1
|
Qiao Y, Liu Z, Ma X, Keim NC, Cheng X. Heterogeneous Dynamics of Sheared Particle-Laden Fluid Interfaces with Janus Particle Doping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12032-12040. [PMID: 37590891 DOI: 10.1021/acs.langmuir.3c01085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The formation of particle clusters can substantially modify the dynamics and mechanical properties of suspensions in both two and three dimensions. While it has been well established that large network-spanning clusters increase the rigidity of particle systems, it is still unclear how the presence of localized nonpercolating clusters affects the dynamics and mechanical properties of particle suspensions. Here, we introduce self-assembled localized particle clusters at a fluid-fluid interface by mixing a fraction of Janus particles in a monolayer of homogeneous colloids. Each Janus particle binds to a few nearby homogeneous colloids, resulting in numerous small clusters uniformly distributed across the interface. Using a custom magnetic rod interfacial stress rheometer, we apply linear oscillatory shear to the particle-laden fluid interface. By analyzing the local affine deformation of particles from optical microscopy, we show that particles in localized clusters experience substantially lower shear-induced stretching than their neighbors outside clusters. We hypothesize that such heterogeneous dynamics induced by particle clusters increase the effective surface coverage of particles, which in turn enhances the shear moduli of the interface, as confirmed by direct interfacial rheological measurements. Our study illustrates the microscopic dynamics of small clusters in a shear flow and reveals their profound effects on the macroscopic rheology of particle-laden fluid interfaces. Our findings open an avenue for designing interfacial materials with improved mechanical properties via the control of formation of localized particle clusters.
Collapse
Affiliation(s)
- Yiming Qiao
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhengyang Liu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Xiaolei Ma
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nathan C Keim
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiang Cheng
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
|
3
|
Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020; 117:1303-1311. [PMID: 31896587 PMCID: PMC6983409 DOI: 10.1073/pnas.1909447117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
Collapse
Affiliation(s)
- Ben T Larson
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Teresa Ruiz-Herrero
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Stacey Lee
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA 02138
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
4
|
Karg M, Pich A, Hellweg T, Hoare T, Lyon LA, Crassous JJ, Suzuki D, Gumerov RA, Schneider S, Potemkin II, Richtering W. Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6231-6255. [PMID: 30998365 DOI: 10.1021/acs.langmuir.8b04304] [Citation(s) in RCA: 367] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Nanogels and microgels are soft, deformable, and penetrable objects with an internal gel-like structure that is swollen by the dispersing solvent. Their softness and the potential to respond to external stimuli like temperature, pressure, pH, ionic strength, and different analytes make them interesting as soft model systems in fundamental research as well as for a broad range of applications, in particular in the field of biological applications. Recent tremendous developments in their synthesis open access to systems with complex architectures and compositions allowing for tailoring microgels with specific properties. At the same time state-of-the-art theoretical and simulation approaches offer deeper understanding of the behavior and structure of nano- and microgels under external influences and confinement at interfaces or at high volume fractions. Developments in the experimental analysis of nano- and microgels have become particularly important for structural investigations covering a broad range of length scales relevant to the internal structure, the overall size and shape, and interparticle interactions in concentrated samples. Here we provide an overview of the state-of-the-art, recent developments as well as emerging trends in the field of nano- and microgels. The following aspects build the focus of our discussion: tailoring (multi)functionality through synthesis; the role in biological and biomedical applications; the structure and properties as a model system, e.g., for densely packed arrangements in bulk and at interfaces; as well as the theory and computer simulation.
