reorganization. This reorganization is dominated by a subset of highly dynamic "radical" particles in the cluster, whose number also exhibits a transition at the same critical density. The transition is underlaid by the percolation of "influence spheres" due to the particle pulling forces. Our results suggest a robust mechanism based on ECM-mediated mechanical coupling for collective cell behaviors in 3D ECM.
Collapse
Affiliation(s)
- Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA.
| | - Yu Zheng
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Yiheng H Lin
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Shenzhen Middle School, Shenzhen 518001, P. R. China
| | - Shaohua Chen
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Bus 2450, Leuven, Belgium
| | - Christopher Z Eddy
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Jianxiang Tian
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Qufu Normal University, Qufu 273165, P. R. China
| | - Wenxiang Xu
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and College of Mechanics and Materials, Hohai University, Nanjing 211100, P. R. China.
| | - Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA.
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, AZ 85287, USA. and Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
11
|
Burkel B, Proestaki M, Tyznik S, Notbohm J. Heterogeneity and nonaffinity of cell-induced matrix displacements. Phys Rev E 2018; 98:052410. [PMID: 30619988 PMCID: PMC6319873 DOI: 10.1103/physreve.98.052410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cell contractile forces deform and reorganize the surrounding matrix, but the relationship between the forces and the resulting displacements is complicated by the fact that the fibrous structure brings about a complex set of mechanical properties. Many studies have quantified nonlinear and time-dependent properties at macroscopic scales, but it is unclear whether macroscopic properties apply to the scale of a cell, where the matrix is composed of a heterogeneous network of fibers. To address this question, we mimicked the contraction of a cell embedded within a fibrous collagen matrix and quantified the resulting displacements. The data revealed displacements that were heterogeneous and nonaffine. The heterogeneity was reproducible during cyclic loading, and it decreased with decreasing fiber length. Both the experiments and a fiber network model showed that the heterogeneous displacements decayed over distance at a rate no faster than the average displacement field, indicating no transition to homogeneous continuum behavior. Experiments with cells fully embedded in collagen matrices revealed the presence of heterogeneous displacements as well, exposing the dramatic heterogeneity in matrix reorganization that is induced by cells at different positions within the same fibrous matrix.
Collapse
Affiliation(s)
- Brian Burkel
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Maria Proestaki
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Stephen Tyznik
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
12
|
Nan H, Liang L, Chen G, Liu L, Liu R, Jiao Y. Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion. Phys Rev E 2018; 97:033311. [PMID: 29776156 DOI: 10.1103/physreve.97.033311] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/07/2022]
Abstract
Three-dimensional (3D) collective cell migration in a collagen-based extracellular matrix (ECM) is among one of the most significant topics in developmental biology, cancer progression, tissue regeneration, and immune response. Recent studies have suggested that collagen-fiber mediated force transmission in cellularized ECM plays an important role in stress homeostasis and regulation of collective cellular behaviors. Motivated by the recent in vitro observation that oriented collagen can significantly enhance the penetration of migrating breast cancer cells into dense Matrigel which mimics the intravasation process in vivo [Han et al. Proc. Natl. Acad. Sci. USA 113, 11208 (2016)PNASA60027-842410.1073/pnas.1610347113], we devise a procedure for generating realizations of highly heterogeneous 3D collagen networks with prescribed microstructural statistics via stochastic optimization. Specifically, a collagen network is represented via the graph (node-bond) model and the microstructural statistics considered include the cross-link (node) density, valence distribution, fiber (bond) length distribution, as well as fiber orientation distribution. An optimization problem is formulated in which the objective function is defined as the squared difference between a set of target microstructural statistics and the corresponding statistics for the simulated network. Simulated annealing is employed to solve the optimization problem by evolving an initial network via random perturbations to generate realizations of homogeneous networks with randomly oriented fibers, homogeneous networks with aligned fibers, heterogeneous networks with a continuous variation of fiber orientation along a prescribed direction, as well as a binary system containing a collagen region with aligned fibers and a dense Matrigel region with randomly oriented fibers. The generation and propagation of active forces in the simulated networks due to polarized contraction of an embedded ellipsoidal cell and a small group of cells are analyzed by considering a nonlinear fiber model incorporating strain hardening upon large stretching and buckling upon compression. Our analysis shows that oriented fibers can significantly enhance long-range force transmission in the network. Moreover, in the oriented-collagen-Matrigel system, the forces generated by a polarized cell in collagen can penetrate deeply into the Matrigel region. The stressed Matrigel fibers could provide contact guidance for the migrating cell cells, and thus enhance their penetration into Matrigel. This suggests a possible mechanism for the observed enhanced intravasation by oriented collagen.
