1
|
Voutsa V, Battaglia D, Bracken LJ, Brovelli A, Costescu J, Díaz Muñoz M, Fath BD, Funk A, Guirro M, Hein T, Kerschner C, Kimmich C, Lima V, Messé A, Parsons AJ, Perez J, Pöppl R, Prell C, Recinos S, Shi Y, Tiwari S, Turnbull L, Wainwright J, Waxenecker H, Hütt MT. Two classes of functional connectivity in dynamical processes in networks. J R Soc Interface 2021; 18:20210486. [PMID: 34665977 PMCID: PMC8526174 DOI: 10.1098/rsif.2021.0486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines-from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity-one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes-excitations, regular and chaotic oscillators-and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.
Collapse
Affiliation(s)
- Venetia Voutsa
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| | - Demian Battaglia
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (UMR 1106), Marseille, France
- University of Strasbourg Institute for Advanced Studies (USIAS), Strasbourg 67083, France
| | | | - Andrea Brovelli
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone (UMR 7289), Marseille, France
| | - Julia Costescu
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Mario Díaz Muñoz
- Department of Sustainability, Governance and Methods, Modul University Vienna, 1190 Vienna, Austria
| | - Brian D. Fath
- Department of Biological Sciences, Towson University, Towson, Maryland 21252, USA
- Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg 2361, Austria
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Andrea Funk
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
- WasserCluster Lunz - Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| | - Mel Guirro
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Thomas Hein
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
- WasserCluster Lunz - Biologische Station GmbH, Dr. Carl Kupelwieser Promenade 5, 3293 Lunz am See, Austria
| | - Christian Kerschner
- Department of Sustainability, Governance and Methods, Modul University Vienna, 1190 Vienna, Austria
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Christian Kimmich
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
- Regional Science and Environmental Research, Institute for Advanced Studies, 1080 Vienna, Austria
| | - Vinicius Lima
- Aix-Marseille Université, Inserm, Institut de Neurosciences des Systèmes (UMR 1106), Marseille, France
- Aix-Marseille Université, CNRS, Institut de Neurosciences de la Timone (UMR 7289), Marseille, France
| | - Arnaud Messé
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Germany
| | | | - John Perez
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Ronald Pöppl
- Department of Geography and Regional Research, University of Vienna, Universitätsstr. 7, 1010 Vienna, Austria
| | - Christina Prell
- Department of Cultural Geography, University of Groningen, 9747 AD, Groningen, The Netherlands
| | - Sonia Recinos
- Institute of Hydrobiology and Aquatic Ecosystem Management (IHG), University of Natural Resources and Life Sciences Vienna (BOKU), 1180 Vienna, Austria
| | - Yanhua Shi
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Shubham Tiwari
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Laura Turnbull
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - John Wainwright
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - Harald Waxenecker
- Department of Environmental Studies, Masaryk University, 60200 Brno, Czech Republic
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, 28759 Bremen, Germany
| |
Collapse
|
2
|
Moretti P, Hütt MT. Link-usage asymmetry and collective patterns emerging from rich-club organization of complex networks. Proc Natl Acad Sci U S A 2020; 117:18332-18340. [PMID: 32690716 PMCID: PMC7414146 DOI: 10.1073/pnas.1919785117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In models of excitable dynamics on graphs, excitations can travel in both directions of an undirected link. However, as a striking interplay of dynamics and network topology, excitations often establish a directional preference. Some of these cases of "link-usage asymmetry" are local in nature and can be mechanistically understood, for instance, from the degree gradient of a link (i.e., the difference in node degrees at both ends of the link). Other contributions to the link-usage asymmetry are instead, as we show, self-organized in nature, and strictly nonlocal. This is the case for excitation waves, where the preferential propagation of excitations along a link depends on its orientation with respect to a hub acting as a source, even if the link in question is several steps away from the hub itself. Here, we identify and quantify the contribution of such self-organized patterns to link-usage asymmetry and show that they extend to ranges significantly longer than those ascribed to local patterns. We introduce a topological characterization, the hub-set-orientation prevalence of a link, which indicates its average orientation with respect to the hubs of a graph. Our numerical results show that the hub-set-orientation prevalence of a link strongly correlates with the preferential usage of the link in the direction of propagation away from the hub core of the graph. Our methodology is embedding-agnostic and allows for the measurement of wave signals and the sizes of the cores from which they originate.
