1
|
Menezes J, Rangel E. Locally adaptive aggregation of organisms under death risk in rock-paper-scissors models. Biosystems 2023; 227-228:104901. [PMID: 37121500 DOI: 10.1016/j.biosystems.2023.104901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 05/02/2023]
Abstract
We run stochastic simulations of the spatial version of the rock-paper-scissors game, considering that individuals use sensory abilities to scan the environment to detect the presence of enemies. If the local dangerousness level is above a tolerable threshold, individuals aggregate instead of moving randomly on the lattice. We study the impact of the locally adaptive aggregation on the organisms' spatial organisation by measuring the characteristic length scale of the spatial domains occupied by organisms of a single species. Our results reveal that aggregation is beneficial if triggered when the local density of opponents does not exceed 30%; otherwise, the behavioural strategy may harm individuals by increasing the average death risk. We show that if organisms can perceive further distances, they can accurately scan and interpret the signals from the neighbourhood, maximising the effects of the locally adaptive aggregation on the death risk. Finally, we show that the locally adaptive aggregation behaviour promotes biodiversity independently of the organism's mobility. The coexistence probability rises if organisms join conspecifics, even in the presence of a small number of enemies. We verify that our conclusions hold for more complex systems by simulating the generalised rock-paper-scissors models with five and seven species. Our discoveries may be helpful to ecologists in understanding systems where organisms' self-defence behaviour adapts to local environmental cues.
Collapse
Affiliation(s)
- J Menezes
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands; School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil.
| | - E Rangel
- School of Science and Technology, Federal University of Rio Grande do Norte, Caixa Postal 1524, 59072-970, Natal, RN, Brazil; Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Natal, 59078-970, Brazil
| |
Collapse
|
2
|
Menezes J, Batista S, Tenorio M, Triaca E, Moura B. How local antipredator response unbalances the rock-paper-scissors model. CHAOS (WOODBURY, N.Y.) 2022; 32:123142. [PMID: 36587336 DOI: 10.1063/5.0106165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Antipredator behavior is a self-preservation strategy present in many biological systems, where individuals join the effort in a collective reaction to avoid being caught by an approaching predator. We study a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. We perform a set of spatial stochastic simulations where organisms of one out of the species can resist predation in a collective strategy. The drop in predation capacity is local, which means that each predator faces a particular opposition depending on the prey group size surrounding it. Considering that the interference in a predator action depends on the prey's physical and cognitive ability, we explore the role of a conditioning factor that indicates the fraction of the species apt to perform the antipredator strategy. Because of the local unbalancing of the cyclic predator-prey interactions, departed spatial domains mainly occupied by a single species emerge. Unlike the rock-paper-scissors model with a weak species because of a nonlocal reason, our findings show that if the predation probability of one species is reduced because individuals face local antipredator response, the species does not predominate. Instead, the local unbalancing of the rock-paper-scissors model results in the prevalence of the weak species' prey. Finally, the outcomes show that local unevenness may jeopardize biodiversity, with the coexistence being more threatened for high mobility.
Collapse
Affiliation(s)
- J Menezes
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - S Batista
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - M Tenorio
- School of Science and Technology, Federal University of Rio Grande do Norte, 59072-970, P.O. Box 1524, Natal, RN, Brazil
| | - E Triaca
- Department of Mechanical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho, 300 Lagoa Nova, 59078-970 Natal, RN, Brazil, Brasil
| | - B Moura
- Department of Biomedical Engineering, Federal University of Rio Grande do Norte, Av. Senador Salgado Filho 300, Lagoa Nova, 59078-970, Natal, RN, Brazil
| |
Collapse
|
3
|
Lu Y, Shen C, Wu M, Du C, Shi L, Park J. Enhancing coexistence of mobile species in the cyclic competition system by wildlife refuge. CHAOS (WOODBURY, N.Y.) 2022; 32:081104. [PMID: 36049906 DOI: 10.1063/5.0093342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
We investigate evolving dynamics of cyclically competing species on spatially extended systems with considering a specific region, which is called the "wildlife refuge," one of the institutional ways to preserve species biodiversity. Through Monte-Carlo simulations, we found that the refuge can play not groundbreaking but an important role in species survival. Species coexistence is maintained at a moderate mobility regime, which traditionally leads to the collapse of coexistence, and eventually, the extinction is postponed depending on the competition rate rather than the portion of the refuge. Incorporating the extinction probability and Fourier transform supported our results in both stochastic and analogous ways. Our findings may provide valuable evidence to assist fields of ecological/biological sciences in understanding the presence and construction of refuges for wildlife with associated effects on species biodiversity.
