1
|
Zhao C, Zheng G, Zhang C, Zhang J, Chen L. Emergence of cooperation under punishment: A reinforcement learning perspective. CHAOS (WOODBURY, N.Y.) 2024; 34:073123. [PMID: 38985966 DOI: 10.1063/5.0215702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Punishment is a common tactic to sustain cooperation and has been extensively studied for a long time. While most of previous game-theoretic work adopt the imitation learning framework where players imitate the strategies of those who are better off, the learning logic in the real world is often much more complex. In this work, we turn to the reinforcement learning paradigm, where individuals make their decisions based upon their experience and long-term returns. Specifically, we investigate the prisoners' dilemma game with a Q-learning algorithm, and cooperators probabilistically pose punishment on defectors in their neighborhood. Unexpectedly, we find that punishment could lead to either continuous or discontinuous cooperation phase transitions, and the nucleation process of cooperation clusters is reminiscent of the liquid-gas transition. The analysis of a Q-table reveals the evolution of the underlying "psychologic" changes, which explains the nucleation process and different levels of cooperation. The uncovered first-order phase transition indicates that great care needs to be taken when implementing the punishment compared to the continuous scenario.
Collapse
Affiliation(s)
- Chenyang Zhao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710061, People's Republic of China
| | - Guozhong Zheng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710061, People's Republic of China
| | - Chun Zhang
- School of Science, Xi'an Shiyou University, Xi'an 710065, People's Republic of China
| | - Jiqiang Zhang
- School of Physics, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Li Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710061, People's Republic of China
| |
Collapse
|
2
|
Wang C, Perc M, Szolnoki A. Evolutionary dynamics of any multiplayer game on regular graphs. Nat Commun 2024; 15:5349. [PMID: 38914550 PMCID: PMC11196707 DOI: 10.1038/s41467-024-49505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 06/05/2024] [Indexed: 06/26/2024] Open
Abstract
Multiplayer games on graphs are at the heart of theoretical descriptions of key evolutionary processes that govern vital social and natural systems. However, a comprehensive theoretical framework for solving multiplayer games with an arbitrary number of strategies on graphs is still missing. Here, we solve this by drawing an analogy with the Balls-and-Boxes problem, based on which we show that the local configuration of multiplayer games on graphs is equivalent to distributing k identical co-players among n distinct strategies. We use this to derive the replicator equation for any n-strategy multiplayer game under weak selection, which can be solved in polynomial time. As an example, we revisit the second-order free-riding problem, where costly punishment cannot truly resolve social dilemmas in a well-mixed population. Yet, in structured populations, we derive an accurate threshold for the punishment strength, beyond which punishment can either lead to the extinction of defection or transform the system into a rock-paper-scissors-like cycle. The analytical solution also qualitatively agrees with the phase diagrams that were previously obtained for non-marginal selection strengths. Our framework thus allows an exploration of any multi-strategy multiplayer game on regular graphs.
Collapse
Affiliation(s)
- Chaoqian Wang
- Department of Computational and Data Sciences, George Mason University, Fairfax, VA, 22030, USA.
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Community Healthcare Center Dr. Adolf Drolc Maribor, Vošnjakova ulica 2, 2000, Maribor, Slovenia
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
- Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, H-1525, Budapest, Hungary
| |
Collapse
|
3
|
Guo H, Shen C, Zou R, Tao P, Shi Y, Wang Z, Xing J. Complex pathways to cooperation emergent from asymmetry in heterogeneous populations. CHAOS (WOODBURY, N.Y.) 2024; 34:023139. [PMID: 38416672 DOI: 10.1063/5.0188177] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Cooperation within asymmetric populations has garnered significant attention in evolutionary games. This paper explores cooperation evolution in populations with weak and strong players, using a game model where players choose between cooperation and defection. Asymmetry stems from different benefits for strong and weak cooperators, with their benefit ratio indicating the degree of asymmetry. Varied rankings of parameters including the asymmetry degree, cooperation costs, and benefits brought by weak players give rise to scenarios including the prisoner's dilemma (PDG) for both player types, the snowdrift game (SDG), and mixed PDG-SDG interactions. Our results indicate that in an infinite well-mixed population, defection remains the dominant strategy when strong players engage in the prisoner's dilemma game. However, if strong players play snowdrift games, global cooperation increases with the proportion of strong players. In this scenario, strong cooperators can prevail over strong defectors when the proportion of strong players is low, but the prevalence of cooperation among strong players decreases as their proportion increases. In contrast, within a square lattice, the optimum global cooperation emerges at intermediate proportions of strong players with moderate degrees of asymmetry. Additionally, weak players protect cooperative clusters from exploitation by strong defectors. This study highlights the complex dynamics of cooperation in asymmetric interactions, contributing to the theory of cooperation in asymmetric games.
Collapse
Affiliation(s)
- Hao Guo
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Chen Shen
- Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan
| | - Rongcheng Zou
- School of Automation, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pin Tao
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuanchun Shi
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Zhen Wang
- School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China
| | - Junliang Xing
- Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Li S, Du C, Li X, Shen C, Shi L. Antisocial peer exclusion does not eliminate the effectiveness of prosocial peer exclusion in structured populations. J Theor Biol 2024; 576:111665. [PMID: 37951564 DOI: 10.1016/j.jtbi.2023.111665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
While prosocial exclusion has been proposed as a mechanism to maintain cooperation in one-shot social dilemma games, the evolution of prosocial peer exclusion in response to the threat of antisocial peer exclusion, particularly in structured populations, remains insufficiently understood. In this study, we employ an extended spatial public goods game to investigate the evolution of prosocial peer exclusion and its impact on cooperation in the presence of both prosocial and antisocial peer exclusion. Our model encompasses four primary strategies: traditional cooperation and defection, prosocial peer exclusion targeting defectors, and antisocial peer exclusion targeting cooperators. Our findings illuminate that the presence of antisocial peer exclusion significantly disrupts network reciprocity and suppresses cooperation. However, when coexisting with prosocial peer exclusion, it does not undermine the latter's efficacy in upholding cooperation, except in scenarios with low exclusion costs Unlike the cooperation-sustaining cyclic dominance pattern observed in the exclusive presence of prosocial peer exclusion, the co-presence of prosocial and antisocial peer exclusion gives rise to more intricate pathways for maintaining cooperation. These pathways include cyclic dominance involving traditional cooperation, prosocial peer exclusion, and antisocial peer exclusion, or a similar pattern involving traditional defection and the two exclusion strategies, or even cyclic dominance among all four strategies. In essence, our study enhances the theoretical framework concerning the effectiveness of the prosocial exclusion strategy, contributing to a more comprehensive understanding of its dynamics.
Collapse
Affiliation(s)
- Shulan Li
- School of Accounting, Yunnan University of Finance and Economics, Kunming 650221, China
| | - Chunpeng Du
- School of Mathematics, Kunming University, Kunming 650214, China
| | - Xingxu Li
- Yunnan Economy and Society Bigdata Research Institute, Yunnan University of Finance and Economics, Kunming 650221, China
| | - Chen Shen
- Faculty of Engineering Sciences, Kyushu University, Fukuoka 816-8580, Japan.