Collapse
Affiliation(s)
- Hanqing Nan
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Long Liang
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - Guo Chen
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Yang Jiao
- Materials Science and Engineering, Arizona State University, Tempe, Arizona 85287, USA.,Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
13
|
Robertson-Anderson RM. Optical Tweezers Microrheology: From the Basics to Advanced Techniques and Applications. ACS Macro Lett 2018; 7:968-975. [PMID: 35650960 DOI: 10.1021/acsmacrolett.8b00498] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Over the past few decades, microrheology has emerged as a widely used technique to measure the mechanical properties of soft viscoelastic materials. Optical tweezers offer a powerful platform for performing microrheology measurements and can measure rheological properties at the level of single molecules out to near macroscopic scales. Unlike passive microrheology methods, which use diffusing microspheres to extract rheological properties, optical tweezers can probe the nonlinear viscoelastic response, and measure the space- and time-dependent rheological properties of heterogeneous, nonequilibrium materials. In this Viewpoint, I describe the basic principles underlying optical tweezers microrheology, the instrumentation and material requirements, and key applications to widely studied soft biological materials. I also describe several sophisticated approaches that include coupling optical tweezers to fluorescence microscopy and microfluidics. The described techniques can robustly characterize noncontinuum mechanics, nonlinear mechanical responses, strain-field heterogeneities, stress propagation, force relaxation dynamics, and time-dependent mechanics of active materials.
Collapse
Affiliation(s)
- Rae M. Robertson-Anderson
- University of San Diego, Physics and Biophysics Department, 5998 Alcala Park, San Diego, California 92110, United States
| |
Collapse
|
14
|
Grimmer P, Notbohm J. Displacement Propagation in Fibrous Networks Due to Local Contraction. J Biomech Eng 2018; 140:2666617. [DOI: 10.1115/1.4038744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 01/27/2023]
Abstract
The extracellular matrix provides macroscale structure to tissues and microscale guidance for cell contraction, adhesion, and migration. The matrix is composed of a network of fibers, which each deform by stretching, bending, and buckling. Whereas the mechanics has been well characterized in uniform shear and extension, the response to more general loading conditions remains less clear, because the associated displacement fields cannot be predicted a priori. Studies simulating contraction, such as due to a cell, have observed displacements that propagate over a long range, suggesting mechanisms such as reorientation of fibers toward directions of tensile force and nonlinearity due to buckling of fibers under compression. It remains unclear which of these two mechanisms produces the long-range displacements and how properties like fiber bending stiffness and fiber length affect the displacement field. Here, we simulate contraction of an inclusion within a fibrous network and fit the resulting radial displacements to ur ∼ r−n where the power n quantifies the decay of displacements over distance, and a value of n less than that predicted by classical linear elasticity indicates displacements that propagate over a long range. We observed displacements to propagate over a longer range for greater contraction of the inclusion, for networks having longer fibers, and for networks with lower fiber bending stiffness. Contraction of the inclusion also caused fibers to reorient into the radial direction, but, surprisingly, the reorientation was minimally affected by bending stiffness. We conclude that both reorientation and nonlinearity are responsible for the long-range displacements.