Collapse
Affiliation(s)
- Yikang Lu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Chen Shen
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Mengjie Wu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Chunpeng Du
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
| | - Junpyo Park
- Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
4
|
Park J. Correlation between the formation of new competing group and spatial scale for biodiversity in the evolutionary dynamics of cyclic competition. CHAOS (WOODBURY, N.Y.) 2022; 32:081101. [PMID: 36049957 DOI: 10.1063/5.0102416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Securing space for species breeding is important in the evolution and maintenance of life in ecological sciences, and an increase in the number of competing species may cause frequent competition and conflict among the population in securing such spaces in a given area. In particular, for cyclically competing species, which can be described by the metaphor of rock-paper-scissors game, most of the previous works in microscopic frameworks have been studied with the initially given three species without any formation of additional competing species, and the phase transition of biodiversity via mobility from coexistence to extinction has never been changed by a change of spatial scale. In this regard, we investigate the relationship between spatial scales and species coexistence in the spatial cyclic game by considering the emergence of a new competing group by mutation. For different spatial scales, our computations reveal that coexistence can be more sensitive to spatial scales and may require larger spaces for frequencies of interactions. By exploiting the calculation of the coexistence probability from Monte-Carlo simulations, we obtain that certain interaction ranges for coexistence can be affected by both spatial scales and mobility, and spatial patterns for coexistence can appear in different ways. Since the issue of spatial scale is important for species survival as competing populations increase, we expect our results to have broad applications in the fields of social and ecological sciences.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Wang X, Lu Y, Shi L, Park J. The effect of territorial awareness in a three-species cyclic predator-prey model. Sci Rep 2022; 12:1821. [PMID: 35110669 PMCID: PMC8810777 DOI: 10.1038/s41598-022-05845-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/19/2022] [Indexed: 11/24/2022] Open
Abstract
Recognizing territories is essential to decide behavior of population either human or animals, and interaction between groups or individuals according to the territorial awareness is universal. Understanding various mechanisms which affect on such species behaviors can be possible by evolutionary games, and in particular, the rock–paper–scissors (RPS) game has been played a key role as a paradigmatic model to explore biodiversity from microbiota to societies. Among paramount mechanisms in systems of RPS, the role of intraspecific interaction has been recently noted in terms of promoting biodiversity. Since intraspecific interaction is defined by an invasive reaction between individuals in the same group, the interaction may be also sensitive to the territorial awareness. To explore how territorial awareness-based intraspecific interaction can affect species biodiversity, we endow species with the mechanism in the classic RPS game. By means of the Monte-Carlo method, we find the phenomenon that the presence of species’ territorial awareness has an impact on intraspecific interaction which ultimately affects species biodiversity. At the same time, we also find that territorial awareness can play a significant role to the average waiting time for extinction which is numerically elucidated by exploiting the quantity: interface width statistic. Unlike prior research that concentrated solely on the relationship between interaction frequency and species diversity, our results shed lights on the important role of territorial awareness in models of RPS, and they reveal fascinating evolutionary outcomes in structured populations that are a unique consequence of such awareness behavior.
Collapse
Affiliation(s)
- Xiaoyue Wang
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, Yunnan, China
| | - Yikang Lu
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, Yunnan, China
| | - Lei Shi
- School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, 650221, Yunnan, China.
| | - Junpyo Park
- Department of Applied Mathematics, Kyung Hee University, Yongin, 17104, Republic of Korea.
