1
|
Naseri P, Seyyedi SM, Hashemi-Tilehnoee M, Naeimi AS. Analysis of magnetic field-induced breakup of ferrofluid droplets in a symmetric Y-junction microchannel. Sci Rep 2024; 14:23763. [PMID: 39390127 PMCID: PMC11467301 DOI: 10.1038/s41598-024-74805-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
This research focuses on the analysis of the breakup of ferrofluid droplets in a symmetric microchannel with a Y-junction microchannel, utilizing computational methods. The study proposes an innovative strategy to enhance the breakup phenomenon by introducing a magnetic field within the branches of the Y-junction microchannel. To verify the obtained results, a comprehensive comparison is conducted, incorporating previous numerical and experimental investigations available in the literature. The outcomes of this comparison demonstrate a significant concurrence between the current findings and the prior studies. The results unequivocally elucidate that the presence of a magnetic field accelerates the fragmentation of the parent droplet in comparison to scenarios without a magnetic field. Furthermore, it is established that the duration required for droplet breakup decreases as the magnetic Bond number increases. Achieved results indicates [Formula: see text] decreases about 3% and 1.5% for L*=3 and L*=4, respectively. It is worth highlighting that this trend is particularly accentuated in the case of smaller non-dimensional lengths, specifically L∗=3.0.
Collapse
Affiliation(s)
- Parviz Naseri
- Department of Mechanical Engineering, Aliabad Katoul branch, Islamic Azad University, Aliabad Katoul, Iran
| | - Seyyed Masoud Seyyedi
- Department of Mechanical Engineering, Aliabad Katoul branch, Islamic Azad University, Aliabad Katoul, Iran.
| | - Mehdi Hashemi-Tilehnoee
- Department of Mechanical Engineering, Aliabad Katoul branch, Islamic Azad University, Aliabad Katoul, Iran
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Alava Technology Park, Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| | - Azadeh Sadat Naeimi
- Department of Physics, Aliabad Katoul branch, Islamic Azad University, Aliabad Katoul, Iran
| |
Collapse
|
2
|
Wang X, Sun C, Jia S, Pang Y, Liu Z. Flow pattern maps of double emulsions transporting through bifurcation microchannels. SOFT MATTER 2024; 20:6544-6557. [PMID: 38984795 DOI: 10.1039/d4sm00488d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The transportation behaviors of compound droplets in confined channels are widespread phenomena while the physical mechanisms are far from being completely unraveled. In this work, behaviors of double emulsions flowing through bifurcation microchannels are experimentally studied with the aim of building universal flow pattern maps. Three flow patterns are categorized according to different features of daughter droplets in terms of size, uniformity, and shell thickness. A detailed analysis of the dynamics of interfacial evolutions in different patterns is carried out and the coupling interaction between interfaces is found to affect the minimum tail distance during transportation. It is feasible to obtain the threshold of the occurrence of the coupling interaction, due to the different variation tendencies in the two states, which relies on three dimensionless parameters, i.e. droplet length, length ratio, and capillary number. Furthermore, a novel physical model is proposed to build the flow pattern map, with the two transition boundaries being expressed as different relationships in terms of the three identified parameters. The physical mechanisms are summarized with the aid of force analysis. An excellent agreement is shown between the model and experimental results in different liquid systems and bifurcation structures, indicating the generality of the proposed model.
Collapse
Affiliation(s)
- Xiang Wang
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Chao Sun
- School of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Shiyan Jia
- School of Mechanical & Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yan Pang
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| | - Zhaomiao Liu
- Faculty of Mechanics, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
3
|
Mandal J, Sarkar S. Universal Correlation for Droplet Fragmentation in a Microfluidic T-Junction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17489-17499. [PMID: 39103238 DOI: 10.1021/acs.langmuir.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Despite extensive research on droplet dynamics at microfluidic T-junction, for different droplet lengths and Capillary numbers, there remains limited understanding of their dynamics at different viscosity ratio. In this study, we adopt a modeling framework in a three-dimensional (3D) configuration to numerically investigate the droplet dynamics as it passes through a symmetric T-junction with varying Capillary numbers, droplet lengths, and viscosity ratios. We present a 3D regime map for the first time to demarcate the droplet breakup and no breakup regimes. Herein, we propose a simple surface equation accounting for the critical Capillary number for breakup, in terms of viscosity ratio and dimensionless droplet length. The proposed universal relationship aligns well with experimental and computational findings from the existing literature. Furthermore, we reveal a new droplet breakup characteristic at high viscosity ratio and high Capillary number where the droplet spreads almost twice its initial value before splitting. Overall, this research provides comprehensive understanding of droplet dynamics at the T-junction and has significant implications for several related applications, including the large-scale synthesis of microdroplets using microchannel networks.
Collapse
Affiliation(s)
- Joy Mandal
- SERB Sponsored Microfluidics Laboratory, Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| | - Sandip Sarkar
- SERB Sponsored Microfluidics Laboratory, Department of Mechanical Engineering, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
4
|
Rupp BT, Cook CD, Purcell EA, Pop M, Radomski AE, Mesyngier N, Bailey RC, Nagrath S. CellMag-CARWash: A High Throughput Droplet Microfluidic Device for Live Cell Isolation and Single Cell Applications. Adv Biol (Weinh) 2024; 8:e2400066. [PMID: 38741244 DOI: 10.1002/adbi.202400066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 05/16/2024]
Abstract
The recent push toward understanding an individual cell's behavior and identifying cellular heterogeneity has created an unmet need for technologies that can probe live cells at the single-cell level. Cells within a population are known to exhibit heterogeneous responses to environmental cues. These differences can lead to varied cellular states, behavior, and responses to therapeutics. Techniques are needed that are not only capable of processing and analyzing cellular populations at the single cell level, but also have the ability to isolate specific cell populations from a complex sample at high throughputs. The new CellMag-Coalesce-Attract-Resegment Wash (CellMag-CARWash) system combines positive magnetic selection with droplet microfluidic devices to isolate cells of interest from a mixture with >93% purity and incorporate treatments within individual droplets to observe single cell biological responses. This workflow is shown to be capable of probing the single cell extracellular vesicle (EV) secretion of MCF7 GFP cells. This article reports the first measurement of β-Estradiol's effect on EV secretion from MCF7 cells at the single cell level. Single cell processing revealed that MCF7 GFP cells possess a heterogeneous response to β-Estradiol stimulation with a 1.8-fold increase relative to the control.