Collapse
Affiliation(s)
- Peter Grimmer
- Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 e-mail:
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin-Madison, 1500 Engineering Drive, Madison, WI 53706 e-mail:
| |
Collapse
|
15
|
Gurmessa B, Ricketts S, Robertson-Anderson RM. Nonlinear Actin Deformations Lead to Network Stiffening, Yielding, and Nonuniform Stress Propagation. Biophys J 2017; 113:1540-1550. [PMID: 28214480 PMCID: PMC5627063 DOI: 10.1016/j.bpj.2017.01.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/16/2016] [Accepted: 01/17/2017] [Indexed: 01/07/2023] Open
Abstract
We use optical tweezers microrheology and fluorescence microscopy to apply nonlinear microscale strains to entangled and cross-linked actin networks, and measure the resulting stress and actin filament deformations. We couple nonlinear stress response and relaxation to the velocities and displacements of individual fluorescent-labeled actin segments, at varying times throughout the strain and varying distances from the strain path, to determine the underlying molecular dynamics that give rise to the debated nonlinear response and stress propagation of cross-linked and entangled actin networks at the microscale. We show that initial stress stiffening arises from acceleration of strained filaments due to molecular extension along the strain, while softening and yielding is coupled to filament deceleration, halting, and recoil. We also demonstrate a surprising nonmonotonic dependence of filament deformation on cross-linker concentration. Namely, networks with no cross-links or substantial cross-links both exhibit fast initial filament velocities and reduced molecular recoil while intermediate cross-linker concentrations display reduced velocities and increased recoil. We show that these collective results are due to a balance of network elasticity and force-induced cross-linker unbinding and rebinding. We further show that cross-links dominate entanglement dynamics when the length between cross-linkers becomes smaller than the length between entanglements. In accord with recent simulations, we demonstrate that post-strain stress can be long-lived in cross-linked networks by distributing stress to a small fraction of highly strained connected filaments that span the network and sustain the load, thereby allowing the rest of the network to recoil and relax.
Collapse
Affiliation(s)
- Bekele Gurmessa
- Department of Physics and Biophysics, University of San Diego, San Diego, California
| | - Shea Ricketts
- Department of Physics and Biophysics, University of San Diego, San Diego, California
| | | |
Collapse
|
16
|
Burkel B, Notbohm J. Mechanical response of collagen networks to nonuniform microscale loads. SOFT MATTER 2017; 13:5749-5758. [PMID: 28759060 DOI: 10.1039/c7sm00561j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As force is applied to fibrous proteins such as collagen or fibrin, the fibers respond by bending, stretching, or buckling, which together bring about a nonlinear relationship between force and displacement. The nonlinearity is typically understood in terms of strain stiffening in uniform extension or shear, but there remains a critical lack of data on how fibrous materials respond to other more complicated loadings. Here we study the mechanics of collagen networks in response to nonuniform loads applied on the local scale of the fibers. For this, we use particles made of an active hydrogel that undergoes a temperature-induced phase transition causing a large decrease in volume. We embed these particles in networks of fibrous collagen and use them as microactuators to apply controlled microscale loading. The resulting fiber displacements propagate over a long range with radial displacements u scaling as r-n with n ≈ 1. By contrast, we find linear homogeneous materials have n ≈ 2, in agreement with classical linear elastic theory. Our experimental data supports the notion that the long range displacements result from buckling of fibers in compression and local straightening of fibers in tension, in agreement with previous studies. Surprisingly, global network anisotropy appears to have only a modest effect on the displacement propagation. These insights into the microscale mechanics demonstrate that the decay power n provides a useful metric to quantify the mechanics of fibrous materials. We therefore suggest it is a means to compare new theories with experimental data.
Collapse
Affiliation(s)
- Brian Burkel
- Department of Engineering Physics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
17
|
Beroz F, Jawerth LM, Münster S, Weitz DA, Broedersz CP, Wingreen NS. Physical limits to biomechanical sensing in disordered fibre networks. Nat Commun 2017; 8:16096. [PMID: 28719577 PMCID: PMC5520107 DOI: 10.1038/ncomms16096] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space. Cells in the connective tissue are surrounded by a heterogeneous network of biopolymers. Here, the authors investigate how such heterogeneity affects cellular mechanosensing by simulating the deformation response of experimental and modelled biopolymer networks to locally applied forces.