| |
Collapse
|
6
|
Menezes J, Rangel E, Moura B. Aggregation as an antipredator strategy in the rock-paper-scissors model. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Menezes J, Moura B. Mobility-limiting antipredator response in the rock-paper-scissors model. Phys Rev E 2021; 104:054201. [PMID: 34942823 DOI: 10.1103/physreve.104.054201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Antipredator behavior is present in many biological systems where individuals collectively react to an imminent attack. The antipredator response may influence spatial pattern formation and ecosystem stability but requires an organism's cost to contribute to the collective effort. We investigate a nonhierarchical tritrophic system, whose predator-prey interactions are described by the rock-paper-scissors game rules. In our spatial stochastic simulations, the radius of antipredator response defines the maximum prey group size that disturbs the predator's action, determining the individual cost to participate in antipredator strategies. We consider that each organism contributes equally to the collective effort, having its mobility limited by the proportion of energy devoted to the antipredator reaction. Our outcomes show that the antipredator response leads to spiral patterns, with the segregation of organisms of the same species occupying departed spatial domains. We found that a less localized antipredator response increases the average size of the single-species patches, improving the protection of individuals against predation. Finally, our findings show that although the increase of the predation risk for a more localized antipredator response, the high mobility constraining benefits species coexistence. Our results may help ecologists understand the mechanisms leading to the stability of biological systems where locality is crucial to behavioral interactions among species.
Collapse
Affiliation(s)
- J Menezes
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - B Moura
- Departamento de Engenharia Biomédica, Universidade Federal do Rio Grande do Norte Av. Senador Salgado Filho, 300, 59078-970 Natal, RN, Brazil.,Edmond and Lily Safra International Neuroscience Institute, Santos Dumont Institute Av Santos Dumont, 1560, 59280-000 Macaiba, RN, Brazil
| |
Collapse
|
8
|
Menezes J. Antipredator behavior in the rock-paper-scissors model. Phys Rev E 2021; 103:052216. [PMID: 34134300 DOI: 10.1103/physreve.103.052216] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
When faced with an imminent risk of predation, many animals react to escape consumption. Antipredator strategies are performed by individuals acting as a group to intimidate predators and minimize the damage when attacked. We study the antipredator prey response in spatial tritrophic systems with cyclic species dominance using the rock-paper-scissors game. The impact of the antipredator behavior is local, with the predation probability reducing exponentially with the number of prey in the predator's neighborhood. In contrast to the standard Lotka-Volterra implementation of the rock-paper-scissors model, where no spiral waves appear, our outcomes show that the antipredator behavior leads to spiral patterns from random initial conditions. The results show that the predation risk decreases exponentially with the level of antipredator strength. Finally, we investigate the coexistence probability and verify that antipredator behavior may jeopardize biodiversity for high mobility. Our findings may help biologists to understand ecosystems formed by species whose individuals behave strategically to resist predation.
Collapse
Affiliation(s)
- J Menezes
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte Caixa Postal 1524, 59072-970 Natal, RN, Brazil and Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
9
|
Bazeia D, Ferreira MJB, Oliveira BFD, Szolnoki A. Environment driven oscillation in an off-lattice May-Leonard model. Sci Rep 2021; 11:12512. [PMID: 34131239 PMCID: PMC8206140 DOI: 10.1038/s41598-021-91994-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/31/2021] [Indexed: 11/27/2022] Open
Abstract
Cyclic dominance of competing species is an intensively used working hypothesis to explain biodiversity in certain living systems, where the evolutionary selection principle would dictate a single victor otherwise. Technically the May–Leonard models offer a mathematical framework to describe the mentioned non-transitive interaction of competing species when individual movement is also considered in a spatial system. Emerging rotating spirals composed by the competing species are frequently observed character of the resulting patterns. But how do these spiraling patterns change when we vary the external environment which affects the general vitality of individuals? Motivated by this question we suggest an off-lattice version of the tradition May–Leonard model which allows us to change the actual state of the environment gradually. This can be done by introducing a local carrying capacity parameter which value can be varied gently in an off-lattice environment. Our results support a previous analysis obtained in a more intricate metapopulation model and we show that the well-known rotating spirals become evident in a benign environment when the general density of the population is high. The accompanying time-dependent oscillation of competing species can also be detected where the amplitude and the frequency show a scaling law of the parameter that characterizes the state of the environment. These observations highlight that the assumed non-transitive interaction alone is insufficient condition to maintain biodiversity safely, but the actual state of the environment, which characterizes the general living conditions, also plays a decisive role on the evolution of related systems.