Collapse
Affiliation(s)
- Matthias Karg
- Physical Chemistry I , Heinrich-Heine-University Duesseldorf , 40204 Duesseldorf , Germany
| | - Andrij Pich
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Functional and Interactive Polymers, Institute for Technical and Macromolecular Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry , Bielefeld University , 33615 Bielefeld , Germany
| | - Todd Hoare
- Department of Chemical Engineering , McMaster University , Hamilton , Ontario L8S 4L8 , Canada
| | - L Andrew Lyon
- Schmid College of Science and Technology , Chapman University , Orange , California 92866 , United States
| | - J J Crassous
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | | | - Rustam A Gumerov
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
| | - Stefanie Schneider
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| | - Igor I Potemkin
- DWI-Leibnitz-Institute for Interactive Materials e.V. , 52056 Aachen , Germany
- Physics Department , Lomonosov Moscow State University , Moscow 119991 , Russian Federation
- National Research South Ural State University , Chelyabinsk 454080 , Russian Federation
| | - Walter Richtering
- Institute of Physical Chemistry , RWTH Aachen University , 52056 Aachen , Germany
| |
Collapse
|
5
|
Sun X, Li Y, Ma Y, Zhang Z. Direct observation of melting in a two-dimensional driven granular system. Sci Rep 2016; 6:24056. [PMID: 27052190 PMCID: PMC4823733 DOI: 10.1038/srep24056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 01/26/2023] Open
Abstract
Melting is considered to be one of the most fundamental problems in physical science. Generally, dimensionality plays an important role in melting. In three-dimension, it’s well known that a crystal melts directly into a liquid via a first-order transition. In two-dimension (2D), however, the melting process has been widely debated whether it is a first-order transition or a two-step transition with an intermediate hexatic phase. Experimentally 2D melting has been intensively studied in equilibrium systems such as molecular and colloidal crystals, but rarely been explored in non-equilibrium system such as granular materials. In this paper, we experimentally studied the 2D melting in a driven granular model system at single particle level using video recording and particle tracking techniques. Measurements of orientational/translational correlation functions show evidences that the melting is a two-step transition. A novel concept of orientational/translational susceptibilities enable us to clearly resolve the intermediate hexatic phase. Our results are in excellent agreement with the two-step melting scenario predicted by KTHNY theory, and demonstrate that the KTHNY melting scenario can be extended to non-equilibrium systems.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Yang Li
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China
| | - Yuqiang Ma
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.,National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zexin Zhang
- Centre for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.,Kavli Institute for Theoretical Physics China, CAS, Beijing 100190, China
| |
Collapse
|
6
|
Kovalcinova L, Goullet A, Kondic L. Scaling properties of force networks for compressed particulate systems. Phys Rev E 2016; 93:042903. [PMID: 27176376 DOI: 10.1103/physreve.93.042903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 06/05/2023]
Abstract
We consider, computationally and experimentally, the scaling properties of force networks in the systems of circular particles exposed to compression in two spatial dimensions. The simulations consider polydisperse and monodisperse particles, both frictional and frictionless, and in experiments we use monodisperse and bidisperse frictional particles. While for some of the considered systems we observe consistent scaling exponents describing the behavior of the force networks, we find that this behavior is not universal. In particular, we find that frictionless systems, independently of whether they partially crystallize under compression or not, show scaling properties that are significantly different compared to the frictional disordered ones. The findings of nonuniversality are confirmed by explicitly computing fractal dimension for the considered systems. The results of the physical experiments are consistent with the results obtained in simulations of frictional disordered systems.
Collapse
Affiliation(s)
- L Kovalcinova
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - A Goullet
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| | - L Kondic
- Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, New Jersey 07102, USA
| |
Collapse
|
7
|
Agrawal A, Yu HY, Srivastava S, Choudhury S, Narayanan S, Archer LA. Dynamics and yielding of binary self-suspended nanoparticle fluids. SOFT MATTER 2015; 11:5224-5234. [PMID: 26053059 DOI: 10.1039/c5sm00639b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. We discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.