Collapse
Affiliation(s)
- Farzan Beroz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540, USA.,Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilian University of Munich, Munich D-80333, Germany
| | - Louise M Jawerth
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany.,Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Stefan Münster
- Department of Biological Physics, Max Planck Institute for the Physics of Complex Systems, Dresden 01187, Germany.,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David A Weitz
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Chase P Broedersz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540, USA.,Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilian University of Munich, Munich D-80333, Germany.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08540, USA
| | - Ned S Wingreen
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08540, USA.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA
| |
Collapse
|
18
|
Liang L, Jones C, Chen S, Sun B, Jiao Y. Heterogeneous force network in 3D cellularized collagen networks. Phys Biol 2016; 13:066001. [PMID: 27779119 DOI: 10.1088/1478-3975/13/6/066001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Collagen networks play an important role in coordinating and regulating collective cellular dynamics via a number of signaling pathways. Here, we investigate the transmission of forces generated by contractile cells in 3D collagen-I networks. Specifically, the graph (bond-node) representations of collagen networks with collagen concentrations of 1, 2 and 4 mg ml-1 are derived from confocal microscopy data and used to model the network microstructure. Cell contraction is modeled by applying correlated displacements at specific nodes of the network, representing the focal adhesion sites. A nonlinear elastic model is employed to characterize the mechanical behavior of individual fiber bundles including strain hardening during stretching and buckling under compression. A force-based relaxation method is employed to obtain equilibrium network configurations under cell contraction. We find that for all collagen concentrations, the majority of the forces are carried by a small number of heterogeneous force chains emitted from the contracting cells, which is qualitatively consistent with our experimental observations. The force chains consist of fiber segments that either possess a high degree of alignment before cell contraction or are aligned due to fiber reorientation induced by cell contraction. The decay of the forces along the force chains is significantly slower than the decay of radially averaged forces in the system, suggesting that the fibreous nature of biopolymer network structure can support long-range force transmission. The force chains emerge even at very small cell contractions, and the number of force chains increases with increasing cell contraction. At large cell contractions, the fibers close to the cell surface are in the nonlinear regime, and the nonlinear region is localized in a small neighborhood of the cell. In addition, the number of force chains increases with increasing collagen concentration, due to the larger number of focal adhesion sites in collagen networks with high concentrations.
Collapse
Affiliation(s)
- Long Liang
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| | | | | | | | | |
Collapse
|
19
|
Abstract
Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. Although these fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. Here we theoretically study force transmission in these networks. We find that collective fiber buckling in the vicinity of a local active unit results in a rectification of stress towards strongly amplified isotropic contraction. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. Our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks and shed light on the role of the network microstructure in shaping active stresses in cells and tissue.
Collapse
|
20
|
Falzone TT, Robertson-Anderson RM. Active Entanglement-Tracking Microrheology Directly Couples Macromolecular Deformations to Nonlinear Microscale Force Response of Entangled Actin. ACS Macro Lett 2015; 4:1194-1199. [PMID: 35614836 DOI: 10.1021/acsmacrolett.5b00673] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We track the deformation of discrete entangled actin segments while simultaneously measuring the resistive force the deformed filaments exert in response to an optically driven microsphere. We precisely map the network deformation field to show that local microscale stresses can induce filament deformations that propagate beyond mesoscopic length scales (60 μm, >3 persistence lengths lp). We show that the filament persistence length controls the critical length scale at which distinct entanglement deformations become driven by collective network mechanics. Mesoscale propagation beyond lp is coupled with nonlinear local stresses arising from steric entanglements mimicking cross-links.
Collapse
Affiliation(s)
- Tobias T. Falzone
- Department of Physics, University of San Diego, San Diego, California 92110, United States
| | | |
Collapse
|
21
|
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory. PLoS One 2015; 10:e0143011. [PMID: 26569603 PMCID: PMC4646616 DOI: 10.1371/journal.pone.0143011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/29/2015] [Indexed: 01/07/2023] Open
Abstract
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials.
Collapse
|
22
|
Abstract
Collagen gels are widely used in experiments on cell mechanics because they mimic the extracellular matrix in physiological conditions. Collagen gels are often characterized by their bulk rheology; however, variations in the collagen fiber microstructure and cell adhesion forces cause the mechanical properties to be inhomogeneous at the cellular scale. We study the mechanics of type I collagen on the scale of tens to hundreds of microns by using holographic optical tweezers to apply pN forces to microparticles embedded in the collagen fiber network. We find that in response to optical forces, particle displacements are inhomogeneous, anisotropic, and asymmetric. Gels prepared at 21 °C and 37 °C show qualitative difference in their micromechanical characteristics. We also demonstrate that contracting cells remodel the micromechanics of their surrounding extracellular matrix in a strain- and distance-dependent manner. To further understand the micromechanics of cellularized extracellular matrix, we have constructed a computational model which reproduces the main experiment findings.