Collapse
Affiliation(s)
- Brittany T Rupp
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Claire D Cook
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Emma A Purcell
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matei Pop
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Abigail E Radomski
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nicolas Mesyngier
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan C Bailey
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sunitha Nagrath
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
5
|
Yang H, Knowles TPJ. Hydrodynamics of Droplet Sorting in Asymmetric Acute Junctions. MICROMACHINES 2022; 13:1640. [PMID: 36295993 PMCID: PMC9611150 DOI: 10.3390/mi13101640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Droplet sorting is one of the fundamental manipulations of droplet-based microfluidics. Although many sorting methods have already been proposed, there is still a demand to develop new sorting methods for various applications of droplet-based microfluidics. This work presents numerical investigations on droplet sorting with asymmetric acute junctions. It is found that the asymmetric acute junctions could achieve volume-based sorting and velocity-based sorting. The pressure distributions in the asymmetric junctions are discussed to reveal the physical mechanism behind the droplet sorting. The dependence of the droplet sorting on the droplet volume, velocity, and junction angle is explored. The possibility of the employment of the proposed sorting method in most real experiments is also discussed. This work provides a new, simple, and cost-effective passive strategy to separate droplets in microfluidic channels. Moreover, the proposed acute junctions could be used in combination with other sorting methods, which may boost more opportunities to sort droplets.
Collapse
Affiliation(s)
- He Yang
- School of Mechanical Engineering, Hangzhou Dianzi University, No. 2 Street, Qiantang District, Hangzhou 310018, China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| |
Collapse
|
6
|
Agnihotri SN, Ugolini GS, Sullivan MR, Yang Y, De Ganzó A, Lim JW, Konry T. Droplet microfluidics for functional temporal analysis and cell recovery on demand using microvalves: application in immunotherapies for cancer. LAB ON A CHIP 2022; 22:3258-3267. [PMID: 35904070 PMCID: PMC9535857 DOI: 10.1039/d2lc00435f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Most common methods of cellular analysis employ the top-down approach (investigating proteomics or genomics directly), thereby destroying the cell, which does not allow the possibility of using the same cell to correlate genomics with functional assays. Herein we describe an approach for single-cell tools that serve as a bottom-up approach. Our technology allows functional phenotyping to be conducted by observing the cytotoxicity of cells and then probe the underlying biology. We have developed a droplet microfluidic device capable of trapping droplets in the array and releasing the droplet of interest selectively using microvalves. Each droplet in the array encapsulates natural killer cells (NK cells) and tumour cells for real-time monitoring of burst kinetics and spatial coordination during killing by single NK cells. Finally, we use the microvalve actuation to selectively release droplets with the desired functional phenotype such as for fast and serial killing of target tumour cells by NK cells. From this perspective, our device allows for investigating first interactions and real-time monitoring of kinetics and later cell recovery on demand for single-cell omic analysis such as single-cell RNA sequencing (scRNA), which to date, is primarily based on in-depth analyses of the entire transcriptome of a relatively low number of cells.
Collapse
Affiliation(s)
- Sagar N Agnihotri
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Giovanni Stefano Ugolini
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Matthew Ryan Sullivan
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Yichao Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Agustin De Ganzó
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Ji Won Lim
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| | - Tania Konry
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Interface evolution and pinch-off mechanism of droplet in two-phase liquid flow through T-junction microfluidic system. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
|
9
|
Zhu GP, Wang QY, Ma ZK, Wu SH, Guo YP. Droplet Manipulation under a Magnetic Field: A Review. BIOSENSORS 2022; 12:bios12030156. [PMID: 35323426 PMCID: PMC8946071 DOI: 10.3390/bios12030156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/27/2022] [Accepted: 02/28/2022] [Indexed: 05/04/2023]
Abstract
The magnetic manipulation of droplets is one of the emerging magnetofluidic technologies that integrate multiple disciplines, such as electromagnetics, fluid mechanics and so on. The directly driven droplets are mainly composed of ferrofluid or liquid metal. This kind of magnetically induced droplet manipulation provides a remote, wireless and programmable approach beneficial for research and engineering applications, such as drug synthesis, biochemistry, sample preparation in life sciences, biomedicine, tissue engineering, etc. Based on the significant growth in the study of magneto droplet handling achieved over the past decades, further and more profound explorations in this field gained impetus, raising concentrations on the construction of a comprehensive working mechanism and the commercialization of this technology. Current challenges faced are not limited to the design and fabrication of the magnetic field, the material, the acquisition of precise and stable droplet performance, other constraints in processing speed and so on. The rotational devices or systems could give rise to additional issues on bulky appearance, high cost, low reliability, etc. Various magnetically introduced droplet behaviors, such as deformation, displacement, rotation, levitation, splitting and fusion, are mainly introduced in this work, involving the basic theory, functions and working principles.
Collapse
|
10
|
Fallah K, Fattahi E. Splitting of droplet with different sizes inside a symmetric T-junction microchannel using an electric field. Sci Rep 2022; 12:3226. [PMID: 35217700 PMCID: PMC8881490 DOI: 10.1038/s41598-022-07130-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the current study, droplets dynamics under an asymmetric electric field in a T-junction are numerically studied using COMSOL Multi-physics software. The effect of different factors such as dimensionless length of mother droplet (L*), Capillary number (Ca), and electric capillary number (Cae) are investigated on the breakup process in symmetric T-junctions. Two novel patterns of droplets, namely, hybrid asymmetric splitting mode and sorting patterns, have been observed by imposing an electric field in one branch of the microchannel. It is also concluded that using an electric field is a promising strategy to reach droplets with arbitrary sizes and control over the splitting ratio of daughter droplets precisely in a T- junction by adjusting the electric field strength. After a certain electric capillary number (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left. {Ca_{e} } \right|_{Sorting}$$\end{document}CaeSorting), the mother droplet does not breakup and is sorted on the side of the branch that the electric field imposes. Furthermore, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\left. {Ca_{e} } \right|_{Sorting}$$\end{document}CaeSorting increases with the increment of L* and Ca.