Collapse
Affiliation(s)
- D Bazeia
- Departamento de Física, Universidade Federal da Paraíba, João Pessoa, PB, 58051-970, Brazil
| | - M J B Ferreira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
| | - B F de Oliveira
- Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, PR, 87020-900, Brazil
| | - A Szolnoki
- Institute of Technical Physics and Materials Science, Centre for Energy Research, P.O. Box 49, Budapest, 1525, Hungary.
| |
Collapse
|
10
|
Wang X, Cheng J, Wang L. A reinforcement learning-based predator-prey model. ECOLOGICAL COMPLEXITY 2020. [DOI: 10.1016/j.ecocom.2020.100815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Park J. Emergence of oscillatory coexistence with exponentially decayed waiting times in a coupled cyclic competition system. CHAOS (WOODBURY, N.Y.) 2019; 29:071107. [PMID: 31370425 DOI: 10.1063/1.5118833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Interpatch migration between two environments is generally considered as a spatial concept and can affect species biodiversity in each patch by inducing flux of population such as inflow and outflow quantities of species. In this paper, we explore the effect of interpatch migration, which can be generally considered as a spatial concept and may affect species biodiversity between two different patches in the perspective of the macroscopic level by exploiting the coupling of two systems, where each patch is occupied by cyclically competing three species who can stably coexist by exhibiting periodic orbits. For two simple scenarios of interpatch migration either single or all species migration, we found that two systems with independently stable coexisting species in each patch are eventually synchronized, and oscillatory behaviors of species densities in two patches become identical, i.e., the synchronized coexistence emerges. In addition, we find that, whether single or all species interpatch migration occurs, the waiting time for the synchronization is exponentially decreasing as the coupling strength is intensified. Our findings suggest that the synchronized behavior of species as a result of migration between different patches can be easily predicted by the coupling of systems and additional information such as waiting times and sensitivity of initial densities.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
12
|
Park J. Nonlinear dynamics with Hopf bifurcations by targeted mutation in the system of rock-paper-scissors metaphor. CHAOS (WOODBURY, N.Y.) 2019; 29:033102. [PMID: 30927841 DOI: 10.1063/1.5081966] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
The role of mutation, which is an error process in gene evolution, in systems of cyclically competing species has been studied from various perspectives, and it is regarded as one of the key factors for promoting coexistence of all species. In addition to naturally occurring mutations, many experiments in genetic engineering have involved targeted mutation techniques such as recombination between DNA and somatic cell sequences and have studied genetic modifications through loss or augmentation of cell functions. In this paper, we investigate nonlinear dynamics with targeted mutation in cyclically competing species. In different ways to classic approaches of mutation in cyclic games, we assume that mutation may occur in targeted individuals who have been removed from intraspecific competition. By investigating each scenario depending on the number of objects for targeted mutation analytically and numerically, we found that targeted mutation can lead to persistent coexistence of all species. In addition, under the specific condition of targeted mutation, we found that targeted mutation can lead to emergences of bistable states for species survival. Through the linear stability analysis of rate equations, we found that those phenomena are accompanied by Hopf bifurcation which is supercritical. Our findings may provide more global perspectives on understanding underlying mechanisms to control biodiversity in ecological/biological sciences, and evidences with mathematical foundations to resolve social dilemmas such as a turnover of group members by resigning with intragroup conflicts in social sciences.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
13
|
Park J, Do Y, Jang B. Multistability in the cyclic competition system. CHAOS (WOODBURY, N.Y.) 2018; 28:113110. [PMID: 30501221 DOI: 10.1063/1.5045366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Cyclically competition models have been successful to gain an insight of biodiversity mechanism in ecosystems. There are, however, still limitations to elucidate complex phenomena arising in real competition. In this paper, we report that a multistability occurs in a simple rock-paper-scissor cyclically competition model by assuming that intraspecific competition depends on the logistic growth of each species density. This complex stability is absent in any cyclically competition model, and we investigate how the proposed intraspecific competition affects biodiversity in the existing society of three species through macroscopic and microscopic approaches. When the system is multistable, we show basins of the asymptotically stable heteroclinic cycle and stable attractors to demonstrate how the survival state is determined by initial densities of three species. Also, we find that the multistability is associated with a subcritical Hopf bifurcation. This surprising finding will give an opportunity to interpret rich dynamical phenomena in ecosystems which may occur in cyclic competition systems with different types of interactions.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Younghae Do