Collapse
|
23
|
Ronceray P, Lenz M. Connecting local active forces to macroscopic stress in elastic media. SOFT MATTER 2015; 11:1597-1605. [PMID: 25594831 DOI: 10.1039/c4sm02526a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In contrast with ordinary materials, living matter drives its own motion by generating active, out-of-equilibrium internal stresses. These stresses typically originate from localized active elements embedded in an elastic medium, such as molecular motors inside the cell or contractile cells in a tissue. While many large-scale phenomenological theories of such active media have been developed, a systematic understanding of the emergence of stress from the local force-generating elements is lacking. In this paper, we present a rigorous theoretical framework to study this relationship. We show that the medium's macroscopic active stress tensor is equal to the active elements' force dipole tensor per unit volume in both continuum and discrete linear homogeneous media of arbitrary geometries. This relationship is conserved on average in the presence of disorder, but can be violated in nonlinear elastic media. Such effects can lead to either a reinforcement or an attenuation of the active stresses, giving us a glimpse of the ways in which nature might harness microscopic forces to create active materials.
Collapse
Affiliation(s)
- Pierre Ronceray
- Univ. Paris-Sud, CNRS, LPTMS, UMR 8626, Orsay 91405, France.
| | | |
Collapse
|
24
|
Unterberger MJ, Holzapfel GA. Advances in the mechanical modeling of filamentous actin and its cross-linked networks on multiple scales. Biomech Model Mechanobiol 2014; 13:1155-74. [PMID: 24700235 DOI: 10.1007/s10237-014-0578-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 03/20/2014] [Indexed: 12/26/2022]
Abstract
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
Collapse
Affiliation(s)
- Michael J Unterberger
- Institute of Biomechanics, Graz University of Technology, Kronesgasse 5-I, 8010 , Graz, Austria
| | | |
Collapse
|
25
|
Head DA, Mizuno D. Local mechanical response in semiflexible polymer networks subjected to an axisymmetric prestress. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:022717. [PMID: 24032874 DOI: 10.1103/physreve.88.022717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/12/2013] [Indexed: 06/02/2023]
Abstract
Analytical and numerical calculations are presented for the mechanical response of fiber networks in a state of axisymmetric prestress, in the limit where geometric nonlinearities such as fiber rotation are negligible. This allows us to focus on the anisotropy deriving purely from the nonlinear force-extension curves of individual fibers. The number of independent elastic coefficients for isotropic, axisymmetric, and fully anisotropic networks are enumerated before deriving expressions for the response to a locally applied force that can be tested against, e.g., microrheology experiments. Localized forces can generate anisotropy away from the point of application, so numerical integration of nonlinear continuum equations is employed to determine the stress field, and induced mechanical anisotropy, at points located directly behind and in front of a force monopole. Results are presented for the wormlike chain model in normalized forms, allowing them to be easily mapped to a range of systems. Finally, the relevance of these findings to naturally occurring systems and directions for future investigation are discussed.
Collapse
Affiliation(s)
- David A Head
- School of Computing, Leeds University, Leeds LS2 9JT, United Kingdom
| | | |
Collapse
|
26
|
Mao X, Stenull O, Lubensky TC. Effective-medium theory of a filamentous triangular lattice. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042601. [PMID: 23679437 DOI: 10.1103/physreve.87.042601] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Indexed: 06/02/2023]
Abstract
We present an effective-medium theory that includes bending as well as stretching forces, and we use it to calculate the mechanical response of a diluted filamentous triangular lattice. In this lattice, bonds are central-force springs, and there are bending forces between neighboring bonds on the same filament. We investigate the diluted lattice in which each bond is present with a probability p. We find a rigidity threshold p(b) which has the same value for all positive bending rigidity and a crossover characterizing bending, stretching, and bend-stretch coupled elastic regimes controlled by the central-force rigidity percolation point at p(CF)=/~2/3 of the lattice when fiber bending rigidity vanishes.
Collapse
Affiliation(s)
- Xiaoming Mao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
27
|
Yang Y, Valentine MT. Determining the structure-mechanics relationships of dense microtubule networks with confocal microscopy and magnetic tweezers-based microrheology. Methods Cell Biol 2013; 115:75-96. [PMID: 23973067 DOI: 10.1016/b978-0-12-407757-7.00006-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force.