Collapse
Affiliation(s)
- Keivan Fallah
- Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran.
| | - Ehsan Fattahi
- Brewing and beverage technology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
11
|
Ma Y, Zhu C, Fu T, Ma Y, Li HZ. Dynamics of non-Newtonian droplet breakup with partial obstruction in microfluidic Y-junction. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
12
|
Esmaeilzadeh S, Qin Z, Riaz A, Tchelepi HA. Wettability and capillary effects: Dynamics of pinch-off in unconstricted straight capillary tubes. Phys Rev E 2020; 102:023109. [PMID: 32942359 DOI: 10.1103/physreve.102.023109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 07/16/2020] [Indexed: 11/07/2022]
Abstract
We study the interfacial evolution of immiscible two-phase flow within a capillary tube in the partial wetting regime using direct numerical simulation. We investigate the flow patterns resulting from the displacement of a more viscous fluid by a less viscous one under a wide range of wettability conditions. We find that beyond a wettability dependent critical capillary number, a uniform displacement by a less viscous fluid can transition into a growing finger that eventually breaks up into discrete blobs by a series of pinch-off events for both wetting and nonwetting contact angles. This study validates previous experimental observations of pinch-off for wetting contact angles and extends those to nonwetting contact angles. We find that the blob length increases with the capillary number. We observe that the time between consecutive pinch-off events decreases with the capillary number and is greater for more wetting conditions in the displaced phase. We further show that the blob separation distance as a function of the difference between the inlet velocity and the contact line speed collapses into two monotonically decreasing curves for wetting and nonwetting contact angles. For the phase separation in the form of pinch-off, this work provides a quantitative study of the emerging length and timescales and their dependence on the wettability conditions, capillary effects, and viscous forces.
Collapse
Affiliation(s)
- Soheil Esmaeilzadeh
- Department of Energy Resources Engineering, Stanford University, California 94305, USA
| | - Zhipeng Qin
- Department of Energy Resources Engineering, Stanford University, California 94305, USA.,Department of Geophysics, Stanford University, California 94305, USA
| | - Amir Riaz
- Department of Mechanical Engineering, University of Maryland, Maryland 20742, USA
| | - Hamdi A Tchelepi
- Department of Energy Resources Engineering, Stanford University, California 94305, USA
| |
Collapse
|
13
|
Sohrabi S, Kassir N, Keshavarz Moraveji M. Droplet microfluidics: fundamentals and its advanced applications. RSC Adv 2020; 10:27560-27574. [PMID: 35516933 PMCID: PMC9055587 DOI: 10.1039/d0ra04566g] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/03/2020] [Accepted: 07/09/2020] [Indexed: 01/09/2023] Open
Abstract
Droplet-based microfluidic systems have been shown to be compatible with many chemical and biological reagents and capable of performing a variety of operations that can be rendered programmable and reconfigurable. This platform has dimensional scaling benefits that have enabled controlled and rapid mixing of fluids in the droplet reactors, resulting in decreased reaction times. This, coupled with the precise generation and repeatability of droplet operations, has made the droplet-based microfluidic system a potent high throughput platform for biomedical research and applications. In addition to being used as micro-reactors ranging from the nano- to femtoliter (10-15 liters) range; droplet-based systems have also been used to directly synthesize particles and encapsulate many biological entities for biomedicine and biotechnology applications. For this, in the following article we will focus on the various droplet operations, as well as the numerous applications of the system and its future in many advanced scientific fields. Due to advantages of droplet-based systems, this technology has the potential to offer solutions to today's biomedical engineering challenges for advanced diagnostics and therapeutics.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | - Nour Kassir
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran Polytechnic Iran
| | | |
Collapse
|
14
|
Liu Z, Fontana F, Python A, Hirvonen JT, Santos HA. Microfluidics for Production of Particles: Mechanism, Methodology, and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1904673. [PMID: 31702878 DOI: 10.1002/smll.201904673] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/27/2019] [Indexed: 06/10/2023]
Abstract
In the past two decades, microfluidics-based particle production is widely applied for multiple biological usages. Compared to conventional bulk methods, microfluidic-assisted particle production shows significant advantages, such as narrower particle size distribution, higher reproducibility, improved encapsulation efficiency, and enhanced scaling-up potency. Herein, an overview of the recent progress of the microfluidics technology for nano-, microparticles or droplet fabrication, and their biological applications is provided. For both nano-, microparticles/droplets, the previously established mechanisms behind particle production via microfluidics and some typical examples during the past five years are discussed. The emerging interdisciplinary technologies based on microfluidics that have produced microparticles or droplets for cellular analysis and artificial cells fabrication are summarized. The potential drawbacks and future perspectives are also briefly discussed.