- Department of Mathematics, KNU-Center for Nonlinear Dynamics, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bongsoo Jang
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
14
|
Park J. Biodiversity in the cyclic competition system of three species according to the emergence of mutant species. CHAOS (WOODBURY, N.Y.) 2018; 28:053111. [PMID: 29857686 DOI: 10.1063/1.5021145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding mechanisms which promote or hinder existing ecosystems are important issues in ecological sciences. In addition to fundamental interactions such as competition and migration among native species, existing ecosystems can be easily disturbed by external factors, and the emergence of new species may be an example in such cases. The new species which does not exist in a current ecosystem can be regarded as either alien species entered from outside or mutant species born by mutation in existing normal species. Recently, as existing ecosystems are getting influenced by various physical/chemical external factors, mutation due to anthropogenic and environmental factors can occur more frequently and is thus attracting much attention for the maintenance of ecosystems. In this paper, we consider emergences of mutant species among self-competing three species in the cyclic dominance. By defining mutation as the birth of mutant species, we investigate how mutant species can affect biodiversity in the existing ecosystem. Through microscopic and macroscopic approaches, we have found that the society of existing normal species can be disturbed by mutant species either the society is maintained accompanying with the coexistence of all species or jeopardized by occupying of mutant species. Due to the birth of mutant species, the existing society may be more complex by constituting two different groups of normal and mutant species, and our results can be contributed to analyze complex ecosystems of many species. We hope our findings may propose a new insight on mutation in cyclic competition systems of many species.
Collapse
Affiliation(s)
- Junpyo Park
- Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| |
Collapse
|
15
|
West R, Mobilia M, Rucklidge AM. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate. Phys Rev E 2018; 97:022406. [PMID: 29548111 DOI: 10.1103/physreve.97.022406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 11/07/2022]
Abstract
We study the influence of a randomly switching reproduction-predation rate on the survival behavior of the nonspatial cyclic Lotka-Volterra model, also known as the zero-sum rock-paper-scissors game, used to metaphorically describe the cyclic competition between three species. In large and finite populations, demographic fluctuations (internal noise) drive two species to extinction in a finite time, while the species with the smallest reproduction-predation rate is the most likely to be the surviving one (law of the weakest). Here we model environmental (external) noise by assuming that the reproduction-predation rate of the strongest species (the fastest to reproduce and predate) in a given static environment randomly switches between two values corresponding to more and less favorable external conditions. We study the joint effect of environmental and demographic noise on the species survival probabilities and on the mean extinction time. In particular, we investigate whether the survival probabilities follow the law of the weakest and analyze their dependence on the external noise intensity and switching rate. Remarkably, when, on average, there is a finite number of switches prior to extinction, the survival probability of the predator of the species whose reaction rate switches typically varies nonmonotonically with the external noise intensity (with optimal survival about a critical noise strength). We also outline the relationship with the case where all reaction rates switch on markedly different time scales.
Collapse
Affiliation(s)
- Robert West
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
16
|
Emergence of unusual coexistence states in cyclic game systems. Sci Rep 2017; 7:7465. [PMID: 28785001 PMCID: PMC5547111 DOI: 10.1038/s41598-017-07911-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/04/2017] [Indexed: 11/08/2022] Open
Abstract
Evolutionary games of cyclic competitions have been extensively studied to gain insights into one of the most fundamental phenomena in nature: biodiversity that seems to be excluded by the principle of natural selection. The Rock-Paper-Scissors (RPS) game of three species and its extensions [e.g., the Rock-Paper-Scissors-Lizard-Spock (RPSLS) game] are paradigmatic models in this field. In all previous studies, the intrinsic symmetry associated with cyclic competitions imposes a limitation on the resulting coexistence states, leading to only selective types of such states. We investigate the effect of nonuniform intraspecific competitions on coexistence and find that a wider spectrum of coexistence states can emerge and persist. This surprising finding is substantiated using three classes of cyclic game models through stability analysis, Monte Carlo simulations and continuous spatiotemporal dynamical evolution from partial differential equations. Our finding indicates that intraspecific competitions or alternative symmetry-breaking mechanisms can promote biodiversity to a broader extent than previously thought.