Collapse
Affiliation(s)
- Yali Yang
- Department of Mechanical Engineering, University of California, Santa Barbara, California, USA
| | | |
Collapse
|
28
|
Bai M, Missel AR, Levine AJ, Klug WS. On the role of the filament length distribution in the mechanics of semiflexible networks. Acta Biomater 2011; 7:2109-18. [PMID: 21187172 DOI: 10.1016/j.actbio.2010.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/14/2010] [Accepted: 12/20/2010] [Indexed: 11/29/2022]
Abstract
This paper explores the effects of filament length polydispersity on the mechanical properties of semiflexible crosslinked polymer networks. Extending previous studies on monodisperse networks, we compute numerically the response of crosslinked networks of elastic filaments of bimodal and exponential length distributions. These polydisperse networks are subject to the same affine to nonaffine (A/NA) transition observed previously for monodisperse networks, wherein the decreases in either crosslink density or bending stiffness lead to a shift from affine, stretching-dominated deformations to nonaffine, bending-dominated deformations. We find that the onset of this transition is generally more sensitive to changes in the density of longer filaments than shorter filaments, meaning that longer filaments have greater mechanical efficiency. Moreover, in polydisperse networks, mixtures of long and short filaments interact cooperatively to generally produce a nonaffine mechanical response closer to the affine prediction than comparable monodisperse networks of either long or short filaments. Accordingly, the mechanical affinity of polydisperse networks is dependent on the filament length composition. Overall, length polydispersity has the effect of sharpening and shifting the A/NA transition to lower network densities. We discuss the implications of these results on experimental observation of the A/NA transition, and on the design of advanced materials.
Collapse
Affiliation(s)
- Mo Bai
- Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
29
|
Missel AR, Bai M, Klug WS, Levine AJ. Affine-nonaffine transition in networks of nematically ordered semiflexible polymers. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:041907. [PMID: 21230313 DOI: 10.1103/physreve.82.041907] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 08/18/2010] [Indexed: 05/30/2023]
Abstract
We study the mechanics of nematically ordered semiflexible networks showing that they, like isotropic networks, undergo an affine to nonaffine crossover controlled by the ratio of the filament length to the nonaffinity length. Deep in the nonaffine regime, however, these anisotropic networks exhibit a much more complex mechanical response characterized by a vanishing linear-response regime for highly ordered networks and a dependence of the shear modulus on shear direction at both small (linear) and finite (nonlinear) strains that is different from the affine prediction of orthotropic continuum linear elasticity. We show that these features can be understood in terms of a generalized floppy modes analysis of the nonaffine mechanics and a type of cooperative Euler buckling.
Collapse
Affiliation(s)
- Andrew R Missel
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
30
|
Branco MC, Nettesheim F, Pochan DJ, Schneider JP, Wagner NJ. Fast dynamics of semiflexible chain networks of self-assembled peptides. Biomacromolecules 2009; 10:1374-80. [PMID: 19391585 DOI: 10.1021/bm801396e] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present the first neutron spin echo (NSE) measurements of self-assembling peptide hydrogel networks to study the fibril dynamics on the nanometer and nanosecond length and time scales. MAX1 and MAX8 are synthetic beta-hairpin peptides that undergo triggered self-assembly at the nanoscale to form a physically cross-linked network of fibrils with a defined cross-section. When subjected to physiological pH and ionic strength (pH 7.4, 150 mM NaCl), the soluble peptides fold into a beta-hairpin and, subsequently, self-assemble to form a structurally rigid hydrogel stabilized by noncovalent cross-links. The sequence of MAX8 is identical to MAX1 with the exception of one single amino acid substitution that reduces the net charge on the peptide. As a result, faster folding and self-assembly kinetics are observed for MAX8 at the same peptide concentration and identical buffer conditions, and gels with a larger storage modulus are formed. NSE measurements of the peptide hydrogels demonstrate that the self-assembled peptide fibrils can be described as semiflexible chains on nanolength and time scales. Alteration of the peptide sequence affected the nanoscale dynamics of the hydrogels but not to an extent comparable to the large difference observed in the bulk viscoelasticity. Small angle neutron scattering (SANS) of the hydrogels reveals increased scattering for MAX8 at low wavevectors, an indication of a heterogeneous network with a tighter mesh size. Therefore, we conjecture that the difference in elastic modulus arises from differences in assembly kinetics that result in increased fibrillar branching and physical cross-links rather than a change in the fibril nanostructure or persistence length.