Collapse
Affiliation(s)
- Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Andre Python
- Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, Big Data Institute, University of Oxford, OX3 7LF, Oxford, UK
| | - Jouni T Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
15
|
Sun X, Zhu C, Fu T, Ma Y, Li HZ. Breakup dynamics of elastic droplet and stretching of polymeric filament in a T-junction. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2019.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kang KK, Lee B, Lee CS. Recent progress in the synthesis of inorganic particulate materials using microfluidics. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2018.08.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Wang X, Liu Z, Pang Y. Breakup dynamics of droplets in an asymmetric bifurcation by μPIV and theoretical investigations. Chem Eng Sci 2019. [DOI: 10.1016/j.ces.2018.12.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Li Z, Li L, Liao M, He L, Wu P. Multiple splitting of droplets using multi-furcating microfluidic channels. BIOMICROFLUIDICS 2019; 13:024112. [PMID: 31065311 PMCID: PMC6486392 DOI: 10.1063/1.5086716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Removing volumes from droplets is a challenging but critical step in many droplet-based applications. Geometry-mediated droplet splitting has the potential to reliably divide droplets and thus facilitate the implementation of this step. In this paper, we report the design of multi-furcating microfluidic channels for efficient droplet splitting. We studied the splitting regimes as the size of the mother droplets varied and investigated the dependence of the transition between splitting regimes on the capillary number and the dimensionless droplet length. We found that the results obtained with our device agreed with the reported dimensionless analysis law in T-junctions. We further investigated the effect of channel lengths on the volume allocation in branch channels and achieved droplet splitting with various splitting ratios. This study proposed an efficient on-demand droplet splitting method and the findings could potentially be applied in washing steps in droplet-based biological assays or assays that require aliquot.
Collapse
Affiliation(s)
- Zida Li
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Luoquan Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Meixiang Liao
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Liqun He
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Ping Wu
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
19
|
Vecchiolla D, Giri V, Biswal SL. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation. SOFT MATTER 2018; 14:9312-9325. [PMID: 30289417 DOI: 10.1039/c8sm01285g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
By incorporating the techniques of geometrically mediated splitting and bubble-bubble breakup, the present work offers a novel microfluidic foam generation system via production of segregated, mono- or bidisperse bubbles at capacities exceeding 10 000 bubbles per second. Bubble-bubble pinch-off is precise at high capillary numbers (Ca > 0.065), generating monodisperse or bidisperse daughter bubbles for a symmetric or an asymmetric expansion respectively. Bi- or tridisperse foam is produced as pinch-off perfectly alternates such that the system contains twice the number of fragmented bubbles as intact bubbles. A relationship between the upstream bubble extension and the capillary number demarcates the different regimes of pinch-off defined with respect to frequency and precision: non-splitting, irregular, polydisperse, and monodisperse (or bidisperse for an asymmetric expansion). For tridisperse foam generation via a fixed asymmetric expansion geometry, the wall bubble confinement can be tuned to adjust the pinch-off accuracy in order to access a spectrum of fragmented bubble size ratios. The simplicity in operating and characterizing our system will enable studies on dynamic bubble interactions and ordered, wet foam applications.
Collapse
Affiliation(s)
- Daniel Vecchiolla
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX 77005, USA.
| | | | | |
Collapse
|
20
|
Li Y, Hu X, Liang S, Li J, Chen H. Cleaning of Fluid-Infused Surfaces in Microchannels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:12532-12537. [PMID: 30253647 DOI: 10.1021/acs.langmuir.8b02237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
When an immiscible fluid is flowing over a fluid-infused surface with transverse grooves in a microchannel, the infused fluid is either left in or cleaned away from the grooves by the flowing fluid. The cleaning status depends on the geometric parameters of the groove and the contact angle of the flowing fluids. The critical width of the grooves for the infused fluid enclosed in or driven out of the grooves is derived. This study helps to understand the stability of the Cassie status in a low-shear flow where the surface tension plays the key role.
Collapse
Affiliation(s)
- Yongjian Li
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Xiangyu Hu
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| | - Shuaishuai Liang
- Mechanical Engineering School , University of Science and Technology Beijing , Beijing 100083 , China
| | - Jiang Li
- Mechanical Engineering School , University of Science and Technology Beijing , Beijing 100083 , China
| | - Haosheng Chen
- State Key Laboratory of Tribology , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
21
|
Wang X, Liu Z, Pang Y. Droplet breakup in an asymmetric bifurcation with two angled branches. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Ziyi X, Taotao F, Chunying Z, Shaokun J, Youguang M, Kai W, Guangsheng L. Dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions. Electrophoresis 2018; 40:376-387. [PMID: 30188577 DOI: 10.1002/elps.201800330] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/27/2018] [Indexed: 11/05/2022]
Abstract
For revealing the dynamics of partially obstructed breakup of bubbles in microfluidic Y-junctions, the combination of dimensionless power-law and geometric model was applied to study the effects of capillary number, bubble length, and channel angle on the bubble rupture process. In the squeezing process, the gas-liquid interface curve follows the parabolic model. For the evolution of the bubble neck during breakup, the increase of the bubble length, the channel angle, and the capillary number leads to the decrease of the focus distance α. The chord m increases with the increase of the capillary number and the decrease of the bubble length, and it would reach the maximum value when the channel angle is 90°. In the fast pinch-off stage during bubble breakup, the bubble's neck curve no longer conforms to the parabolic model so the focus and chord no longer exist. For the evolution of the bubble head during breakup, the value of γ approaches 1 with the increase of the capillary number and the bubble length, and with the close of the channel angle to 90°. It is found that the quadrilateral model can be applied for the partially obstructed rupture of bubbles in the symmetrical microfluidic Y-junction.
Collapse
Affiliation(s)
- Xu Ziyi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Fu Taotao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Zhu Chunying
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Jiang Shaokun
- The 718th Research Institute of China Shipbuilding Industry Corporation, Handan City, Hebei P rovince, P. R. China
| | - Ma Youguang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P. R. China
| | - Wang Kai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
| | - Luo Guangsheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
23
|
Cheng WL, Sadr R, Dai J, Han A. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels. Biomed Microdevices 2018; 20:72. [DOI: 10.1007/s10544-018-0310-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Ma Y, Zheng M, Bah MG, Wang J. Effects of obstacle lengths on the asymmetric breakup of a droplet in a straight microchannel. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Abstract
We present a microfluidic chip that enables electrofusion of cells in microdroplets, with exchange of nuclear components. It is shown, to our knowledge for the first time, electrofusion of two HL60 cells, inside a microdroplet. This is the crucial intermediate step for controlled hybridoma formation where a B cell is electrofused with a myeloma cell. We use a microfluidic device consisting of a microchannel structure in PDMS bonded to a glass substrate through which droplets with two differently stained HL60 cells are transported. An array of six recessed platinum electrode pairs is used for electrofusion. When applying six voltage pulses of 2–3 V, the membrane electrical field is about 1 MV/cm for 1 ms. This results in electrofusion of these cells with a fusion yield of around 5%. The operation with individual cell pairs, the appreciable efficiency and the potential to operate in high-throughput (up to 500 cells sec−1) makes the microdroplet fusion technology a promising platform for cell electrofusion, which has the potential to compete with the conventional methods. Besides, this platform is not restricted to cell fusion but is also applicable to various other cell-based assays such as single cell analysis and differentiation assays.