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming 650221, China.
| |
Collapse
|
5
|
Roy S, Nag Chowdhury S, Kundu S, Sar GK, Banerjee J, Rakshit B, Mali PC, Perc M, Ghosh D. Time delays shape the eco-evolutionary dynamics of cooperation. Sci Rep 2023; 13:14331. [PMID: 37653103 PMCID: PMC10471784 DOI: 10.1038/s41598-023-41519-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023] Open
Abstract
We study the intricate interplay between ecological and evolutionary processes through the lens of the prisoner's dilemma game. But while previous studies on cooperation amongst selfish individuals often assume instantaneous interactions, we take into consideration delays to investigate how these might affect the causes underlying prosocial behavior. Through analytical calculations and numerical simulations, we demonstrate that delays can lead to oscillations, and by incorporating also the ecological variable of altruistic free space and the evolutionary strategy of punishment, we explore how these factors impact population and community dynamics. Depending on the parameter values and the initial fraction of each strategy, the studied eco-evolutionary model can mimic a cyclic dominance system and even exhibit chaotic behavior, thereby highlighting the importance of complex dynamics for the effective management and conservation of ecological communities. Our research thus contributes to the broader understanding of group decision-making and the emergence of moral behavior in multidimensional social systems.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Mathematics, Jadavpur University, Kolkata, 700032, India
| | - Sayantan Nag Chowdhury
- Department of Environmental Science and Policy, University of California, Davis, CA, 95616, USA
| | - Srilena Kundu
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, 60637, USA
| | - Gourab Kumar Sar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, 700108, India
| | - Jeet Banerjee
- BYJU'S, Think & Learn Pvt. Ltd., IBC Knowledge Park, 4/1 Bannerghatta Main Road, Bangalore, 560029, India
| | - Biswambhar Rakshit
- Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, 641112, India
| | | | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000, Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, 404332, Taiwan
- Alma Mater Europaea, Slovenska ulica 17, 2000, Maribor, Slovenia
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080, Vienna, Austria
- Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, Republic of Korea
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata, 700108, India.
| |
Collapse
|
6
|
Ariful Kabir K, Shahidul Islam MD, Nijhum S. Exploring the performance of volatile mutations on evolutionary game dynamics in complex networks. Heliyon 2023; 9:e16790. [PMID: 37313171 PMCID: PMC10258425 DOI: 10.1016/j.heliyon.2023.e16790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023] Open
Abstract
The typical framework of replicator dynamics in evolutionary game theory assumes that all mutations are equally likely, meaning that the mutation of an evolving inhabitant only contributes constantly. However, in natural systems in biological and social sciences, mutations can arise due to their repetitive regeneration. The phenomenon of changing strategies (updating), typically prolonged sequences repeated many times, is defined as a volatile mutation that has been overlooked in evolutionary game theory. Implementing a repeated time framework introduces a dynamic mutation aspect incorporated with the pairwise Fermi rule. Network structure, ubiquitous in many natural and artificial systems, has significantly affected the dynamics and outcomes of evolutionary games. We examine the evolution of the pairwise game in terms of dilemma strength. It is revealed that mutation intensity can influence evolutionary dynamics. We also demonstrated that the obtained outcomes run by the deterministic and multi-agent simulation (MAS) process present similar stability regions for both linear and non-linear dynamics, even in various game classes. In particular, the most stimulating effect is detected for the relationship between the fraction of cooperation and the fraction of the mutated individuals, as inclination tends to provide an increasing tendency and supporting defection in the opposite case. In conclusion, we identified a form of volatile mutation as a form of noise that, under certain situations, could be used to enhance cooperation in social systems and design strategies for promoting cooperation in networked environments.
Collapse
Affiliation(s)
- K.M. Ariful Kabir
- Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - MD Shahidul Islam
- Department of Computer Science and Engineering, Green University of Bangladesh, Dhaka, Bangladesh
| | | |
Collapse
|
7
|
Ohdaira T. The probabilistic pool punishment proportional to the difference of payoff outperforms previous pool and peer punishment. Sci Rep 2022; 12:6604. [PMID: 35459880 PMCID: PMC9033862 DOI: 10.1038/s41598-022-10582-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/08/2022] [Indexed: 11/22/2022] Open
Abstract
The public goods game is a multiplayer version of the prisoner’s dilemma game. In the public goods game, punishment on defectors is necessary to encourage cooperation. There are two types of punishment: peer punishment and pool punishment. Comparing pool punishment with peer punishment, pool punishment is disadvantageous in comparison with peer punishment because pool punishment incurs fixed costs especially if second-order free riders (those who invest in public goods but do not punish defectors) are not punished. In order to eliminate such a flaw of pool punishment, this study proposes the probabilistic pool punishment proportional to the difference of payoff. In the proposed pool punishment, each punisher pays the cost to the punishment pool with the probability proportional to the difference of payoff between his/her payoff and the average payoff of his/her opponents. Comparing the proposed pool punishment with previous pool and peer punishment, in pool punishment of previous studies, cooperators who do not punish defectors become dominant instead of pool punishers with fixed costs. However, in the proposed pool punishment, more punishers and less cooperators coexist, and such state is more robust against the invasion of defectors due to mutation than those of previous pool and peer punishment. The average payoff is also comparable to peer punishment of previous studies.
Collapse
Affiliation(s)
- Tetsushi Ohdaira
- Institute of Information and Media, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-city, Kanagawa, 252-5258, Japan.
| |
Collapse
|
8
|
Zhang L, Zhang L, Huang C. Defectors in bad circumstances possessing higher reputation can promote cooperation. CHAOS (WOODBURY, N.Y.) 2022; 32:043114. [PMID: 35489841 DOI: 10.1063/5.0084901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
In nature and human society, social relationships and behavior patterns are usually unpredictable. In any interaction, individuals will constantly have to deal with prior uncertainty. The concept of "reputation" can provide some information to mitigate such uncertainty. In previous studies, researchers have considered that only cooperators are able to maintain a high reputation; no matter the circumstances of a defector, they are classified as a faithless individual. In reality, however, some individuals will be forced to defect to protect themselves against exploitation. Therefore, it makes sense that defectors in bad circumstances could also obtain higher reputations, and cooperators can maintain higher reputations in comfortable circumstances. In this work, the reputations of individuals are calculated using the fraction of their neighbors who have the same strategy. In this way, some defectors in a population may obtain higher reputations than some cooperators. We introduce this reputation rule using heterogeneous investments in public goods games. Our numerical simulation results indicate that this reputation rule and heterogeneous investments can better stimulate cooperation. Additionally, stronger investment heterogeneity can further increase the level of cooperation. To explain this phenomenon, dynamical evolution is observed in Monte Carlo simulations. We also investigated the effects of the noise intensity of the irrational population and the original proportion of cooperation in the population. The robustness of this cooperation model was also considered with respect to the network structure and total investment, and we found that the conclusions remained the same.