Collapse
|
17
|
The Influence of Mobility Rate on Spiral Waves in Spatial Rock-Paper-Scissors Games. GAMES 2016. [DOI: 10.3390/g7030024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bauch CT. Unifying perspectives on cooperation under social viscosity. Phys Life Rev 2015; 14:34-6. [DOI: 10.1016/j.plrev.2015.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/27/2022]
|
19
|
Perc M, Szolnoki A. A double-edged sword: Benefits and pitfalls of heterogeneous punishment in evolutionary inspection games. Sci Rep 2015; 5:11027. [PMID: 26046673 PMCID: PMC4457152 DOI: 10.1038/srep11027] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/14/2015] [Indexed: 11/09/2022] Open
Abstract
As a simple model for criminal behavior, the traditional two-strategy inspection game yields counterintuitive results that fail to describe empirical data. The latter shows that crime is often recurrent, and that crime rates do not respond linearly to mitigation attempts. A more apt model entails ordinary people who neither commit nor sanction crime as the third strategy besides the criminals and punishers. Since ordinary people free-ride on the sanctioning efforts of punishers, they may introduce cyclic dominance that enables the coexistence of all three competing strategies. In this setup ordinary individuals become the biggest impediment to crime abatement. We therefore also consider heterogeneous punisher strategies, which seek to reduce their investment into fighting crime in order to attain a more competitive payoff. We show that this diversity of punishment leads to an explosion of complexity in the system, where the benefits and pitfalls of criminal behavior are revealed in the most unexpected ways. Due to the raise and fall of different alliances no less than six consecutive phase transitions occur in dependence on solely the temptation to succumb to criminal behavior, leading the population from ordinary people-dominated across punisher-dominated to crime-dominated phases, yet always failing to abolish crime completely.
Collapse
Affiliation(s)
- Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia
- Department of Physics, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- CAMTP – Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
| | - Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
20
|
Universal scaling for the dilemma strength in evolutionary games. Phys Life Rev 2015; 14:1-30. [PMID: 25979121 DOI: 10.1016/j.plrev.2015.04.033] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/20/2015] [Accepted: 04/20/2015] [Indexed: 11/24/2022]
Abstract
Why would natural selection favor the prevalence of cooperation within the groups of selfish individuals? A fruitful framework to address this question is evolutionary game theory, the essence of which is captured in the so-called social dilemmas. Such dilemmas have sparked the development of a variety of mathematical approaches to assess the conditions under which cooperation evolves. Furthermore, borrowing from statistical physics and network science, the research of the evolutionary game dynamics has been enriched with phenomena such as pattern formation, equilibrium selection, and self-organization. Numerous advances in understanding the evolution of cooperative behavior over the last few decades have recently been distilled into five reciprocity mechanisms: direct reciprocity, indirect reciprocity, kin selection, group selection, and network reciprocity. However, when social viscosity is introduced into a population via any of the reciprocity mechanisms, the existing scaling parameters for the dilemma strength do not yield a unique answer as to how the evolutionary dynamics should unfold. Motivated by this problem, we review the developments that led to the present state of affairs, highlight the accompanying pitfalls, and propose new universal scaling parameters for the dilemma strength. We prove universality by showing that the conditions for an ESS and the expressions for the internal equilibriums in an infinite, well-mixed population subjected to any of the five reciprocity mechanisms depend only on the new scaling parameters. A similar result is shown to hold for the fixation probability of the different strategies in a finite, well-mixed population. Furthermore, by means of numerical simulations, the same scaling parameters are shown to be effective even if the evolution of cooperation is considered on the spatial networks (with the exception of highly heterogeneous setups). We close the discussion by suggesting promising directions for future research including (i) how to handle the dilemma strength in the context of co-evolution and (ii) where to seek opportunities for applying the game theoretical approach with meaningful impact.