Collapse
|
26
|
Droplet Breakup Dynamics in Bi-Layer Bifurcating Microchannel. MICROMACHINES 2018; 9:mi9020057. [PMID: 30393333 PMCID: PMC6187458 DOI: 10.3390/mi9020057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/20/2018] [Accepted: 01/28/2018] [Indexed: 12/11/2022]
Abstract
Breakup of droplets at bi-layer bifurcating junction in polydimethylsiloxane (PDMS) microchannel has been investigated by experiments and numerical simulation. The pressure drop in bi-layer bifurcating channel was investigated and compared with single-layer bifurcating channel. Daughter droplet size variation generated in bi-layer bifurcating microchannel was analyzed. The correlation was proposed to predict the transition between breakup and non-breakup conditions of droplets in bi-layer bifurcating channel using a phase diagram. In the non-breakup regime, droplets exiting port can be switched via tuning flow resistance by controlling radius of curvature, and or channel height ratio. Compared with single-layer bifurcating junction, 3-D cutting in diagonal direction from bi-layer bifurcating junction induces asymmetric fission to form daughter droplets with distinct sizes while each size has good monodispersity. Lower pressure drop is required in the new microsystem. The understanding of the droplet fission in the novel microstructure will enable more versatile control over the emulsion formation, fission and sorting. The model system can be developed to investigate the encapsulation and release kinetics of emulsion templated particles such as drug encapsulated microcapsules as they flow through complex porous media structures, such as blood capillaries or the porous tissue structures, which feature with bifurcating junctions.
Collapse
|
27
|
Kim HS, Mason TG. Advances and challenges in the rheology of concentrated emulsions and nanoemulsions. Adv Colloid Interface Sci 2017; 247:397-412. [PMID: 28821349 DOI: 10.1016/j.cis.2017.07.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/02/2017] [Indexed: 11/26/2022]
Abstract
We review advances that have been made in the rheology of concentrated emulsions and nanoemulsions, which can serve as model soft materials that have highly tunable viscoelastic properties at droplet volume fractions near and above the glass transition and jamming point. As revealed by experiments, simulations, and theoretical models, interfacial and positional structures of droplets can depend on the applied flow history and osmotic pressure that an emulsion has experienced, thereby influencing its key rheological properties such as viscoelastic moduli, yield stress and strain, and flow behavior. We emphasize studies of monodisperse droplets, since these have led to breakthroughs in the fundamental understanding of dispersed soft matter. This review also covers the rheological properties of attractive emulsions, which can exhibit a dominant elasticity even at droplet volume fractions far below maximal random jamming of hard spheres.
Collapse
|
28
|
Affiliation(s)
- Cong Xu
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tingliang Xie
- Institute of Nuclear and
New Energy Technology, Collaborative Innovation Center of Advanced
Nuclear Energy Technology, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
29
|
Doonan SR, Bailey RC. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics. Anal Chem 2017; 89:4091-4099. [PMID: 28222260 PMCID: PMC5812353 DOI: 10.1021/acs.analchem.6b05041] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.
Collapse
Affiliation(s)
- Steven R. Doonan
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan C. Bailey
- Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, Illinois, 61801, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Huang G, Li M, Yang Q, Li Y, Liu H, Yang H, Xu F. Magnetically Actuated Droplet Manipulation and Its Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1155-1166. [PMID: 27991766 DOI: 10.1021/acsami.6b09017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Droplet manipulation has found broad applications in various engineering and biomedical fields, such as biochemistry, microfluidic systems, drug delivery, and tissue engineering. Many methods have been developed to enhance the ability for manipulating droplets, among which magnetically actuated droplet manipulation has attracted widespread interests due to its remote, noninvasive manipulation ability and biocompatibility. This review summarizes the approaches and their principles that enable actuating the droplet magnetically. The potential biomedical applications of such a technique in bioassay, cell assembly, and tissue engineering are given.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | | |
Collapse
|
31
|
Zhu P, Wang L. Passive and active droplet generation with microfluidics: a review. LAB ON A CHIP 2016; 17:34-75. [PMID: 27841886 DOI: 10.1039/c6lc01018k] [Citation(s) in RCA: 545] [Impact Index Per Article: 60.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Precise and effective control of droplet generation is critical for applications of droplet microfluidics ranging from materials synthesis to lab-on-a-chip systems. Methods for droplet generation can be either passive or active, where the former generates droplets without external actuation, and the latter makes use of additional energy input in promoting interfacial instabilities for droplet generation. A unified physical understanding of both passive and active droplet generation is beneficial for effectively developing new techniques meeting various demands arising from applications. Our review of passive approaches focuses on the characteristics and mechanisms of breakup modes of droplet generation occurring in microfluidic cross-flow, co-flow, flow-focusing, and step emulsification configurations. The review of active approaches covers the state-of-the-art techniques employing either external forces from electrical, magnetic and centrifugal fields or methods of modifying intrinsic properties of flows or fluids such as velocity, viscosity, interfacial tension, channel wettability, and fluid density, with a focus on their implementations and actuation mechanisms. Also included in this review is the contrast among different approaches of either passive or active nature.