Collapse
Affiliation(s)
- Paolo Moretti
- Institute of Materials Simulation, Department of Materials Science, Friedrich-Alexander-University Erlangen-Nürnberg, D-90762 Fürth, Germany;
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany
| |
Collapse
|
3
|
Messé A, Hütt MT, Hilgetag CC. Toward a theory of coactivation patterns in excitable neural networks. PLoS Comput Biol 2018; 14:e1006084. [PMID: 29630592 PMCID: PMC5908206 DOI: 10.1371/journal.pcbi.1006084] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/19/2018] [Accepted: 03/11/2018] [Indexed: 11/18/2022] Open
Abstract
The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is of central importance in brain network science. It is an open question, however, how the SC-FC relationship depends on specific topological features of brain networks or the models used for describing neural dynamics. Using a basic but general model of discrete excitable units that follow a susceptible—excited—refractory activity cycle (SER model), we here analyze how the network activity patterns underlying functional connectivity are shaped by the characteristic topological features of the network. We develop an analytical framework for describing the contribution of essential topological elements, such as common inputs and pacemakers, to the coactivation of nodes, and demonstrate the validity of the approach by comparison of the analytical predictions with numerical simulations of various exemplar networks. The present analytic framework may serve as an initial step for the mechanistic understanding of the contributions of brain network topology to brain dynamics. Functional connectivity, as reflected in the statistical dependencies of distributed activity, is widely used to probe the organization of complex systems such as the brain. While this measure has been helpful for characterizing brain states and highlighting alterations of brain dynamics in various diseases, the mechanisms underlying the generation of FC patterns remain poorly understood. One prominent factor shaping FC is the underlying neural network structure. Using a minimalist model of excitation, we investigate how the topology of excitable neural networks contributes to FC. Specifically, we show that FC can be analytically predicted from the way in which the nodes are embedded in the network and how they are related to basic self-organizing units of excitable dynamics, particularly, short pacemaker cycles. These insights are a step towards a mechanistic understanding of the activation patterns of complex neural networks.
Collapse
Affiliation(s)
- Arnaud Messé
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claus C. Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf, Hamburg University, Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
4
|
Turnbull L, Hütt MT, Ioannides AA, Kininmonth S, Poeppl R, Tockner K, Bracken LJ, Keesstra S, Liu L, Masselink R, Parsons AJ. Connectivity and complex systems: learning from a multi-disciplinary perspective. APPLIED NETWORK SCIENCE 2018; 3:11. [PMID: 30839779 PMCID: PMC6214298 DOI: 10.1007/s41109-018-0067-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/29/2018] [Indexed: 05/05/2023]
Abstract
In recent years, parallel developments in disparate disciplines have focused on what has come to be termed connectivity; a concept used in understanding and describing complex systems. Conceptualisations and operationalisations of connectivity have evolved largely within their disciplinary boundaries, yet similarities in this concept and its application among disciplines are evident. However, any implementation of the concept of connectivity carries with it both ontological and epistemological constraints, which leads us to ask if there is one type or set of approach(es) to connectivity that might be applied to all disciplines. In this review we explore four ontological and epistemological challenges in using connectivity to understand complex systems from the standpoint of widely different disciplines. These are: (i) defining the fundamental unit for the study of connectivity; (ii) separating structural connectivity from functional connectivity; (iii) understanding emergent behaviour; and (iv) measuring connectivity. We draw upon discipline-specific insights from Computational Neuroscience, Ecology, Geomorphology, Neuroscience, Social Network Science and Systems Biology to explore the use of connectivity among these disciplines. We evaluate how a connectivity-based approach has generated new understanding of structural-functional relationships that characterise complex systems and propose a 'common toolbox' underpinned by network-based approaches that can advance connectivity studies by overcoming existing constraints.