Collapse
Affiliation(s)
- Monica C Branco
- Department of Chemical Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
31
|
Hatami-Marbini H, Picu RC. Heterogeneous long-range correlated deformation of semiflexible random fiber networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:046703. [PMID: 19905478 DOI: 10.1103/physreve.80.046703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 08/07/2009] [Indexed: 05/16/2023]
Abstract
The deformation of dense random fiber networks is important in a variety of applications including biological and nonliving systems. In this paper it is shown that semiflexible fiber networks exhibit long-range power-law spatial correlations of the density and elastic properties. Hence, the stress and strain fields measured over finite patches of the network are characterized by similar spatial correlations. The scaling is observed over a range of scales bounded by a lower limit proportional to the segment length and an upper limit on the order of the fiber length. If the fiber bending stiffness is reduced below a threshold, correlations are lost. The issue of solving boundary value problems defined on large domains of random fiber networks is also addressed. Since the direct simulation of such systems is impractical, the network is mapped into an equivalent continuum with long-range correlated elastic moduli. A technique based on the stochastic finite element method is used to solve the resulting stochastic continuum problem. The method provides the moments of the distribution function of the solution (e.g., of the displacement field). It performs a large dimensionality reduction which is based on the scaling properties of the underlying elasticity of the material. Two examples are discussed in closure.
Collapse
Affiliation(s)
- H Hatami-Marbini
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | | |
Collapse
|
32
|
Abstract
A new method is proposed for integrating the equations of motion of an elastic filament. In the standard finite-difference and finite-element formulations the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint-free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin.
Collapse
Affiliation(s)
- Anthony J C Ladd
- Department of Chemical Engineering, University of Florida, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
33
|
Levine AJ, MacKintosh FC. The Mechanics and Fluctuation Spectrum of Active Gels. J Phys Chem B 2009; 113:3820-30. [DOI: 10.1021/jp808192w] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alex J. Levine
- Department of Chemistry & Biochemistry and The California Nanosystems Institute University of California, Los Angeles, California 90095
| | - F. C. MacKintosh
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Stein AM, Vader DA, Jawerth LM, Weitz DA, Sander LM. An algorithm for extracting the network geometry of three-dimensional collagen gels. J Microsc 2009; 232:463-75. [PMID: 19094023 DOI: 10.1111/j.1365-2818.2008.02141.x] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The geometric structure of a biopolymer network impacts its mechanical and biological properties. In this paper, we develop an algorithm for extracting the network architecture of three-dimensional (3d) fluorescently labeled collagen gels, building on the initial work of Wu et al., (2003). Using artificially generated images, the network extraction algorithm is then validated for its ability to reconstruct the correct bulk properties of the network, including fiber length, persistence length, cross-link density, and shear modulus.
Collapse
Affiliation(s)
- Andrew M Stein
- Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55403, USA, ++
| | | | | | | | | |
Collapse
|
35
|
Wyart M, Liang H, Kabla A, Mahadevan L. Elasticity of floppy and stiff random networks. PHYSICAL REVIEW LETTERS 2008; 101:215501. [PMID: 19113422 DOI: 10.1103/physrevlett.101.215501] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Indexed: 05/27/2023]
Abstract
We study the linear and nonlinear elastic behavior of amorphous systems using a two-dimensional random network of harmonic springs as a model system. A natural characterization of these systems arises in terms of the network coordination (average number of springs per node) relative to that of a marginally rigid network deltaz: a floppy network has deltaz<0, while a stiff network has deltaz>0. Under the influence of an externally applied load, we observe that the response of both floppy and stiff networks is controlled by the critical point corresponding to the onset of rigidity. We use numerical simulations to compute the exponents which characterize the shear modulus, the heterogeneity of the response, and the network stiffening as a function of deltaz and derive these theoretically, thus allowing us to predict aspects of the mechanical response of glasses and fibrous networks.
Collapse
Affiliation(s)
- M Wyart
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
36
|
Kwon RY, Lew AJ, Jacobs CR. A microstructurally informed model for the mechanical response of three-dimensional actin networks. Comput Methods Biomech Biomed Engin 2008; 11:407-18. [PMID: 18568835 DOI: 10.1080/10255840801888686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We propose a class of microstructurally informed models for the linear elastic mechanical behaviour of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behaviour resulting from anisotropic filament distributions, and a power law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modelled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behaviour of the networks over a wide range of filament densities and degrees of anisotropy.