Collapse
Affiliation(s)
- Pingan Zhu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| | - Liqiu Wang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China. and HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), 311300, Hangzhou, Zhejiang, China
| |
Collapse
|
32
|
Lu Y, Fu T, Zhu C, Ma Y, Li HZ. Dynamics of bubble breakup at a T junction. Phys Rev E 2016; 93:022802. [PMID: 26986389 DOI: 10.1103/physreve.93.022802] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 06/05/2023]
Abstract
The gas-liquid interfacial dynamics of bubble breakup in a T junction was investigated. Four regimes were observed for a bubble passing through the T junction. It was identified by the stop flow that a critical width of the bubble neck existed: if the minimum width of the bubble neck was less than the critical value, the breakup was irreversible and fast; while if the minimum width of the bubble neck was larger than the critical value, the breakup was reversible and slow. The fast breakup was driven by the surface tension and liquid inertia and is independent of the operating conditions. The minimum width of the bubble neck could be scaled with the remaining time as a power law with an exponent of 0.22 in the beginning and of 0.5 approaching the final fast pinch-off. The slow breakup was driven by the continuous phase and the gas-liquid interface was in the equilibrium stage. Before the appearance of the tunnel, the width of the depression region could be scaled with the time as a power law with an exponent of 0.75; while after that, the width of the depression was a logarithmic function with the time.
Collapse
Affiliation(s)
- Yutao Lu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Huai Z Li
- Laboratory of Reactions and Process Engineering, University of Lorraine, CNRS, 1, rue Grandville, BP 20451, 54001 Nancy cedex, France
| |
Collapse
|
33
|
Yu D, Zheng M, Jin T, Wang J. Asymmetric breakup of a droplet in an axisymmetric extensional flow. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Li H, Wu Y, Wang X, Zhu C, Fu T, Ma Y. Magnetofluidic control of the breakup of ferrofluid droplets in a microfluidic Y-junction. RSC Adv 2016. [DOI: 10.1039/c5ra21802k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Breakup of the ferrofluid droplets at the Y-junction divergence under various flow rate ratios.
Collapse
Affiliation(s)
- Huajun Li
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Yining Wu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Xiaoda Wang
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering
- Collaborative Innovation Center of Chemical science and Engineering (Tianjin)
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
35
|
Enhancing Throughput of Combinatorial Droplet Devices via Droplet Bifurcation, Parallelized Droplet Fusion, and Parallelized Detection. MICROMACHINES 2015. [DOI: 10.3390/mi6101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
|
37
|
|
38
|
Sesen M, Alan T, Neild A. Microfluidic plug steering using surface acoustic waves. LAB ON A CHIP 2015; 15:3030-8. [PMID: 26079216 DOI: 10.1039/c5lc00468c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Digital microfluidic systems, in which isolated droplets are dispersed in a carrier medium, offer a method to study biological assays and chemical reactions highly efficiently. However, it's challenging to manipulate these droplets in closed microchannel devices. Here, we present a method to selectively steer plugs (droplets with diameters larger than the channel's width) at a specially designed Y-junction within a microfluidic chip. The method makes use of surface acoustic waves (SAWs) impinging on a multiphase interface in which an acoustic contrast is present. As a result, the liquid-liquid interface is subjected to acoustic radiation forces. These forces are exploited to steer plugs into selected branches of the Y-junction. Furthermore, the input power can be finely tuned to split a plug into two uneven plugs. The steering of plugs as a whole, based on plug volume and velocity is thoroughly characterized. The results indicate that there is a threshold plug volume after which the steering requires elevated electrical energy input. This plug steering method can easily be integrated to existing lab-on-a-chip devices and it offers a robust and active plug manipulation technique in closed microchannels.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| | | | | |
Collapse
|
39
|
Bithi SS, Vanapalli SA. Collective dynamics of non-coalescing and coalescing droplets in microfluidic parking networks. SOFT MATTER 2015; 11:5122-5132. [PMID: 26036726 DOI: 10.1039/c5sm01077b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We study the complex collective dynamics mediated by flow resistance interactions when trains of non-coalescing and coalescing confined drops are introduced into a microfluidic parking network (MPN). The MPN consists of serially connected loops capable of parking arrays of drops. We define parking modes based on whether drops park without breakage or drop fragments are parked subsequent to breakage or drops park after coalescence. With both non-coalescing and coalescing drops, we map the occurrence of these parking modes in MPNs as a function of system parameters including drop volume, drop spacing and capillary number. We find that the non-coalescing drops can either park or break in the network, producing highly polydisperse arrays. We further show that parking due to collision induced droplet break-up is the main cause of polydispersity. We discover that collisions occur due to a crowding instability, which is a natural outcome of the network topology. In striking contrast, with coalescing drops we show that the ability of drops to coalesce rectifies the volume of parked polydisperse drops, despite drops breaking in the network. We find that several parking modes act in concert during this hydrodynamic self-rectification mechanism, producing highly monodisperse drop arrays over a wide operating parameter space. We demonstrate that the rectification mechanism can be harnessed to produce two-dimensional arrays of microfluidic drops with highly tunable surface-to-volume ratios, paving the way for fundamental investigations of interfacial phenomena in emulsions.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA.
| | | |
Collapse
|
40
|
Bedram A, Moosavi A, Hannani SK. Analytical relations for long-droplet breakup in asymmetric T junctions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:053012. [PMID: 26066254 DOI: 10.1103/physreve.91.053012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Indexed: 06/04/2023]
Abstract
We develop accurate analytical relations for the droplet volume ratio, droplet length during breakup process, and pressure drop of asymmetric T junctions with a valve in each of the branches for producing unequal-sized droplets. An important advantage of this system is that after manufacturing the system, the size of the generated droplets can be changed simply by adjusting the valves. The results indicate that if the valve ratio is smaller than 0.65, the system enters a nonbreakup regime. Also the pressure drop does not depend on the time and decreases by increasing the valve ratio, namely, opening the degree of valve 1 to valve 2. In addition, the results reveal that by decreasing (increasing) the valve ratio, the droplet length of branch 1 decreases (increases) and the droplet length of branch 2 increases (decreases) linearly while the whole length of the droplet remains unchanged.