Collapse
Affiliation(s)
| | | | | | - Stuart Kininmonth
- Stockholm Resilience Institute, Stockholm, Sweden
- The University of South Pacific, Suva, Fiji
| | | | - Klement Tockner
- Freie Universität Berlin, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- Austrian Science Funds, Berlin, Germany
| | | | | | - Lichan Liu
- Laboratory for Human Brain Dynamics, Nicosia, Cyprus
| | | | | |
Collapse
|
5
|
Damicelli F, Hilgetag CC, Hütt MT, Messé A. Modular topology emerges from plasticity in a minimalistic excitable network model. CHAOS (WOODBURY, N.Y.) 2017; 27:047406. [PMID: 28456166 DOI: 10.1063/1.4979561] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Topological features play a major role in the emergence of complex brain network dynamics underlying brain function. Specific topological properties of brain networks, such as their modular organization, have been widely studied in recent years and shown to be ubiquitous across spatial scales and species. However, the mechanisms underlying the generation and maintenance of such features are still unclear. Using a minimalistic network model with excitable nodes and discrete deterministic dynamics, we studied the effects of a local Hebbian plasticity rule on global network topology. We found that, despite the simple model set-up, the plasticity rule was able to reorganize the global network topology into a modular structure. The structural reorganization was accompanied by enhanced correlations between structural and functional connectivity, and the final network organization reflected features of the dynamical model. These findings demonstrate the potential of simple plasticity rules for structuring the topology of brain connectivity.
Collapse
Affiliation(s)
- Fabrizio Damicelli
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Marc-Thorsten Hütt
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Arnaud Messé
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| |
Collapse
|
6
|
Fretter C, Lesne A, Hilgetag CC, Hütt MT. Topological determinants of self-sustained activity in a simple model of excitable dynamics on graphs. Sci Rep 2017; 7:42340. [PMID: 28186182 PMCID: PMC5301238 DOI: 10.1038/srep42340] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 01/09/2017] [Indexed: 11/08/2022] Open
Abstract
Simple models of excitable dynamics on graphs are an efficient framework for studying the interplay between network topology and dynamics. This topic is of practical relevance to diverse fields, ranging from neuroscience to engineering. Here we analyze how a single excitation propagates through a random network as a function of the excitation threshold, that is, the relative amount of activity in the neighborhood required for the excitation of a node. We observe that two sharp transitions delineate a region of sustained activity. Using analytical considerations and numerical simulation, we show that these transitions originate from the presence of barriers to propagation and the excitation of topological cycles, respectively, and can be predicted from the network topology. Our findings are interpreted in the context of network reverberations and self-sustained activity in neural systems, which is a question of long-standing interest in computational neuroscience.