Collapse
Affiliation(s)
- R Y Kwon
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
37
|
Roy S, Qi HJ. Micromechanical model for elasticity of the cell cytoskeleton. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:061916. [PMID: 18643309 DOI: 10.1103/physreve.77.061916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Semiflexible polymer networks, such as cell cytoskeleton, differ significantly from their flexible counterparts in their deformation energy storage mechanism. As a result, the network elasticity is governed by both enthalpic and entropic variations. In addition, the enthalpic effect shows two distinct regimes of energy storage mechanism, the affine and nonaffine regimes. In the past, computation-based modeling on random networks, such as the Mikado model, was used to demonstrate the physical mechanism of mechanical deformation of semiflexible networks. These models are computationally intensive and hence are difficult to apply to studying whole cells. In this paper, we develop a micromechanical model to predict the average macroscopic elastic properties of a random, semiflexible, biopolymer network. The model employs a unit cell consisting of four semiflexible chains and four equivalent axial-bending springs. The proposed unit-cell-based micromechanical model represents a statistically average realization of the actual network and gives the average mechanical properties, such as the shear modulus. Comparisons between the model predictions and Mikado model results confirm that this micromechanical model captures the essential deformation physics revealed from previous studies on the actual network and is capable of predicting the transition between nonaffine and affine deformations. This model can be used to develop efficient continuum constitutive models of the cytoskeleton in the future.
Collapse
Affiliation(s)
- Sitikantha Roy
- Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | | |
Collapse
|
38
|
Heussinger C, Frey E. Force distributions and force chains in random stiff fiber networks. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2007; 24:47-53. [PMID: 17763970 DOI: 10.1140/epje/i2007-10209-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 07/16/2007] [Indexed: 05/17/2023]
Abstract
We study the elasticity of random stiff fiber networks. The elastic response of the fibers is characterized by a central force stretching stiffness as well as a bending stiffness that acts transverse to the fiber contour. Previous studies have shown that this model displays an anomalous elastic regime where the stretching mode is fully frozen out and the elastic energy is completely dominated by the bending mode. We demonstrate by simulations and scaling arguments that, in contrast to the bending dominated elastic energy, the equally important elastic forces are to a large extent stretching dominated. By characterizing these forces on microscopic, mesoscopic and macroscopic scales we find two mechanisms of how forces are transmitted in the network. While forces smaller than a threshold Fc are effectively balanced by a homogeneous background medium, forces larger than Fc are found to be heterogeneously distributed throughout the sample, giving rise to highly localized force chains known from granular media.
Collapse
Affiliation(s)
- C Heussinger
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 München, Germany.
| | | |
Collapse
|
39
|
DiDonna BA, Levine AJ. Unfolding cross-linkers as rheology regulators in F-actin networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:041909. [PMID: 17500923 DOI: 10.1103/physreve.75.041909] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 12/20/2006] [Indexed: 05/15/2023]
Abstract
We report on the nonlinear mechanical properties of a statistically homogeneous, isotropic semiflexible network cross-linked by polymers containing numerous small unfolding domains, such as the ubiquitous F-actin cross-linker filamin. We show that the inclusion of such proteins has a dramatic effect on the large strain behavior of the network. Beyond a strain threshold, which depends on network density, the unfolding of protein domains leads to bulk shear softening. Past this critical strain, the network spontaneously organizes itself so that an appreciable fraction of the filamin cross-linkers are at the threshold of domain unfolding. We discuss via a simple mean-field model the cause of this network organization and suggest that it may be the source of power-law relaxation observed in in vitro and in intracellular microrheology experiments. We present data which fully justify our model for a simplified network architecture.
Collapse
Affiliation(s)
- B A DiDonna
- Institute for Mathematics and its Applications, University of Minnesota, Minneapolis, MN 55455-0436, USA
| | | |
Collapse
|
40
|
Maloney CE. Correlations in the elastic response of dense random packings. PHYSICAL REVIEW LETTERS 2006; 97:035503. [PMID: 16907510 DOI: 10.1103/physrevlett.97.035503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Indexed: 05/11/2023]
Abstract
Results are presented for the autocorrelation function of the vortexlike nonaffine piece of the linear elastic displacement field in dense random bidisperse packings of harmonically repulsive disks in 2D. The autocorrelation function is shown to scale precisely with the length of the simulation cell in systems ranging from 20 to 100 particles across. It is shown that, to first order, the displacement fields can be thought to arise from the action of uncorrelated local random forcing of a homogeneous elastic sheet, and a theory is presented which gives excellent quantitative agreement with the form of the correlation functions. These results suggest measurements to be made in many types of densely packed, random materials where the elastic displacement fields are accessible experimentally such as granular materials, dense emulsions, colloidal suspensions, etc.
Collapse
Affiliation(s)
- C E Maloney
- Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|