Collapse
Affiliation(s)
- Ahmad Bedram
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran
| | - Ali Moosavi
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran
| | - Siamak Kazemzadeh Hannani
- Center of Excellence in Energy Conversion (CEEC), School of Mechanical Engineering, Sharif University of Technology, Azadi Avenue, P. O. Box 11365-9567, Tehran, Iran
| |
Collapse
|
41
|
Schmit A, Salkin L, Courbin L, Panizza P. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles. SOFT MATTER 2015; 11:2454-2460. [PMID: 25668310 DOI: 10.1039/c4sm02036g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Depending on the capillary number at play and the parameters of the flow geometry, a drop may or may not break when colliding with an obstacle in a microdevice. Modeling the flow of one-dimensional trains of monodisperse drops impacting a micro-obstacle, we show numerically that complex dynamics may arise through drop-to-drop hydrodynamic interactions: we observe sequences of breakup events in which the size of the daughter drops created upon breaking mother ones becomes a periodic function of time. We demonstrate the existence of numerous bifurcations between periodic breakup regimes and we establish diagrams mapping the possible breakup dynamics as a function of the governing (physicochemical, hydrodynamic, and geometric) parameters. Microfluidic experiments validate our model as they concur very well with predictions.
Collapse
Affiliation(s)
- Alexandre Schmit
- IPR, UMR CNRS 6251, Campus Beaulieu, Université Rennes 1, 35042 Rennes, France.
| | | | | | | |
Collapse
|
42
|
SOAX: a software for quantification of 3D biopolymer networks. Sci Rep 2015; 5:9081. [PMID: 25765313 PMCID: PMC4357869 DOI: 10.1038/srep09081] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 02/16/2015] [Indexed: 12/20/2022] Open
Abstract
Filamentous biopolymer networks in cells and tissues are routinely imaged by confocal microscopy. Image analysis methods enable quantitative study of the properties of these curvilinear networks. However, software tools to quantify the geometry and topology of these often dense 3D networks and to localize network junctions are scarce. To fill this gap, we developed a new software tool called “SOAX”, which can accurately extract the centerlines of 3D biopolymer networks and identify network junctions using Stretching Open Active Contours (SOACs). It provides an open-source, user-friendly platform for network centerline extraction, 2D/3D visualization, manual editing and quantitative analysis. We propose a method to quantify the performance of SOAX, which helps determine the optimal extraction parameter values. We quantify several different types of biopolymer networks to demonstrate SOAX's potential to help answer key questions in cell biology and biophysics from a quantitative viewpoint.
Collapse
|
43
|
Brouzes E, Kruse T, Kimmerling R, Strey HH. Rapid and continuous magnetic separation in droplet microfluidic devices. LAB ON A CHIP 2015; 15:908-19. [PMID: 25501881 PMCID: PMC4323160 DOI: 10.1039/c4lc01327a] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a droplet microfluidic method to extract molecules of interest from a droplet in a rapid and continuous fashion. We accomplish this by first marginalizing functionalized super-paramagnetic beads within the droplet using a magnetic field, and then splitting the droplet into one droplet containing the majority of magnetic beads and one droplet containing the minority fraction. We quantitatively analysed the factors which affect the efficiency of marginalization and droplet splitting to optimize the enrichment of magnetic beads. We first characterized the interplay between the droplet velocity and the strength of the magnetic field and its effect on marginalization. We found that marginalization is optimal at the midline of the magnet and that marginalization is a good predictor of bead enrichment through splitting at low to moderate droplet velocities. Finally, we focused our efforts on manipulating the splitting profile to improve the enrichment provided by asymmetric splitting. We designed asymmetric splitting forks that employ capillary effects to preferentially extract the bead-rich regions of the droplets. Our strategy represents a framework to optimize magnetic bead enrichment methods tailored to the requirements of specific droplet-based applications. We anticipate that our separation technology is well suited for applications in single-cell genomics and proteomics. In particular, our method could be used to separate mRNA bound to poly-dT functionalized magnetic microparticles from single cell lysates to prepare single-cell cDNA libraries.
Collapse
Affiliation(s)
- Eric Brouzes
- Biomedical Engineering Department, Stony Brook University, Stony Brook, NY 11794-5281, USA.
| | | | | | | |
Collapse
|
44
|
Wang X, Zhu C, Fu T, Ma Y. Bubble breakup with permanent obstruction in an asymmetric microfluidic T-junction. AIChE J 2014. [DOI: 10.1002/aic.14704] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoda Wang
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Chunying Zhu
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Taotao Fu
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| |
Collapse
|
45
|
Wang WS, Vanapalli SA. Millifluidics as a simple tool to optimize droplet networks: Case study on drop traffic in a bifurcated loop. BIOMICROFLUIDICS 2014; 8:064111. [PMID: 25553188 PMCID: PMC4257966 DOI: 10.1063/1.4902910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 11/17/2014] [Indexed: 05/07/2023]
Abstract
We report that modular millifluidic networks are simpler, more cost-effective alternatives to traditional microfluidic networks, and they can be rapidly generated and altered to optimize designs. Droplet traffic can also be studied more conveniently and inexpensively at the millimeter scale, as droplets are readily visible to the naked eye. Bifurcated loops, ladder networks, and parking networks were made using only Tygon(®) tubing and plastic T-junction fittings and visualized using an iPod(®) camera. As a case study, droplet traffic experiments through a millifluidic bifurcated loop were conducted, and the periodicity of drop spacing at the outlet was mapped over a wide range of inlet drop spacing. We observed periodic, intermittent, and aperiodic behaviors depending on the inlet drop spacing. The experimentally observed periodic behaviors were in good agreement with numerical simulations based on the simple network model. Our experiments further identified three main sources of intermittency between different periodic and/or aperiodic behaviors: (1) simultaneous entering and exiting events, (2) channel defects, and (3) equal or nearly equal hydrodynamic resistances in both sides of the bifurcated loop. In cases of simultaneous events and/or channel defects, the range of input spacings where intermittent behaviors are observed depends on the degree of inherent variation in input spacing. Finally, using a time scale analysis of syringe pump fluctuations and experiment observation times, we find that in most cases, more consistent results can be generated in experiments conducted at the millimeter scale than those conducted at the micrometer scale. Thus, millifluidic networks offer a simple means to probe collective interactions due to drop traffic and optimize network geometry to engineer passive devices for biological and material analysis.