Collapse
Affiliation(s)
- Christoph Fretter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany
- Department of Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Annick Lesne
- LPTMC, CNRS, UMR 7600, UPMC-Paris 6, Sorbonne Universités, 4 place Jussieu, F-75252, Paris, France
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France; Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Claus C. Hilgetag
- Department of Computational Neuroscience, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
- Department of Health Sciences, Boston University, Boston, USA
| | - Marc-Thorsten Hütt
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28759 Bremen, Germany
| |
Collapse
|
7
|
Grace M, Hütt MT. Regulation of Spatiotemporal Patterns by Biological Variability: General Principles and Applications to Dictyostelium discoideum. PLoS Comput Biol 2015; 11:e1004367. [PMID: 26562406 PMCID: PMC4643012 DOI: 10.1371/journal.pcbi.1004367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Spatiotemporal patterns often emerge from local interactions in a self-organizing fashion. In biology, the resulting patterns are also subject to the influence of the systematic differences between the system’s constituents (biological variability). This regulation of spatiotemporal patterns by biological variability is the topic of our review. We discuss several examples of correlations between cell properties and the self-organized spatiotemporal patterns, together with their relevance for biology. Our guiding, illustrative example will be spiral waves of cAMP in a colony of Dictyostelium discoideum cells. Analogous processes take place in diverse situations (such as cardiac tissue, where spiral waves occur in potentially fatal ventricular fibrillation) so a deeper understanding of this additional layer of self-organized pattern formation would be beneficial to a wide range of applications. One of the most striking differences between pattern-forming systems in physics or chemistry and those in biology is the potential importance of variability. In the former, system components are essentially identical with random fluctuations determining the details of the self-organization process and the resulting patterns. In biology, due to variability, the properties of potentially very few cells can have a driving influence on the resulting asymptotic collective state of the colony. Variability is one means of implementing a few-element control on the collective mode. Regulatory architectures, parameters of signaling cascades, and properties of structure formation processes can be "reverse-engineered" from observed spatiotemporal patterns, as different types of regulation and forms of interactions between the constituents can lead to markedly different correlations. The power of this biology-inspired view of pattern formation lies in building a bridge between two scales: the patterns as a collective state of a very large number of cells on the one hand, and the internal parameters of the single cells on the other. Pattern formation is abundant in nature—from the rich ornaments of sea shells and the diversity of animal coat patterns to the myriad of fractal structures in biology and pattern-forming colonies of bacteria. Particularly fascinating are patterns changing with time, spatiotemporal patterns, like propagating waves and aggregation streams. Bacteria form large branched and nested aggregation-like patterns to immobilize themselves against water flow. The individual amoeba in Dictyostelium discoideum colonies initiates a transition to a collective multicellular state via a quorum-sensing form of communication—a cAMP signal propagating through the community in the form of spiral waves—and the subsequent chemotactic response of the cells leads to branch-like aggregation streams. The theoretical principle underlying most of these spatial and spatiotemporal patterns is self-organization, in which local interactions lead to patterns as large-scale collective”modes” of the system. Over more than half a century, these patterns have been classified and analyzed according to a”physics paradigm,” investigating such questions as how parameters regulate the transitions among patterns, which (types of) interactions lead to such large-scale patterns, and whether there are "critical parameter values" marking the sharp, spontaneous onset of patterns. A fundamental discovery has been that simple local interaction rules can lead to complex large-scale patterns. The specific pattern "layouts" (i.e., their spatial arrangement and their geometric constraints) have received less attention. However, there is a major difference between patterns in physics and chemistry on the one hand and patterns in biology on the other: in biology, patterns often have an important functional role for the biological system and can be considered to be under evolutionary selection. From this perspective, we can expect that individual biological elements exert some control on the emerging patterns. Here we explore spiral wave patterns as a prominent example to illustrate the regulation of spatiotemporal patterns by biological variability. We propose a new approach to studying spatiotemporal data in biology: analyzing the correlation between the spatial distribution of the constituents’ properties and the features of the spatiotemporal pattern. This general concept is illustrated by simulated patterns and experimental data of a model organism of biological pattern formation, the slime mold Dictyostelium discoideum. We introduce patterns starting from Turing (stripe and spot) patterns, together with target waves and spiral waves. The biological relevance of these patterns is illustrated by snapshots from real and theoretical biological systems. The principles of spiral wave formation are first explored in a stylized cellular automaton model and then reproduced in a model of Dictyostelium signaling. The shaping of spatiotemporal patterns by biological variability (i.e., by a spatial distribution of cell-to-cell differences) is demonstrated, focusing on two Dictyostelium models. Building up on this foundation, we then discuss in more detail how the nonlinearities in biological models translate the distribution of cell properties into pattern events, leaving characteristic geometric signatures.