Collapse
Affiliation(s)
- Akanksha Agrawal
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Choi SB, Lee JS. Jamming and unjamming transition of oil-in-water emulsions under continuous temperature change. BIOMICROFLUIDICS 2015; 9:034107. [PMID: 26064194 PMCID: PMC4457658 DOI: 10.1063/1.4922278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
To analyze the jamming and unjamming transition of oil-in-water emulsions under continuous temperature change, we simulated an emulsion system whose critical volume fraction was 0.3, which was validated with experimental results under oscillatory shear stress. In addition, we calculated the elastic modulus using the phase lag between strain and stress. Through heating and cooling, the emulsion experienced unjamming and jamming. A phenomenon-which is when the elastic modulus does not reach the expected value at the isothermal system-occurred when the emulsion system was cooled. We determined that this phenomenon was caused by the frequency being faster than the relaxation of the deformed droplets. We justified the relation between the frequency and relaxation by simulating the frequency dependency of the difference between the elastic modulus when cooled and the expected value at the same temperature.
Collapse
Affiliation(s)
- Se Bin Choi
- Department of Mechanical Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| | - Joon Sang Lee
- Department of Mechanical Engineering, Yonsei University , 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, South Korea
| |
Collapse
|
9
|
Wang X, Zheng W, Wang L, Xu N. Disordered solids without well-defined transverse phonons: the nature of hard-sphere glasses. PHYSICAL REVIEW LETTERS 2015; 114:035502. [PMID: 25659006 DOI: 10.1103/physrevlett.114.035502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Indexed: 06/04/2023]
Abstract
We probe the Ioffe-Regel limits of glasses with repulsions near the zero-temperature jamming transition by calculating the dynamical structure factors. The Ioffe-Regel limit (frequency) is reached when the phonon wavelength is comparable to the mean free path, beyond which phonons are no longer well defined. At zero temperature, the transverse Ioffe-Regel frequency vanishes at the jamming transition with a diverging length, but the longitudinal one does not, which excludes the existence of a diverging length associated with the longitudinal excitations. At low temperatures, the transverse and longitudinal Ioffe-Regel frequencies approach zero at the jamminglike transition and glass transition, respectively. As a consequence, glasses between the glass transition and the jamminglike transition, which are hard-sphere glasses in the low temperature limit, can only carry well-defined longitudinal phonons and have an opposite pressure dependence of the ratio of the shear modulus to the bulk modulus from glasses beyond the jamminglike transition.
Collapse
Affiliation(s)
- Xipeng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wen Zheng
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Lijin Wang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Ning Xu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale and Department of Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
10
|
Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes. Proc Natl Acad Sci U S A 2014; 112:342-7. [PMID: 25548187 DOI: 10.1073/pnas.1419271112] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes.
Collapse
|
11
|
Yunker PJ, Chen K, Gratale MD, Lohr MA, Still T, Yodh AG. Physics in ordered and disordered colloidal matter composed of poly(N-isopropylacrylamide) microgel particles. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2014; 77:056601. [PMID: 24801604 DOI: 10.1088/0034-4885/77/5/056601] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This review collects and describes experiments that employ colloidal suspensions to probe physics in ordered and disordered solids and related complex fluids. The unifying feature of this body of work is its clever usage of poly(N-isopropylacrylamide) (PNIPAM) microgel particles. These temperature-sensitive colloidal particles provide experimenters with a 'knob' for in situ control of particle size, particle interaction and particle packing fraction that, in turn, influence the structural and dynamical behavior of the complex fluids and solids. A brief summary of PNIPAM particle synthesis and properties is given, followed by a synopsis of current activity in the field. The latter discussion describes a variety of soft matter investigations including those that explore formation and melting of crystals and clusters, and those that probe structure, rearrangement and rheology of disordered (jammed/glassy) and partially ordered matter. The review, therefore, provides a snapshot of a broad range of physics phenomenology which benefits from the unique properties of responsive microgel particles.
Collapse
Affiliation(s)
- Peter J Yunker
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA. School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | | | | | | | | | | |
Collapse
|
12
|
van den Wildenberg S, van Loo R, van Hecke M. Shock waves in weakly compressed granular media. PHYSICAL REVIEW LETTERS 2013; 111:218003. [PMID: 24313530 DOI: 10.1103/physrevlett.111.218003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Indexed: 06/02/2023]
Abstract
We experimentally probe nonlinear wave propagation in weakly compressed granular media and observe a crossover from quasilinear sound waves at low impact to shock waves at high impact. We show that this crossover impact grows with the confining pressure P0, whereas the shock wave speed is independent of P0-two hallmarks of granular shocks predicted recently. The shocks exhibit surprising power law attenuation, which we model with a logarithmic law implying that shock dissipation is weak and qualitatively different from other granular dissipation mechanisms. We show that elastic and potential energy balance in the leading part of the shocks.