Collapse
|
21
|
Mesoscopic interactions and species coexistence in evolutionary game dynamics of cyclic competitions. Sci Rep 2014; 4:7486. [PMID: 25501627 PMCID: PMC4265771 DOI: 10.1038/srep07486] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/27/2014] [Indexed: 11/18/2022] Open
Abstract
Evolutionary dynamical models for cyclic competitions of three species (e.g., rock, paper, and scissors, or RPS) provide a paradigm, at the microscopic level of individual interactions, to address many issues in coexistence and biodiversity. Real ecosystems often involve competitions among more than three species. By extending the RPS game model to five (rock-paper-scissors-lizard-Spock, or RPSLS) mobile species, we uncover a fundamental type of mesoscopic interactions among subgroups of species. In particular, competitions at the microscopic level lead to the emergence of various local groups in different regions of the space, each involving three species. It is the interactions among the groups that fundamentally determine how many species can coexist. In fact, as the mobility is increased from zero, two transitions can occur: one from a five- to a three-species coexistence state and another from the latter to a uniform, single-species state. We develop a mean-field theory to show that, in order to understand the first transition, group interactions at the mesoscopic scale must be taken into account. Our findings suggest, more broadly, the importance of mesoscopic interactions in coexistence of great many species.
Collapse
|
22
|
Szolnoki A, Mobilia M, Jiang LL, Szczesny B, Rucklidge AM, Perc M. Cyclic dominance in evolutionary games: a review. J R Soc Interface 2014; 11:20140735. [PMID: 25232048 PMCID: PMC4191105 DOI: 10.1098/rsif.2014.0735] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/22/2014] [Indexed: 11/12/2022] Open
Abstract
Rock is wrapped by paper, paper is cut by scissors and scissors are crushed by rock. This simple game is popular among children and adults to decide on trivial disputes that have no obvious winner, but cyclic dominance is also at the heart of predator-prey interactions, the mating strategy of side-blotched lizards, the overgrowth of marine sessile organisms and competition in microbial populations. Cyclical interactions also emerge spontaneously in evolutionary games entailing volunteering, reward, punishment, and in fact are common when the competing strategies are three or more, regardless of the particularities of the game. Here, we review recent advances on the rock-paper-scissors (RPS) and related evolutionary games, focusing, in particular, on pattern formation, the impact of mobility and the spontaneous emergence of cyclic dominance. We also review mean-field and zero-dimensional RPS models and the application of the complex Ginzburg-Landau equation, and we highlight the importance and usefulness of statistical physics for the successful study of large-scale ecological systems. Directions for future research, related, for example, to dynamical effects of coevolutionary rules and invasion reversals owing to multi-point interactions, are also outlined.
Collapse
Affiliation(s)
- Attila Szolnoki
- Institute of Technical Physics and Materials Science, Research Centre for Natural Sciences, Hungarian Academy of Sciences, PO Box 49, 1525 Budapest, Hungary
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, 325035 Wenzhou, People's Republic of China
| | - Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
23
|
Szczesny B, Mobilia M, Rucklidge AM. Characterization of spiraling patterns in spatial rock-paper-scissors games. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:032704. [PMID: 25314470 DOI: 10.1103/physreve.90.032704] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Indexed: 06/04/2023]
Abstract
The spatiotemporal arrangement of interacting populations often influences the maintenance of species diversity and is a subject of intense research. Here, we study the spatiotemporal patterns arising from the cyclic competition between three species in two dimensions. Inspired by recent experiments, we consider a generic metapopulation model comprising "rock-paper-scissors" interactions via dominance removal and replacement, reproduction, mutations, pair exchange, and hopping of individuals. By combining analytical and numerical methods, we obtain the model's phase diagram near its Hopf bifurcation and quantitatively characterize the properties of the spiraling patterns arising in each phase. The phases characterizing the cyclic competition away from the Hopf bifurcation (at low mutation rate) are also investigated. Our analytical approach relies on the careful analysis of the properties of the complex Ginzburg-Landau equation derived through a controlled (perturbative) multiscale expansion around the model's Hopf bifurcation. Our results allow us to clarify when spatial "rock-paper-scissors" competition leads to stable spiral waves and under which circumstances they are influenced by nonlinear mobility.