Collapse
Affiliation(s)
- Lan Zhang
- School of Information, Xi'an University of Finance and Economics, Xi'an 710100, China
| | - Liming Zhang
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Changwei Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Chowdhury SN, Kundu S, Perc M, Ghosh D. Complex evolutionary dynamics due to punishment and free space in ecological multigames. Proc Math Phys Eng Sci 2021. [DOI: 10.1098/rspa.2021.0397] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The concurrence of ecological and evolutionary processes often arises as an integral part of various biological and social systems. We here study eco-evolutionary dynamics by adopting two paradigmatic metaphors of social dilemmas with contrasting outcomes. We use the Prisoner’s Dilemma and Snowdrift games as the backbone of the proposed mathematical model. Since cooperation is a costly proposition in the face of the Darwinian theory of evolution, we go beyond the traditional framework by introducing punishment as an additional strategy. Punishers bare an additional cost from their own resources to try and discourage or prohibit free-riding from selfish defectors. Our model also incorporates the ecological signature of free space, which has an altruistic-like impact because it allows others to replicate and potentially thrive. We show that the consideration of these factors has broad implications for better understanding the emergent complex evolutionary dynamics. In particular, we report the simultaneous presence of different subpopulations through the spontaneous emergence of cyclic dominance, and we determine various stationary points using traditional game-theoretic concepts and stability analysis.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
- Alma Mater Europaea, Slovenska ulica, 17, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
10
|
Xia K. The characteristics of average abundance function with mutation of multi-player threshold public goods evolutionary game model under redistribution mechanism. BMC Ecol Evol 2021; 21:152. [PMID: 34348658 PMCID: PMC8336419 DOI: 10.1186/s12862-021-01847-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In recent years, the average abundance function has attracted much attention as it reflects the degree of cooperation in the population. Then it is significant to analyse how average abundance functions can be increased to promote the proliferation of cooperative behaviour. However, further theoretical analysis for average abundance function with mutation under redistribution mechanism is still lacking. Furthermore, the theoretical basis for the corresponding numerical simulation is not sufficiently understood. RESULTS We have deduced the approximate expressions of average abundance function with mutation under redistribution mechanism on the basis of different levels of selection intensity [Formula: see text] (sufficiently small and large enough). In addition, we have analysed the influence of the size of group d, multiplication factor r, cost c, aspiration level [Formula: see text] on average abundance function from both quantitative and qualitative aspects. CONCLUSIONS (1) The approximate expression will become the linear equation related to selection intensity when [Formula: see text] is sufficiently small. (2) On one hand, approximation expression when [Formula: see text] is large enough is not available when r is small and m is large. On the other hand, this approximation expression will become more reliable when [Formula: see text] is larger. (3) On the basis of the expected payoff function [Formula: see text] and function [Formula: see text], the corresponding results for the effects of parameters (d,r,c,[Formula: see text]) on average abundance function [Formula: see text] have been explained.
Collapse
Affiliation(s)
- Ke Xia
- School of Economics, Zhengzhou University of Aeronautics, Zhengzhou, China.
| |
Collapse
|
11
|
Szolnoki A, Chen X. Cooperation and competition between pair and multi-player social games in spatial populations. Sci Rep 2021; 11:12101. [PMID: 34103617 PMCID: PMC8187490 DOI: 10.1038/s41598-021-91532-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
The conflict between individual and collective interests is in the heart of every social dilemmas established by evolutionary game theory. We cannot avoid these conflicts but sometimes we may choose which interaction framework to use as a battlefield. For instance some people like to be part of a larger group while other persons prefer to interact in a more personalized, individual way. Both attitudes can be formulated via appropriately chosen traditional games. In particular, the prisoner's dilemma game is based on pair interaction while the public goods game represents multi-point interactions of group members. To reveal the possible advantage of a certain attitude we extend these models by allowing players not simply to change their strategies but also let them to vary their attitudes for a higher individual income. We show that both attitudes could be the winner at a specific parameter value. Interestingly, however, the subtle interplay between different states may result in a counterintuitive evolutionary outcome where the increase of the multiplication factor of public goods game drives the population to a fully defector state. We point out that the accompanying pattern formation can only be understood via the multipoint or multi-player interactions of different microscopic states where the vicinity of a particular state may influence the relation of two other competitors.
Collapse
Affiliation(s)
- Attila Szolnoki
- Centre for Energy Research, Institute of Technical Physics and Materials Science, P.O. Box 49, 1525, Budapest, Hungary.
| | - Xiaojie Chen
- School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| |
Collapse
|
12
|
Evolution of altruistic punishments among heterogeneous conditional cooperators. Sci Rep 2021; 11:10502. [PMID: 34006903 PMCID: PMC8131352 DOI: 10.1038/s41598-021-89563-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
It has been known that altruistic punishments solve the free rider problem in public goods games. Considering spatial structure and considering pure strategies significant advances have been made in understanding the evolution of altruistic punishments. However, these models have not considered key behavior regularities observed in experimental and field settings, where the individuals behave like conditional cooperators who are more willing to donate and are also more willing to punish free riders. Considering these behavioral regularities, without imposing a spatial structure on the population, I propose an evolutionary agent-based model in which agents behave like conditional cooperators, each agent’s donation conditional on the difference between the number of donations in the past and the threshold value and the propensity value of the agent. Altruistic punishment depends on the difference between the threshold value of the focal agent and the randomly matched another agent. The simulations show that, for certain inflicted costs of punishments, generous altruistic punishments evolve and stabilize cooperation. The results show that, unlike previous models, it is not necessary to punish all free riders equally; it is necessary to do so in the case of the selfish free riders but not in the case of negative reciprocators.
Collapse
|
13
|
Okada I, Yamamoto H, Akiyama E, Toriumi F. Cooperation in spatial public good games depends on the locality effects of game, adaptation, and punishment. Sci Rep 2021; 11:7642. [PMID: 33828116 PMCID: PMC8026997 DOI: 10.1038/s41598-021-86668-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Despite intensive studies on the evolution of cooperation in spatial public goods games, there have been few investigations into locality effects in interaction games, adaptation, and punishment. Here we analyze locality effects using an agent-based model of a regular graph. Our simulation shows that a situation containing a local game, local punishment, and global adaptation leads to the most robustly cooperative regime. Further, we show an interesting feature in local punishment. Previous studies showed that a local game and global adaptation are likely to generate cooperation. However, they did not consider punishment. We show that if local punishment is introduced in spatial public goods games, a situation satisfying either local game or local adaptation is likely to generate cooperation. We thus propose two principles. One is if interactions in games can be restricted locally, it is likely to generate cooperation independent of the interaction situations on punishment and adaptation. The other is if the games must be played globally, a cooperative regime requires both local punishment and local adaptation.