Collapse
|
13
|
Srivastava S, Archer LA, Narayanan S. Structure and transport anomalies in soft colloids. PHYSICAL REVIEW LETTERS 2013; 110:148302. [PMID: 25167044 DOI: 10.1103/physrevlett.110.148302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Indexed: 06/03/2023]
Abstract
Anomalous trends in nanoparticle correlation and motion are reported in soft nanoparticle suspensions using static and dynamic x-ray scattering measurements. Contrary to normal expectations, we find that particle-particle correlations decrease and particle dynamics become faster as volume fraction rises above a critical particle loading associated with overlap. Our observations bear many similarities to the cascade of structural and transport anomalies reported for complex, network forming molecular fluids such as water, and are argued to share similar physical origins.
Collapse
Affiliation(s)
- Samanvaya Srivastava
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Lynden A Archer
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
14
|
Bandi MM, Rivera MK, Krzakala F, Ecke RE. Fragility and hysteretic creep in frictional granular jamming. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:042205. [PMID: 23679405 DOI: 10.1103/physreve.87.042205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 02/11/2013] [Indexed: 06/02/2023]
Abstract
The granular jamming transition is experimentally investigated in a two-dimensional system of frictional, bidispersed disks subject to quasistatic, uniaxial compression without vibrational disturbances (zero granular temperature). Three primary results are presented in this experimental study. First, using disks with different static friction coefficients (μ), we experimentally verify numerical results that predict jamming onset at progressively lower packing fractions with increasing friction. Second, we show that the first compression cycle measurably differs from subsequent cycles. The first cycle is fragile-a metastable configuration with simultaneous jammed and unjammed clusters-over a small packing fraction interval (φ(1)<φ<φ(2)) and exhibits simultaneous exponential rise in pressure and exponential decrease in disk displacements over the same packing fraction interval. This fragile behavior is explained through a percolation mechanism of stressed contacts where cluster growth exhibits spatial correlation with disk displacements and contributes to recent results emphasizing fragility in frictional jamming. Control experiments show that the fragile state results from the experimental incompatibility between the requirements for zero friction and zero granular temperature. Measurements with several disk materials of varying elastic moduli E and friction coefficients μ show that friction directly controls the start of the fragile state but indirectly controls the exponential pressure rise. Finally, under repetitive loading (compression) and unloading (decompression), we find the system exhibits pressure hysteresis, and the critical packing fraction φ(c) increases slowly with repetition number. This friction-induced hysteretic creep is interpreted as the granular pack's evolution from a metastable to an eventual structurally stable configuration. It is shown to depend on the quasistatic step size Δφ, which provides the only perturbative mechanism in the experimental protocol, and the friction coefficient μ, which acts to stabilize the pack.
Collapse
Affiliation(s)
- M M Bandi
- MPA-10, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
| | | | | | | |
Collapse
|
15
|
Dagois-Bohy S, Tighe BP, Simon J, Henkes S, van Hecke M. Soft-sphere packings at finite pressure but unstable to shear. PHYSICAL REVIEW LETTERS 2012; 109:095703. [PMID: 23002855 DOI: 10.1103/physrevlett.109.095703] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Indexed: 06/01/2023]
Abstract
When are athermal soft-sphere packings jammed? Any experimentally relevant definition must, at the very least, require a jammed packing to resist shear. We demonstrate that widely used (numerical) protocols, in which particles are compressed together, can and do produce packings that are unstable to shear-and that the probability of generating such packings reaches one near jamming. We introduce a new protocol which, by allowing the system to explore different box shapes as it equilibrates, generates truly jammed packings with strictly positive shear moduli G. For these packings, the scaling of the average of G is consistent with earlier results, while the probability distribution P(G) exhibits novel and rich scalings.