Collapse
Affiliation(s)
- Miriam Grace
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Marc-Thorsten Hütt
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
- * E-mail:
| |
Collapse
|
8
|
Hütt MT, Kaiser M, Hilgetag CC. Perspective: network-guided pattern formation of neural dynamics. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130522. [PMID: 25180302 PMCID: PMC4150299 DOI: 10.1098/rstb.2013.0522] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The understanding of neural activity patterns is fundamentally linked to an understanding of how the brain's network architecture shapes dynamical processes. Established approaches rely mostly on deviations of a given network from certain classes of random graphs. Hypotheses about the supposed role of prominent topological features (for instance, the roles of modularity, network motifs or hierarchical network organization) are derived from these deviations. An alternative strategy could be to study deviations of network architectures from regular graphs (rings and lattices) and consider the implications of such deviations for self-organized dynamic patterns on the network. Following this strategy, we draw on the theory of spatio-temporal pattern formation and propose a novel perspective for analysing dynamics on networks, by evaluating how the self-organized dynamics are confined by network architecture to a small set of permissible collective states. In particular, we discuss the role of prominent topological features of brain connectivity, such as hubs, modules and hierarchy, in shaping activity patterns. We illustrate the notion of network-guided pattern formation with numerical simulations and outline how it can facilitate the understanding of neural dynamics.
Collapse
Affiliation(s)
- Marc-Thorsten Hütt
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Marcus Kaiser
- School of Computing Science, Newcastle University, Claremont Tower, Newcastle upon Tyne NE1 7RU, UK Institute of Neuroscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, Germany Department of Health Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
9
|
Lallouette J, De Pittà M, Ben-Jacob E, Berry H. Sparse short-distance connections enhance calcium wave propagation in a 3D model of astrocyte networks. Front Comput Neurosci 2014; 8:45. [PMID: 24795613 PMCID: PMC3997029 DOI: 10.3389/fncom.2014.00045] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/27/2013] [Indexed: 11/13/2022] Open
Abstract
Traditionally, astrocytes have been considered to couple via gap-junctions into a syncytium with only rudimentary spatial organization. However, this view is challenged by growing experimental evidence that astrocytes organize as a proper gap-junction mediated network with more complex region-dependent properties. On the other hand, the propagation range of intercellular calcium waves (ICW) within astrocyte populations is as well highly variable, depending on the brain region considered. This suggests that the variability of the topology of gap-junction couplings could play a role in the variability of the ICW propagation range. Since this hypothesis is very difficult to investigate with current experimental approaches, we explore it here using a biophysically realistic model of three-dimensional astrocyte networks in which we varied the topology of the astrocyte network, while keeping intracellular properties and spatial cell distribution and density constant. Computer simulations of the model suggest that changing the topology of the network is indeed sufficient to reproduce the distinct ranges of ICW propagation reported experimentally. Unexpectedly, our simulations also predict that sparse connectivity and restriction of gap-junction couplings to short distances should favor propagation while long–distance or dense connectivity should impair it. Altogether, our results provide support to recent experimental findings that point toward a significant functional role of the organization of gap-junction couplings into proper astroglial networks. Dynamic control of this topology by neurons and signaling molecules could thus constitute a new type of regulation of neuron-glia and glia-glia interactions.
Collapse
Affiliation(s)
- Jules Lallouette
- EPI Beagle, INRIA Rhône-Alpes Villeurbanne, France ; LIRIS, UMR 5205 CNRS-INSA, Université de Lyon Villeurbanne, France
| | - Maurizio De Pittà
- EPI Beagle, INRIA Rhône-Alpes Villeurbanne, France ; LIRIS, UMR 5205 CNRS-INSA, Université de Lyon Villeurbanne, France ; School of Physics and Astronomy, Tel Aviv University Ramat Aviv, Israel
| | - Eshel Ben-Jacob
- School of Physics and Astronomy, Tel Aviv University Ramat Aviv, Israel ; Center for Theoretical Biological Physics, Rice University Houston, TX, USA
| | - Hugues Berry
- EPI Beagle, INRIA Rhône-Alpes Villeurbanne, France ; LIRIS, UMR 5205 CNRS-INSA, Université de Lyon Villeurbanne, France
| |
Collapse
|
10
|
Garcia GC, Lesne A, Hütt MT, Hilgetag CC. Building blocks of self-sustained activity in a simple deterministic model of excitable neural networks. Front Comput Neurosci 2012; 6:50. [PMID: 22888317 PMCID: PMC3412572 DOI: 10.3389/fncom.2012.00050] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 07/01/2012] [Indexed: 12/04/2022] Open
Abstract
Understanding the interplay of topology and dynamics of excitable neural networks is one of the major challenges in computational neuroscience. Here we employ a simple deterministic excitable model to explore how network-wide activation patterns are shaped by network architecture. Our observables are co-activation patterns, together with the average activity of the network and the periodicities in the excitation density. Our main results are: (1) the dependence of the correlation between the adjacency matrix and the instantaneous (zero time delay) co-activation matrix on global network features (clustering, modularity, scale-free degree distribution), (2) a correlation between the average activity and the amount of small cycles in the graph, and (3) a microscopic understanding of the contributions by 3-node and 4-node cycles to sustained activity.