Collapse
Affiliation(s)
- Isamu Okada
- Faculty of Business Administration, Soka University, Hachioji, 192-8577, Japan. .,Department of Information Systems and Operations, Vienna University of Economics and Business, Vienna, 1020, Austria.
| | - Hitoshi Yamamoto
- Faculty of Business Administration, Rissho University, Tokyo, 141-8602, Japan
| | - Eizo Akiyama
- Faculty of Engineering, Information and Systems, University of Tsukuba, Tsukuba, 305-8573, Japan
| | - Fujio Toriumi
- Graduate School of Engineering, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
14
|
Nag Chowdhury S, Kundu S, Banerjee J, Perc M, Ghosh D. Eco-evolutionary dynamics of cooperation in the presence of policing. J Theor Biol 2021; 518:110606. [PMID: 33582077 DOI: 10.1016/j.jtbi.2021.110606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 11/15/2022]
Abstract
Ecology and evolution are inherently linked, and studying a mathematical model that considers both holds promise of insightful discoveries related to the dynamics of cooperation. In the present article, we use the prisoner's dilemma (PD) game as a basis for long-term apprehension of the essential social dilemma related to cooperation among unrelated individuals. We upgrade the contemporary PD game with an inclusion of evolution-induced act of punishment as a third competing strategy in addition to the traditional cooperators and defectors. In a population structure, the abundance of ecologically-viable free space often regulates the reproductive opportunities of the constituents. Hence, additionally, we consider the availability of free space as an ecological footprint, thus arriving at a simple eco-evolutionary model, which displays fascinating complex dynamics. As possible outcomes, we report the individual dominance of cooperators and defectors as well as a plethora of mixed states, where different strategies coexist followed by maintaining the diversity in a socio-ecological framework. These states can either be steady or oscillating, whereby oscillations are sustained by cyclic dominance among different combinations of cooperators, defectors, and punishers. We also observe a novel route to cyclic dominance where cooperators, punishers, and defectors enter a coexistence via an inverse Hopf bifurcation that is followed by an inverse period doubling route.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Jeet Banerjee
- BYJU'S, Think & Learn Pvt. Ltd., IBC Knowledge Park, 4/1 Bannerghatta Main Road, Bangalore 560029, India.
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria.
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India.
| |
Collapse
|
15
|
Lim IS. Stochastic evolutionary dynamics of trust games with asymmetric parameters. Phys Rev E 2020; 102:062419. [PMID: 33466027 DOI: 10.1103/physreve.102.062419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
Trusting in others and reciprocating that trust with trustworthy actions are crucial to successful and prosperous societies. The trust game has been widely used to quantitatively study trust and trustworthiness, involving a sequential exchange between an investor and a trustee. Deterministic evolutionary game theory predicts no trust and no trustworthiness, whereas the behavioral experiments with the one-shot anonymous trust game show that people substantially trust and respond trustworthily. To explain these discrepancies, previous works often turn to additional mechanisms, which are borrowed from other games such as the prisoner's dilemma. Although these mechanisms lead to the evolution of trust and trustworthiness to an extent, the optimal or the most common strategy often involves no trustworthiness. In this paper, we study the impact of asymmetric demographic parameters (e.g., different population sizes) on game dynamics of the trust game. We show that, in a weak-mutation limit, stochastic evolutionary dynamics with the asymmetric parameters can lead to the evolution of high trust and high trustworthiness without any additional mechanisms in well-mixed finite populations. Even full trust and near full trustworthiness can be the most common strategies. These results are qualitatively different from those of the previous works. Our results thereby demonstrate rich evolutionary dynamics of the asymmetric trust game.
Collapse
Affiliation(s)
- Ik Soo Lim
- School of Computer Science and Electrical Engineering, Bangor University, Dean Street, Bangor, Gwynedd LL57 1UT, United Kingdom
| |
Collapse
|
16
|
Benefits of asynchronous exclusion for the evolution of cooperation in stochastic evolutionary optional public goods games. Sci Rep 2019; 9:8208. [PMID: 31160674 PMCID: PMC6547755 DOI: 10.1038/s41598-019-44725-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/22/2019] [Indexed: 11/08/2022] Open
Abstract
Mechanisms and conditions for the spontaneous emergence of cooperation in multi-player social dilemma games remain an open question. This paper focuses on stochastic evolutionary optional public goods games with different exclusion strategies. We introduce four strategy types in the population, namely, cooperation, defection, loner and exclusion. Synchronous and asynchronous exclusion forms have been compared in finite-sized, well-mixed and structured populations. In addition, we verify that the asynchronous exclusion mechanism is indeed better than the synchronous exclusion mechanism in all cases. The benefits of the asynchronous exclusion are measured by comparing the probability that the system chooses the cooperative states in the two situations. In the well-mixed population cases, only when the investment amplification factor is small and the probability of exclusion success is high will the asynchronous exclusion mechanism have a relatively large advantage in promoting cooperation. However, in the structured population cases, the range of the investment amplification factor, in which the asynchronous exclusion mechanism has relatively large advantages in promoting cooperation, is somewhat different and is mainly in the middle of the interval under our parameters. Our study further corroborated that when non-participation and exclusion strategies exist, a structured population does not necessarily promote cooperation compared with a well-mixed population for some parameter combinations. Thus, we acquire a good understanding of the emergence of cooperation under different exclusion mechanisms.
Collapse
|
17
|
Stochastic evolutionary voluntary public goods game with punishment in a Quasi-birth-and-death process. Sci Rep 2017; 7:16110. [PMID: 29170523 PMCID: PMC5700967 DOI: 10.1038/s41598-017-16140-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/08/2017] [Indexed: 11/11/2022] Open
Abstract
Traditional replication dynamic model and the corresponding concept of evolutionary stable strategy (ESS) only takes into account whether the system can return to the equilibrium after being subjected to a small disturbance. In the real world, due to continuous noise, the ESS of the system may not be stochastically stable. In this paper, a model of voluntary public goods game with punishment is studied in a stochastic situation. Unlike the existing model, we describe the evolutionary process of strategies in the population as a generalized quasi-birth-and-death process. And we investigate the stochastic stable equilibrium (SSE) instead. By numerical experiments, we get all possible SSEs of the system for any combination of parameters, and investigate the influence of parameters on the probabilities of the system to select different equilibriums. It is found that in the stochastic situation, the introduction of the punishment and non-participation strategies can change the evolutionary dynamics of the system and equilibrium of the game. There is a large range of parameters that the system selects the cooperative states as its SSE with a high probability. This result provides us an insight and control method for the evolution of cooperation in the public goods game in stochastic situations.
Collapse
|
18
|
Zhu Y, Zhang J, Sun Q, Chen Z. Evolutionary dynamics of strategies for threshold snowdrift games on complex networks. Knowl Based Syst 2017. [DOI: 10.1016/j.knosys.2017.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Evolution of cooperation by the introduction of the probabilistic peer-punishment based on the difference of payoff. Sci Rep 2016; 6:25413. [PMID: 27146347 PMCID: PMC4857114 DOI: 10.1038/srep25413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
There are two types of costly punishment, i.e. peer-punishment and pool-punishment. While peer-punishment applies direct face to face punishment, pool-punishment is based on multi-point, collective interaction among group members. Regarding those two types of costly punishment, peer-punishment is especially considered to have the flaws that it lowers the average payoff of all players as well as pool-punishment does, and facilitates antisocial behaviour like retaliation of a defector on a cooperator. Here, this study proposes the new peer-punishment that punishment to an opponent player works at high probability when an opponent one is uncooperative, and the difference of payoff between a player and an opponent one becomes large in order to prevent such antisocial behaviour. It is natural to think that players of high payoff do not expect to punish others of lower payoff because they do not have any complaints regarding their economic wealth. The author shows that the introduction of the proposed peer-punishment increases both the number of cooperative players and the average payoff of all players in various types of topology of connections between players.