Collapse
Affiliation(s)
- Simon Dagois-Bohy
- Kamerling Onnes Laboratory, Universiteit Leiden, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
16
|
Berthier L, Jacquin H, Zamponi F. Microscopic theory of the jamming transition of harmonic spheres. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:051103. [PMID: 22181365 DOI: 10.1103/physreve.84.051103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 09/18/2011] [Indexed: 05/31/2023]
Abstract
We develop a microscopic theory to analyze the phase behavior and compute correlation functions of dense assemblies of soft repulsive particles both at finite temperature, as in colloidal materials, and at vanishing temperature, a situation relevant for granular materials and emulsions. We use a mean-field statistical mechanical approach which combines elements of liquid state theory to replica calculations to obtain quantitative predictions for the location of phase boundaries, macroscopic thermodynamic properties, and microstructure of the system. We focus, in particular, on the derivation of scaling properties emerging in the vicinity of the jamming transition occurring at large density and zero temperature. The new predictions we obtain for pair correlation functions near contact are tested using computer simulations. Our work also clarifies the conceptual nature of the jamming transition and its relation to the phenomenon of the glass transition observed in atomic liquids.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb, UMR 5221, CNRS and Université Montpellier 2, Montpellier, France
| | | | | |
Collapse
|
17
|
Jacquin H, Berthier L, Zamponi F. Microscopic mean-field theory of the jamming transition. PHYSICAL REVIEW LETTERS 2011; 106:135702. [PMID: 21517398 DOI: 10.1103/physrevlett.106.135702] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 01/24/2011] [Indexed: 05/30/2023]
Abstract
Dense particle packings acquire rigidity through a nonequilibrium jamming transition commonly observed in materials from emulsions to sandpiles. We describe athermal packings and their observed geometric phase transitions by using equilibrium statistical mechanics and develop a fully microscopic, mean-field theory of the jamming transition for soft repulsive spherical particles. We derive analytically some of the scaling laws and exponents characterizing the transition and obtain new predictions for microscopic correlation functions of jammed states that are amenable to experimental verifications and whose accuracy we confirm by using computer simulations.
Collapse
Affiliation(s)
- Hugo Jacquin
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057, Université Paris Diderot-Paris 7, 10 rue Alice Domon et Léonie Duquet, 75205 Paris cedex 13, France
| | | | | |
Collapse
|
18
|
Xu X, Rice SA. Maximally random jamming of one-component and binary hard-disk fluids in two dimensions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021120. [PMID: 21405831 DOI: 10.1103/physreve.83.021120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 05/30/2023]
Abstract
We report calculations of the density of maximally random jamming of one-component and binary hard-disk fluids. The theoretical structure used provides a common framework for description of the hard-disk liquid-to-hexatic, the liquid-to-hexagonal crystal, and the liquid to maximally random jammed state transitions. Our analysis is based on locating a particular bifurcation of the solutions of the integral equation for the inhomogeneous single-particle density at the transition between different spatial structures. The bifurcation of solutions we study is initiated from the dense metastable fluid, and we associate it with the limit of stability of the fluid, which we identify with the transition from the metastable fluid to a maximally random jammed state. For the one-component hard-disk fluid the predicted packing fraction at which the metastable fluid to maximally random jammed state transition occurs is 0.84, in excellent agreement with the experimental value 0.84 ± 0.02. The corresponding analysis of the limit of stability of a binary hard-disk fluid with specified disk-diameter ratio and disk composition requires extra approximations in the representations of the direct correlation function, the equation of state, and the number of order parameters accounted for. Keeping only the order parameter identified with the largest peak in the structure factor of the highest-density regular lattice with the same disk- diameter ratio and disk composition as the binary fluid, the predicted density of maximally random jamming is found to be 0.84-0.87, depending on the equation of state used, and very weakly dependent on the ratio of disk diameters and the fluid composition, in agreement with both experimental data and computer simulation data.