Collapse
Affiliation(s)
- William S Wang
- Department of Chemical Engineering , Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering , Texas Tech University , Lubbock, Texas 79409-3121, USA
| |
Collapse
|
46
|
Chen Y, Wang C. Hydrodynamic interaction of two deformable drops in confined shear flow. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:033010. [PMID: 25314532 DOI: 10.1103/physreve.90.033010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Indexed: 06/04/2023]
Abstract
We investigate hydrodynamic interaction between two neutrally buoyant circular drops in a confined shear flow based on a computational fluid dynamics simulation using the volume-of-fluid method. The rheological behaviors of interactive drops and the flow regimes are explored with a focus on elucidation of underlying physical mechanisms. We find that two types of drop behaviors during interaction occur, including passing-over motion and reversing motion, which are governed by the competition between the drag of passing flow and the entrainment of reversing flow in matrix fluid. With the increasing confinement, the drop behavior transits from the passing-over motion to reversing motion, because the entrainment of the reversing-flow matrix fluid turns to play the dominant role. The drag of the ambient passing flow is increased by enlarging the initial lateral separation due to the departure of the drop from the reversing flow in matrix fluid, resulting in the emergence of passing-over motion. In particular, a corresponding phase diagram is plotted to quantitatively illustrate the dependence of drop morphologies during interaction on confinement and initial lateral separation.
Collapse
Affiliation(s)
- Yongping Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China and School of Hydraulic, Energy and Power Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, People's Republic of China
| | - Chengyao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
47
|
Bithi SS, Wang WS, Sun M, Blawzdziewicz J, Vanapalli SA. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics. BIOMICROFLUIDICS 2014; 8:034118. [PMID: 25379078 PMCID: PMC4162452 DOI: 10.1063/1.4885079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 06/13/2014] [Indexed: 05/06/2023]
Abstract
Multiwell plate and pipette systems have revolutionized modern biological analysis; however, they have disadvantages because testing in the submicroliter range is challenging, and increasing the number of samples is expensive. We propose a new microfluidic methodology that delivers the functionality of multiwell plates and pipettes at the nanoliter scale by utilizing drop coalescence and confinement-guided breakup in microfluidic parking networks (MPNs). Highly monodisperse arrays of drops obtained using a hydrodynamic self-rectification process are parked at prescribed locations in the device, and our method allows subsequent drop manipulations such as fine-gradation dilutions, reactant addition, and fluid replacement while retaining microparticles contained in the sample. Our devices operate in a quasistatic regime where drop shapes are determined primarily by the channel geometry. Thus, the behavior of parked drops is insensitive to flow conditions. This insensitivity enables highly parallelized manipulation of drop arrays of different composition, without a need for fine-tuning the flow conditions and other system parameters. We also find that drop coalescence can be switched off above a critical capillary number, enabling individual addressability of drops in complex MPNs. The platform demonstrated here is a promising candidate for conducting multistep biological assays in a highly multiplexed manner, using thousands of submicroliter samples.
Collapse
Affiliation(s)
- Swastika S Bithi
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - William S Wang
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Meng Sun
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| | - Jerzy Blawzdziewicz
- Department of Mechanical Engineering, Texas Tech University , Lubbock, Texas 79401-1021, USA
| | - Siva A Vanapalli
- Department of Chemical Engineering, Texas Tech University , Lubbock, Texas 79409-3121, USA
| |
Collapse
|
48
|
Wang X, Zhu C, Fu T, Ma Y. Critical lengths for the transition of bubble breakup in microfluidic T-junctions. Chem Eng Sci 2014. [DOI: 10.1016/j.ces.2014.02.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Fu T, Ma Y, Li HZ. Hydrodynamic feedback on bubble breakup at a T-junction within an asymmetric loop. AIChE J 2014. [DOI: 10.1002/aic.14377] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taotao Fu
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
- Laboratory of Reactions and Process Engineering; University of Lorraine; CNRS 1 rue Grandville BP 20451 Nancy Cedex 54001 France
| | - Youguang Ma
- State Key Laboratory of Chemical Engineering; School of Chemical Engineering and Technology, Tianjin University; Tianjin 300072 China
| | - Huai Z. Li
- Laboratory of Reactions and Process Engineering; University of Lorraine; CNRS 1 rue Grandville BP 20451 Nancy Cedex 54001 France
| |
Collapse
|
50
|
Vladisavljević GT, Khalid N, Neves MA, Kuroiwa T, Nakajima M, Uemura K, Ichikawa S, Kobayashi I. Industrial lab-on-a-chip: design, applications and scale-up for drug discovery and delivery. Adv Drug Deliv Rev 2013; 65:1626-63. [PMID: 23899864 DOI: 10.1016/j.addr.2013.07.017] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 07/16/2013] [Accepted: 07/18/2013] [Indexed: 01/09/2023]
Abstract
Microfluidics is an emerging and promising interdisciplinary technology which offers powerful platforms for precise production of novel functional materials (e.g., emulsion droplets, microcapsules, and nanoparticles as drug delivery vehicles- and drug molecules) as well as high-throughput analyses (e.g., bioassays, detection, and diagnostics). In particular, multiphase microfluidics is a rapidly growing technology and has beneficial applications in various fields including biomedicals, chemicals, and foods. In this review, we first describe the fundamentals and latest developments in multiphase microfluidics for producing biocompatible materials that are precisely controlled in size, shape, internal morphology and composition. We next describe some microfluidic applications that synthesize drug molecules, handle biological substances and biological units, and imitate biological organs. We also highlight and discuss design, applications and scale up of droplet- and flow-based microfluidic devices used for drug discovery and delivery.
Collapse
|