Collapse
|
20
|
Collective punishment is more effective than collective reward for promoting cooperation. Sci Rep 2015; 5:17752. [PMID: 26634907 PMCID: PMC4669458 DOI: 10.1038/srep17752] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 11/17/2022] Open
Abstract
Collective punishment and reward are usually regarded as two potential mechanisms to explain the evolution of cooperation. Both scenarios, however, seem problematic to understand cooperative behavior, because they can raise the second-order free-rider problem and many organisms are not able to discriminate less cooperating individuals. Even though they have been proved to increase cooperation, there has been a debate about which one being more effective. To address this issue, we resort to the N-player evolutionary snowdrift game (NESG), where a collective punishment/reward mechanism is added by allowing some players to display punishment/reward towards all remaining players. By means of numerous simulations and analyses, we find that collective punishment is more effective in promoting cooperation for a relatively high initial frequency of cooperation or for a relatively small group. When the intensity of punishment exceeds a certain threshold, a stable state of full cooperation emerges for both small and large groups. In contrast, such state does not appear for large groups playing a NESG with reward mechanism. In the case of mutualistic interactions, finally, our results show the new payoff with collective punishment/reward can lead to the coexistence of cooperators and defectors when discrimination between these two is not possible.
Collapse
|
21
|
Li Y, Liu X, Claussen JC, Guo W. Evolutionary dynamics for persistent cooperation in structured populations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062802. [PMID: 26172749 DOI: 10.1103/physreve.91.062802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Indexed: 06/04/2023]
Abstract
The emergence and maintenance of cooperative behavior is a fascinating topic in evolutionary biology and social science. The public goods game (PGG) is a paradigm for exploring cooperative behavior. In PGG, the total resulting payoff is divided equally among all participants. This feature still leads to the dominance of defection without substantially magnifying the public good by a multiplying factor. Much effort has been made to explain the evolution of cooperative strategies, including a recent model in which only a portion of the total benefit is shared by all the players through introducing a new strategy named persistent cooperation. A persistent cooperator is a contributor who is willing to pay a second cost to retrieve the remaining portion of the payoff contributed by themselves. In a previous study, this model was analyzed in the framework of well-mixed populations. This paper focuses on discussing the persistent cooperation in lattice-structured populations. The evolutionary dynamics of the structured populations consisting of three types of competing players (pure cooperators, defectors, and persistent cooperators) are revealed by theoretical analysis and numerical simulations. In particular, the approximate expressions of fixation probabilities for strategies are derived on one-dimensional lattices. The phase diagrams of stationary states, and the evolution of frequencies and spatial patterns for strategies are illustrated on both one-dimensional and square lattices by simulations. Our results are consistent with the general observation that, at least in most situations, a structured population facilitates the evolution of cooperation. Specifically, here we find that the existence of persistent cooperators greatly suppresses the spreading of defectors under more relaxed conditions in structured populations compared to that obtained in well-mixed populations.
Collapse
|
22
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
23
|
Cui P, Wu ZX. Selfish punishment with avoiding mechanism can alleviate both first-order and second-order social dilemma. J Theor Biol 2014; 361:111-23. [DOI: 10.1016/j.jtbi.2014.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/26/2014] [Accepted: 07/19/2014] [Indexed: 10/25/2022]
|
24
|
Impact of social punishment on cooperative behavior in complex networks. Sci Rep 2013; 3:3055. [PMID: 24162105 PMCID: PMC3808815 DOI: 10.1038/srep03055] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022] Open
Abstract
Social punishment is a mechanism by which cooperative individuals spend part of their resources to penalize defectors. In this paper, we study the evolution of cooperation in 2-person evolutionary games on networks when a mechanism for social punishment is introduced. Specifically, we introduce a new kind of role, punisher, which is aimed at reducing the earnings of defectors by applying to them a social fee. Results from numerical simulations show that different equilibria allowing the three strategies to coexist are possible as well as that social punishment further enhance the robustness of cooperation. Our results are confirmed for different network topologies and two evolutionary games. In addition, we analyze the microscopic mechanisms that give rise to the observed macroscopic behaviors in both homogeneous and heterogeneous networks. Our conclusions might provide additional insights for understanding the roots of cooperation in social systems.
Collapse
|
25
|
Wu T, Fu F, Zhang Y, Wang L. Adaptive role switching promotes fairness in networked ultimatum game. Sci Rep 2013; 3:1550. [PMID: 23528986 PMCID: PMC3607882 DOI: 10.1038/srep01550] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/04/2013] [Indexed: 11/09/2022] Open
Abstract
In recent years, mechanisms favoring fair split in the ultimatum game have attracted growing interests because of its practical implications for international bargains. In this game, two players are randomly assigned two different roles respectively to split an offer: the proposer suggests how to split and the responder decides whether or not to accept it. Only when both agree is the offer successfully split; otherwise both get nothing. It is of importance and interest to break the symmetry in role assignment especially when the game is repeatedly played in a heterogeneous population. Here we consider an adaptive role assignment: whenever the split fails, the two players switch their roles probabilistically. The results show that this simple feedback mechanism proves much more effective at promoting fairness than other alternatives (where, for example, the role assignment is based on the number of neighbors).
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
26
|
Wu T, Fu F, Zhang Y, Wang L. The increased risk of joint venture promotes social cooperation. PLoS One 2013; 8:e63801. [PMID: 23750204 PMCID: PMC3672156 DOI: 10.1371/journal.pone.0063801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
The joint venture of many members is common both in animal world and human society. In these public enterprizes, highly cooperative groups are more likely to while low cooperative groups are still possible but not probable to succeed. Existent literature mostly focuses on the traditional public goods game, in which cooperators create public wealth unconditionally and benefit all group members unbiasedly. We here institute a model addressing this public goods dilemma with incorporating the public resource foraging failure risk. Risk-averse individuals tend to lead a autarkic life, while risk-preferential ones tend to participate in the risky public goods game. For participants, group's success relies on its cooperativeness, with increasing contribution leading to increasing success likelihood. We introduce a function with one tunable parameter to describe the risk removal pattern and study in detail three representative classes. Analytical results show that the widely replicated population dynamics of cyclical dominance of loner, cooperator and defector disappear, while most of the time loners act as savors while eventually they also disappear. Depending on the way that group's success relies on its cooperativeness, either cooperators pervade the entire population or they coexist with defectors. Even in the later case, cooperators still hold salient superiority in number as some defectors also survive by parasitizing. The harder the joint venture succeeds, the higher level of cooperation once cooperators can win the evolutionary race. Our work may enrich the literature concerning the risky public goods games.