Collapse
Affiliation(s)
- Xinliang Xu
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|
19
|
Potiguar FQ. From crystal to amorphous: A novel route to unjamming in soft disk packings. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 33:1-9. [PMID: 20848153 DOI: 10.1140/epje/i2010-10644-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/20/2010] [Indexed: 05/29/2023]
Abstract
Numerical studies on the unjamming packing fraction of bi- and polydisperse disk packings, which are generated through compression of a monodisperse crystal, are presented. In bidisperse systems, a fraction f(+) = 0.400 up to 0.800 of the total number of particles has their radii increased by [Formula: see text] R , while the rest has their radii decreased by the same amount. Polydisperse packings are prepared by changing all particle radii according to a uniform distribution in the range [-ΔR, ΔR] . The results indicate that the critical packing fraction is never larger than the value for the initial monodisperse crystal, Φ(o) = π/√12, and that the lowest value achieved is approximately the one for random close packing. These results are seen as a consequence of the interplay between the increase in small-small particle contacts and the local crystalline order provided by the large-large particle contacts.
Collapse
Affiliation(s)
- F Q Potiguar
- Universidade Federal do Pará, Departamento de Física, ICEN, Guamá, 66075-110, Belém, Pará, Brazil.
| |
Collapse
|
20
|
Zou LN. Spectral responses in granular compaction. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031302. [PMID: 20365729 DOI: 10.1103/physreve.81.031302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Indexed: 05/29/2023]
Abstract
The slow compaction of a tapped granular packing is reminiscent of the low-temperature dynamics glasses. Here, I study the dynamics of granular compaction by means of a volumetric spectroscopy. While the specific packing volume v displays glassy aging and memory effects at low tapping amplitudes Gamma, the dynamic volumetric susceptibility chi(v)= partial differentialv/ partial differentialGamma displays minimal glassy effects, and its frequency spectrum gives no indication of a rapidly growing time scale. These features are contrast sharply with that found in the dielectric and magnetic susceptibilities of structural and spin glasses. Instead, chi(v) appears to exhibit the behavior of a dynamic configurational specific heat, such as that obtained from computer simulations of spin-glass models. This suggests that the glassy dynamics of granular compaction is controlled by statistically rare processes that diverge from the typical dynamics of the system. From modifications of the dynamical spectrum by finite system size, I suggest that these glassy processes derive from large-scale collective particle rearrangements.
Collapse
Affiliation(s)
- Ling-Nan Zou
- Department of Physics, The University of Chicago, James Franck Institute and Chicago, Illinois 60637, USA.
| |
Collapse
|
21
|
Berthier L, Flenner E, Jacquin H, Szamel G. Scaling of the glassy dynamics of soft repulsive particles: a mode-coupling approach. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031505. [PMID: 20365738 DOI: 10.1103/physreve.81.031505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Indexed: 05/29/2023]
Abstract
We combine the hypernetted chain approximation of liquid state theory with the mode-coupling theory of the glass transition to analyze the structure and dynamics of soft spheres interacting via harmonic repulsion. We determine the locus of the fluid-glass dynamic transition in a temperature--volume fraction phase diagram. The zero-temperature (hard-sphere) glass transition influences the dynamics at finite temperatures in its vicinity. This directly implies a form of dynamic scaling for both the average relaxation time and dynamic susceptibilities quantifying dynamic heterogeneity. We discuss several qualitative disagreements between theory and existing simulations at equilibrium. Our theoretical results are, however, very similar to numerical results for the driven athermal dynamics of repulsive spheres, suggesting that "mean-field" mode-coupling approaches might be good starting points to describe these nonequilibrium dynamics.
Collapse
Affiliation(s)
- Ludovic Berthier
- Laboratoire des Colloïdes, Verres et Nanomatériaux, UMR CNRS 5587, Université Montpellier 2, 34095 Montpellier, France
| | | | | | | |
Collapse
|