Collapse
Affiliation(s)
- Bartosz Szczesny
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mauro Mobilia
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Alastair M Rucklidge
- Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
24
|
Buesser P, Tomassini M. The role of opportunistic migration in cyclic games. PLoS One 2014; 9:e98190. [PMID: 24892660 PMCID: PMC4043639 DOI: 10.1371/journal.pone.0098190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/25/2014] [Indexed: 11/18/2022] Open
Abstract
We study cyclic evolutionary games in a spatial diluted grid environment in which agents strategically interact locally but can also opportunistically move to other positions within a given migration radius. We find that opportunistic migration can inverse the cyclic prevalence between the strategies when the frequency of random imitation is large enough compared to the payoff-driven imitation. At the transition the average size of the patterns diverges and this threatens diversity of strategies.
Collapse
Affiliation(s)
- Pierre Buesser
- Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
- * E-mail:
| | - Marco Tomassini
- Faculty of Business and Economics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Rulands S, Zielinski A, Frey E. Global attractors and extinction dynamics of cyclically competing species. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:052710. [PMID: 23767569 DOI: 10.1103/physreve.87.052710] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Indexed: 06/02/2023]
Abstract
Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.
Collapse
Affiliation(s)
- Steffen Rulands
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Physics Department, Ludwig-Maximilians-Universität München, Theresienstrasse 33, D-80333 München, Germany
| | | | | |
Collapse
|
26
|
Saunoriene L, Ragulskis M. Secure steganographic communication algorithm based on self-organizing patterns. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:056213. [PMID: 22181490 DOI: 10.1103/physreve.84.056213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/22/2011] [Indexed: 05/31/2023]
Abstract
A secure steganographic communication algorithm based on patterns evolving in a Beddington-de Angelis-type predator-prey model with self- and cross-diffusion is proposed in this paper. Small perturbations of initial states of the system around the state of equilibrium result in the evolution of self-organizing patterns. Small differences between initial perturbations result in slight differences also in the evolving patterns. It is shown that the generation of interpretable target patterns cannot be considered as a secure mean of communication because contours of the secret image can be retrieved from the cover image using statistical techniques if only it represents small perturbations of the initial states of the system. An alternative approach when the cover image represents the self-organizing pattern that has evolved from initial states perturbed using the dot-skeleton representation of the secret image can be considered as a safe visual communication technique protecting both the secret image and communicating parties.
Collapse
Affiliation(s)
- Loreta Saunoriene
- Research Group for Mathematical and Numerical Analysis of Dynamical Systems, Kaunas University of Technology, Kaunas, Lithuania.
| | | |
Collapse
|
27
|
Jiang LL, Zhou T, Perc M, Wang BH. Effects of competition on pattern formation in the rock-paper-scissors game. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:021912. [PMID: 21929025 DOI: 10.1103/physreve.84.021912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Indexed: 05/31/2023]
Abstract
We investigate the impact of cyclic competition on pattern formation in the rock-paper-scissors game. By separately considering random and prepared initial conditions, we observe a critical influence of the competition rate p on the stability of spiral waves and on the emergence of biodiversity. In particular, while increasing values of p promote biodiversity, they may act detrimentally on spatial pattern formation. For random initial conditions, we observe a phase transition from biodiversity to an absorbing phase, whereby the critical value of mobility grows linearly with increasing values of p on a log-log scale but then saturates as p becomes large. For prepared initial conditions, we observe the formation of single-armed spirals, but only for values of p that are below a critical value. Once above that value, the spirals break up and form disordered spatial structures, mainly because of the percolation of vacant sites. Thus there exists a critical value of the competition rates p(c) for stable single-armed spirals in finite populations. Importantly though, p(c) increases with increasing system size because noise reinforces the disintegration of ordered patterns. In addition, we also find that p(c) increases with the mobility. These phenomena are reproduced by a deterministic model that is based on nonlinear partial differential equations. Our findings indicate that competition is vital for the sustenance of biodiversity and the emergence of pattern formation in ecosystems governed by cyclical interactions.
Collapse
Affiliation(s)
- Luo-Luo Jiang
- College of Physics and Electronic Information Engineering, Wenzhou University, Wenzhou 325027, China
| | | | | | | |
Collapse
|