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China.
| | | | | | | |
Collapse
|
27
|
D'Orsogna MR, Kendall R, McBride M, Short MB. Criminal defectors lead to the emergence of cooperation in an experimental, adversarial game. PLoS One 2013; 8:e61458. [PMID: 23630591 PMCID: PMC3634082 DOI: 10.1371/journal.pone.0061458] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/10/2013] [Indexed: 11/19/2022] Open
Abstract
While the evolution of cooperation has been widely studied, little attention has been devoted to adversarial settings wherein one actor can directly harm another. Recent theoretical work addresses this issue, introducing an adversarial game in which the emergence of cooperation is heavily reliant on the presence of “Informants,” actors who defect at first-order by harming others, but who cooperate at second-order by punishing other defectors. We experimentally study this adversarial environment in the laboratory with human subjects to test whether Informants are indeed critical for the emergence of cooperation. We find in these experiments that, even more so than predicted by theory, Informants are crucial for the emergence and sustenance of a high cooperation state. A key lesson is that successfully reaching and maintaining a low defection society may require the cultivation of criminals who will also aid in the punishment of others.
Collapse
Affiliation(s)
- Maria R. D'Orsogna
- Department of Mathematics, California State University, Northridge, Los Angeles, California, United States of America
| | - Ryan Kendall
- Department of Economics, University of California Irvine, Irvine, California, United States of America
| | - Michael McBride
- Department of Economics, University of California Irvine, Irvine, California, United States of America
| | - Martin B. Short
- Department of Mathematics, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Adaptive tag switching reinforces the coevolution of contingent cooperation and tag diversity. J Theor Biol 2013; 330:45-55. [PMID: 23603056 DOI: 10.1016/j.jtbi.2013.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/08/2013] [Accepted: 04/09/2013] [Indexed: 11/22/2022]
Abstract
Most of the previous studies concerning the similarity-based interaction have assumed that the change of tags just happens in the imitation stage. Individuals actually can adjust their tags whenever the environments related to these tags grow nasty. We institute a spatial model to investigate the effect of the coevolution of tag and strategy on the evolution of cooperation in the context of the Prisoner's Dilemma game. Interactions just happen between tag-identical neighbors. Individuals exploited by defectors change their current tags at a certain cost. The time-scale ratio controls how fast interaction happens relatively to selection. Results show that whenever individuals have enough chance to adapt to the environment, cooperation is greatly improved even for quite large temptation to defect. Intensive exploration reveals that both little and large costs of tag switching can further favor the establishment of cooperation. Our work may add more into the literature concerning games on adaptive networks.
Collapse
|
29
|
Shimao H, Nakamaru M. Strict or graduated punishment? Effect of punishment strictness on the evolution of cooperation in continuous public goods games. PLoS One 2013; 8:e59894. [PMID: 23555826 PMCID: PMC3610843 DOI: 10.1371/journal.pone.0059894] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Whether costly punishment encourages cooperation is one of the principal questions in studies on the evolution of cooperation and social sciences. In society, punishment helps deter people from flouting rules in institutions. Specifically, graduated punishment is a design principle for long-enduring common-pool resource institutions. In this study, we investigate whether graduated punishment can promote a higher cooperation level when each individual plays the public goods game and has the opportunity to punish others whose cooperation levels fall below the punisher's threshold. We then examine how spatial structure affects evolutionary dynamics when each individual dies inversely proportional to the game score resulting from the social interaction and another player is randomly chosen from the population to produce offspring to fill the empty site created after a player's death. Our evolutionary simulation outcomes demonstrate that stricter punishment promotes increased cooperation more than graduated punishment in a spatially structured population, whereas graduated punishment increases cooperation more than strict punishment when players interact with randomly chosen opponents from the population. The mathematical analysis also supports the results.
Collapse
Affiliation(s)
- Hajime Shimao
- Department of Value and Decision Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Mayuko Nakamaru
- Department of Value and Decision Science, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| |
Collapse
|
30
|
Evolution of cooperation in spatial traveler's dilemma game. PLoS One 2013; 8:e58597. [PMID: 23526998 PMCID: PMC3603963 DOI: 10.1371/journal.pone.0058597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 02/05/2013] [Indexed: 11/29/2022] Open
Abstract
Traveler's dilemma (TD) is one of social dilemmas which has been well studied in the economics community, but it is attracted little attention in the physics community. The TD game is a two-person game. Each player can select an integer value between and () as a pure strategy. If both of them select the same value, the payoff to them will be that value. If the players select different values, say and (), then the payoff to the player who chooses the small value will be and the payoff to the other player will be . We term the player who selects a large value as the cooperator, and the one who chooses a small value as the defector. The reason is that if both of them select large values, it will result in a large total payoff. The Nash equilibrium of the TD game is to choose the smallest value . However, in previous behavioral studies, players in TD game typically select values that are much larger than , and the average selected value exhibits an inverse relationship with . To explain such anomalous behavior, in this paper, we study the evolution of cooperation in spatial traveler's dilemma game where the players are located on a square lattice and each player plays TD games with his neighbors. Players in our model can adopt their neighbors' strategies following two standard models of spatial game dynamics. Monte-Carlo simulation is applied to our model, and the results show that the cooperation level of the system, which is proportional to the average value of the strategies, decreases with increasing until is greater than the critical value where cooperation vanishes. Our findings indicate that spatial reciprocity promotes the evolution of cooperation in TD game and the spatial TD game model can interpret the anomalous behavior observed in previous behavioral experiments.
Collapse
|
31
|
Perc M, Gómez-Gardeñes J, Szolnoki A, Floría LM, Moreno Y. Evolutionary dynamics of group interactions on structured populations: a review. J R Soc Interface 2013; 10:20120997. [PMID: 23303223 PMCID: PMC3565747 DOI: 10.1098/rsif.2012.0997] [Citation(s) in RCA: 399] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 12/12/2012] [Indexed: 11/12/2022] Open
Abstract
Interactions among living organisms, from bacteria colonies to human societies, are inherently more complex than interactions among particles and non-living matter. Group interactions are a particularly important and widespread class, representative of which is the public goods game. In addition, methods of statistical physics have proved valuable for studying pattern formation, equilibrium selection and self-organization in evolutionary games. Here, we review recent advances in the study of evolutionary dynamics of group interactions on top of structured populations, including lattices, complex networks and coevolutionary models. We also compare these results with those obtained on well-mixed populations. The review particularly highlights that the study of the dynamics of group interactions, like several other important equilibrium and non-equilibrium dynamical processes in biological, economical and social sciences, benefits from the synergy between statistical physics, network science and evolutionary game theory.
Collapse
Affiliation(s)
- Matjaz Perc
- University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia.
| | | | | | | | | |
Collapse
|
32
|
Grujić J, Röhl T, Semmann D, Milinski M, Traulsen A. Consistent strategy updating in spatial and non-spatial behavioral experiments does not promote cooperation in social networks. PLoS One 2012. [PMID: 23185242 PMCID: PMC3501511 DOI: 10.1371/journal.pone.0047718] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The presence of costly cooperation between otherwise selfish actors is not trivial. A prominent mechanism that promotes cooperation is spatial population structure. However, recent experiments with human subjects report substantially lower level of cooperation then predicted by theoretical models. We analyze the data of such an experiment in which a total of 400 players play a Prisoner's Dilemma on a square lattice in two treatments, either interacting via a fixed square lattice (15 independent groups) or with a population structure changing after each interaction (10 independent groups). We analyze the statistics of individual decisions and infer in which way they can be matched with the typical models of evolutionary game theorists. We find no difference in the strategy updating between the two treatments. However, the strategy updates are distinct from the most popular models which lead to the promotion of cooperation as shown by computer simulations of the strategy updating. This suggests that the promotion of cooperation by population structure is not as straightforward in humans as often envisioned in theoretical models.