Collapse
Affiliation(s)
- Guadalupe C Garcia
- School of Engineering and Science, Jacobs University Bremen Bremen, Germany
| | | | | | | |
Collapse
|
11
|
Cellular Automata on Graphs: Topological Properties of ER Graphs Evolved towards Low-Entropy Dynamics. ENTROPY 2012. [DOI: 10.3390/e14060993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Hütt MT, Lesne A. Interplay between Topology and Dynamics in Excitation Patterns on Hierarchical Graphs. Front Neuroinform 2009; 3:28. [PMID: 19826610 PMCID: PMC2759346 DOI: 10.3389/neuro.11.028.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022] Open
Abstract
In a recent publication (Müller-Linow et al., 2008) two types of correlations between network topology and dynamics have been observed: waves propagating from central nodes and module-based synchronization. Remarkably, the dynamic behavior of hierarchical modular networks can switch from one of these modes to the other as the level of spontaneous network activation changes. Here we attempt to capture the origin of this switching behavior in a mean-field model as well in a formalism, where excitation waves are regarded as avalanches on the graph.
Collapse
Affiliation(s)
- Marc-Thorsten Hütt
- School of Engineering and Science, Jacobs University BremenBremen, Germany
| | - Annick Lesne
- Institut des Hautes Études ScientifiquesBures-sur-Yvette, France
- Université Pierre et Marie CurieParis, France
| |
Collapse
|
13
|
Müller-Linow M, Hilgetag CC, Hütt MT. Organization of excitable dynamics in hierarchical biological networks. PLoS Comput Biol 2008; 4:e1000190. [PMID: 18818769 PMCID: PMC2542420 DOI: 10.1371/journal.pcbi.1000190] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 08/20/2008] [Indexed: 11/25/2022] Open
Abstract
This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks.
Collapse
Affiliation(s)
- Mark Müller-Linow
- Department of Biology, Bioinformatics Group, Darmstadt University of Technology, Darmstadt, Germany.
| | | | | |
Collapse
|
14
|
Abstract
The term robustness is encountered in very different scientific fields, from engineering and control theory to dynamical systems to biology. The main question addressed herein is whether the notion of robustness and its correlates (stability, resilience, self-organisation) developed in physics are relevant to biology, or whether specific extensions and novel frameworks are required to account for the robustness properties of living systems. To clarify this issue, the different meanings covered by this unique term are discussed; it is argued that they crucially depend on the kind of perturbations that a robust system should by definition withstand. Possible mechanisms underlying robust behaviours are examined, either encountered in all natural systems (symmetries, conservation laws, dynamic stability) or specific to biological systems (feedbacks and regulatory networks). Special attention is devoted to the (sometimes counterintuitive) interrelations between robustness and noise. A distinction between dynamic selection and natural selection in the establishment of a robust behaviour is underlined. It is finally argued that nested notions of robustness, relevant to different time scales and different levels of organisation, allow one to reconcile the seemingly contradictory requirements for robustness and adaptability in living systems.
Collapse
Affiliation(s)
- Annick Lesne
- Institut des Hautes Etudes Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France.
| |
Collapse
|