Collapse
Affiliation(s)
- Jelena Grujić
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
- * E-mail: (JG); (AT)
| | - Torsten Röhl
- Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Dirk Semmann
- Research Group Evolution of Cooperation and Prosocial Behaviour, Courant Research Center Evolution of Social Behavior, Göttingen, Germany
| | - Manfred Milinski
- Department for Evolutionary Ecology, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
| | - Arne Traulsen
- Evolutionary Theory Group, Max-Planck-Institute for Evolutionary Biology, Plön, Germany
- * E-mail: (JG); (AT)
| |
Collapse
|
33
|
Wu T, Fu F, Zhang Y, Wang L. Expectation-driven migration promotes cooperation by group interactions. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:066104. [PMID: 23005159 DOI: 10.1103/physreve.85.066104] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Indexed: 06/01/2023]
Abstract
"Voting with feet" describes the prominent social phenomenon that people tend to move away from deteriorating neighborhoods and search for and join prosperous groups. To quantify the role this kind of expectation-driven migration plays in the evolution of cooperation, here we study a simple yet effective model of cooperation based on spatial public goods games. The population structure is characterized by a square lattice with some nodes being left empty. Individuals have expectations toward their current habitats. Dissatisfied players, whose expectation is not met after interacting with all directly connected neighbors, tend to abstain from the groups of low quality by moving away and explore the physical niches of avail. How fast interaction happens relatively to selection is regulated by the time-scale ratio of game interaction to natural selection. Under strong selection, simulation results show that cooperation is greatly improved for either low, moderate, or high expectations compared to whenever the expectation-driven migration is absent. Further explorations reveal that neither too high nor too low but rather a combination of moderate expectations and rapid interaction establishes cooperation for a moderate public goods enhancement factor. There exists an optimal interval of expectation level most favoring the evolution of cooperation as the required time-scale ratio is minimized.
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
34
|
Bodnar T, Salathé M. Governing the global commons with local institutions. PLoS One 2012; 7:e34051. [PMID: 22509269 PMCID: PMC3317924 DOI: 10.1371/journal.pone.0034051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 02/25/2012] [Indexed: 12/04/2022] Open
Abstract
Most problems faced by modern human society have two characteristics in common - they are tragedy-of-the-commons type of problems, and they are global problems. Tragedy-of-the-commons type of problems are those where a commonly shared resource is overexploited by free riders at the expense of everyone sharing the resource. The exploitation of global resources such as clean air and water, political stability and peace, etc. underlies many of the most pressing human problems. Punishment of free riding behavior is one of the most frequently used strategies to combat the problem, but the spatial reach of sanctioning institutions is often more limited than the spatial effects of overexploitation. Here, we analyze a general game theoretical model to assess under what circumstances sanctioning institutions with limited reach can maintain the larger commons. We find that the effect of the spatial reach has a strong effect on whether and how the commons can be maintained, and that the transitions between those outcomes are characterized by phase transitions. The latter indicates that a small change in the reach of sanctioning systems can profoundly change the way the global commons can be managed.
Collapse
Affiliation(s)
- Todd Bodnar
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America.
| | | |
Collapse
|
35
|
Perc M. Sustainable institutionalized punishment requires elimination of second-order free-riders. Sci Rep 2012; 2:344. [PMID: 22468228 PMCID: PMC3315691 DOI: 10.1038/srep00344] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 11/10/2022] Open
Abstract
Although empirical and theoretical studies affirm that punishment can elevate collaborative efforts, its emergence and stability remain elusive. By peer-punishment the sanctioning is something an individual elects to do depending on the strategies in its neighborhood. The consequences of unsustainable efforts are therefore local. By pool-punishment, on the other hand, where resources for sanctioning are committed in advance and at large, the notion of sustainability has greater significance. In a population with free-riders, punishers must be strong in numbers to keep the "punishment pool" from emptying. Failure to do so renders the concept of institutionalized sanctioning futile. We show that pool-punishment in structured populations is sustainable, but only if second-order free-riders are sanctioned as well, and to a such degree that they cannot prevail. A discontinuous phase transition leads to an outbreak of sustainability when punishers subvert second-order free-riders in the competition against defectors.
Collapse
Affiliation(s)
- Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor , Koroška cesta 160, SI-2000 Maribor, Slovenia
| |
Collapse
|
36
|
Wang X, Han J, Han H. Special agents can promote cooperation in the population. PLoS One 2011; 6:e29182. [PMID: 22216202 PMCID: PMC3244459 DOI: 10.1371/journal.pone.0029182] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
Cooperation is ubiquitous in our real life but everyone would like to maximize her own profits. How does cooperation occur in the group of self-interested agents without centralized control? Furthermore, in a hostile scenario, for example, cooperation is unlikely to emerge. Is there any mechanism to promote cooperation if populations are given and play rules are not allowed to change? In this paper, numerical experiments show that complete population interaction is unfriendly to cooperation in the finite but end-unknown Repeated Prisoner's Dilemma (RPD). Then a mechanism called soft control is proposed to promote cooperation. According to the basic idea of soft control, a number of special agents are introduced to intervene in the evolution of cooperation. They comply with play rules in the original group so that they are always treated as normal agents. For our purpose, these special agents have their own strategies and share knowledge. The capability of the mechanism is studied under different settings. We find that soft control can promote cooperation and is robust to noise. Meanwhile simulation results demonstrate the applicability of the mechanism in other scenarios. Besides, the analytical proof also illustrates the effectiveness of soft control and validates simulation results. As a way of intervention in collective behaviors, soft control provides a possible direction for the study of reciprocal behaviors.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Jing Han
- Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Huawei Han
- Key Laboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Amor DR, Fort J. Effects of punishment in a mobile population playing the prisoner's dilemma game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:066115. [PMID: 22304163 DOI: 10.1103/physreve.84.066115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 10/13/2011] [Indexed: 05/31/2023]
Abstract
We deal with a system of prisoner's dilemma players undergoing continuous motion in a two-dimensional plane. In contrast to previous work, we introduce altruistic punishment after the game. We find punishing only a few of the cooperator-defector interactions is enough to lead the system to a cooperative state in environments where otherwise defection would take over the population. This happens even with soft nonsocial punishment (where both cooperators and defectors punish other players, a behavior observed in many human populations). For high enough mobilities or temptations to defect, low rates of social punishment can no longer avoid the breakdown of cooperation.
Collapse
Affiliation(s)
- Daniel R Amor
- Complex Systems Lab, Departament de Física, Universitat de Girona, E-17071 Girona, Catalonia, Spain.
| | | |
Collapse
|
38
|
Wu T, Fu F, Wang L. Moving away from nasty encounters enhances cooperation in ecological prisoner's dilemma game. PLoS One 2011; 6:e27669. [PMID: 22132125 PMCID: PMC3223185 DOI: 10.1371/journal.pone.0027669] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 10/21/2011] [Indexed: 11/18/2022] Open
Abstract
We study the role of migration in the evolution of cooperation. Individuals spatially located on a square lattice play the prisoner's dilemma game. Dissatisfied players, who have been exploited by defectors, tend to terminate interaction with selfish partners by leaving the current habitats, and explore unknown physical niches available surrounding them. The time scale ratio of game interaction to natural selection governs how many game rounds occur before individuals experience strategy updating. Under local migration and strong selection, simulation results demonstrate that cooperation can be stabilized for a wide range of model parameters, and the slower the natural selection, the more favorable for the emergence of cooperation. Besides, how the selection intensity affects cooperators' evolutionary fate is also investigated. We find that increasing it weakens cooperators' viability at different speeds for different time scale ratios. However, cooperation is greatly improved provided that individuals are offered with enough chance to agglomerate, while cooperation can always establish under weak selection but vanishes under very strong selection whenever individuals have less odds to migrate. Whenever the migration range restriction is removed, the parameter area responsible for the emergence of cooperation is, albeit somewhat compressed, still remarkable, validating the effectiveness of collectively migrating in promoting cooperation.
Collapse
Affiliation(s)
- Te Wu
- Center for Systems and Control, State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing, China.
| | | | | |
Collapse
|
39
|
Szolnoki A, Szabó G, Czakó L. Competition of individual and institutional punishments in spatial public goods games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:046106. [PMID: 22181226 DOI: 10.1103/physreve.84.046106] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Indexed: 05/31/2023]
Abstract
We have studied the evolution of strategies in spatial public goods games where both individual (peer) and institutional (pool) punishments are present in addition to unconditional defector and cooperator strategies. The evolution of strategy distribution is governed by imitation based on the random sequential comparison of neighbors' payoff for a fixed level of noise. Using numerical simulations, we evaluate the strategy frequencies and phase diagrams when varying the synergy factor, punishment cost, and fine. Our attention is focused on two extreme cases describing all the relevant behaviors in such a complex system. According to our numerical data peer punishers prevail and control the system behavior in a large segments of parameters while pool punishers can only survive in the limit of weak peer punishment when a rich variety of solutions is observed. Paradoxically, the two types of punishment may extinguish each other's impact, resulting in the triumph of defectors. The technical difficulties and suggested methods are briefly discussed.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, P.O. Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|
40
|
Cheng Z, Zhang HT, Chen MZQ, Zhou T, Valeyev NV. Aggregation pattern transitions by slightly varying the attractive/repulsive function. PLoS One 2011; 6:e22123. [PMID: 21799776 PMCID: PMC3140480 DOI: 10.1371/journal.pone.0022123] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/15/2011] [Indexed: 11/18/2022] Open
Abstract
Among collective behaviors of biological swarms and flocks, the attractive/repulsive (A/R) functional links between particles play an important role. By slightly changing the cutoff distance of the A/R function, a drastic transition between two distinct aggregation patterns is observed. More precisely, a large cutoff distance yields a liquid-like aggregation pattern where the particle density decreases monotonously from the inside to the outwards within each aggregated cluster. Conversely, a small cutoff distance produces a crystal-like aggregation pattern where the distance between each pair of neighboring particles remains constant. Significantly, there is an obvious spinodal in the variance curve of the inter-particle distances along the increasing cutoff distances, implying a legible transition pattern between the liquid-like and crystal-like aggregations. This work bridges the aggregation phenomena of physical particles and swarming of organisms in nature upon revealing some common mechanism behind them by slightly varying their inter-individual attractive/repulsive functions, and may find its potential engineering applications, for example, in the formation design of multi-robot systems and unmanned aerial vehicles (UAVs).
Collapse
Affiliation(s)
- Zhao Cheng
- State Key Laboratory of Digital Manufacturing Equipments and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- The Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Electrical and Computer Engineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hai-Tao Zhang
- State Key Laboratory of Digital Manufacturing Equipments and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- The Key Laboratory of Image Processing and Intelligent Control, Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- * E-mail:
| | - Michael Z. Q. Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, People's Republic of China
- School of Automation, Nanjing University of Science and Technology , Nanjing, People's Republic of China
| | - Tao Zhou
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Najl V. Valeyev
- Centre for Molecular Processing, School of Engineering and Digital Arts, University of Kent, Kent, United Kingdom
| |
Collapse
|
41
|
Abstract
Metanorms is a mechanism proposed to promote cooperation in social dilemmas. Recent experimental results show that network structures that underlie social interactions influence the emergence of norms that promote cooperation. We generalize Axelrod's analysis of metanorms dynamics to interactions unfolding on networks through simulation and mathematical modeling. Network topology strongly influences the effectiveness of the metanorms mechanism in establishing cooperation. In particular, we find that average degree, clustering coefficient and the average number of triplets per node play key roles in sustaining or collapsing cooperation.
Collapse
Affiliation(s)
- José M Galán
- Área de Organización de Empresas, Departamento de Ingeniería Civil, Universidad de Burgos, Burgos, Spain.
| | | | | |
Collapse
|
42
|
Poza DJ, Santos JI, Galán JM, López-Paredes A. Mesoscopic effects in an agent-based bargaining model in regular lattices. PLoS One 2011; 6:e17661. [PMID: 21408019 PMCID: PMC3052375 DOI: 10.1371/journal.pone.0017661] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/05/2011] [Indexed: 11/18/2022] Open
Abstract
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
Collapse
Affiliation(s)
- David J Poza
- Social Systems Engineering Centre INSISOC, Valladolid, Spain.
| | | | | | | |
Collapse
|
43
|
Szolnoki A, Szabó G, Perc M. Phase diagrams for the spatial public goods game with pool punishment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:036101. [PMID: 21517552 DOI: 10.1103/physreve.83.036101] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Indexed: 05/30/2023]
Abstract
The efficiency of institutionalized punishment is studied by evaluating the stationary states in the spatial public goods game comprising unconditional defectors, cooperators, and cooperating pool punishers as the three competing strategies. Fines and costs of pool punishment are considered as the two main parameters determining the stationary distributions of strategies on the square lattice. Each player collects a payoff from five five-person public goods games, and the evolution of strategies is subsequently governed by imitation based on pairwise comparisons at a low level of noise. The impact of pool punishment on the evolution of cooperation in structured populations is significantly different from that reported previously for peer punishment. Representative phase diagrams reveal remarkably rich behavior, depending also on the value of the synergy factor that characterizes the efficiency of investments payed into the common pool. Besides traditional single- and two-strategy stationary states, a rock-paper-scissors type of cyclic dominance can emerge in strikingly different ways.
Collapse
Affiliation(s)
- Attila Szolnoki
- Research Institute for Technical Physics and Materials Science, Post Office Box 49, H-1525 Budapest, Hungary
| | | | | |
Collapse
|