1
|
Rostami V, Rost T, Schmitt FJ, van Albada SJ, Riehle A, Nawrot MP. Spiking attractor model of motor cortex explains modulation of neural and behavioral variability by prior target information. Nat Commun 2024; 15:6304. [PMID: 39060243 PMCID: PMC11282312 DOI: 10.1038/s41467-024-49889-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
When preparing a movement, we often rely on partial or incomplete information, which can decrement task performance. In behaving monkeys we show that the degree of cued target information is reflected in both, neural variability in motor cortex and behavioral reaction times. We study the underlying mechanisms in a spiking motor-cortical attractor model. By introducing a biologically realistic network topology where excitatory neuron clusters are locally balanced with inhibitory neuron clusters we robustly achieve metastable network activity across a wide range of network parameters. In application to the monkey task, the model performs target-specific action selection and accurately reproduces the task-epoch dependent reduction of trial-to-trial variability in vivo where the degree of reduction directly reflects the amount of processed target information, while spiking irregularity remained constant throughout the task. In the context of incomplete cue information, the increased target selection time of the model can explain increased behavioral reaction times. We conclude that context-dependent neural and behavioral variability is a signum of attractor computation in the motor cortex.
Collapse
Affiliation(s)
- Vahid Rostami
- Institute of Zoology, University of Cologne, Cologne, Germany
| | - Thomas Rost
- Institute of Zoology, University of Cologne, Cologne, Germany
| | | | - Sacha Jennifer van Albada
- Institute of Zoology, University of Cologne, Cologne, Germany
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
| | - Alexa Riehle
- Institute for Advanced Simulation (IAS-6), Jülich Research Center, Jülich, Germany
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | | |
Collapse
|
2
|
Sidhu RS, Johnson EC, Jones DL, Ratnam R. A dynamic spike threshold with correlated noise predicts observed patterns of negative interval correlations in neuronal spike trains. BIOLOGICAL CYBERNETICS 2022; 116:611-633. [PMID: 36244004 PMCID: PMC9691502 DOI: 10.1007/s00422-022-00946-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spike-trains. They provide coding benefits including firing-rate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signal-to-noise ratio. Primary electrosensory afferent spike-trains in weakly electric fish fall into two categories based on the pattern of ISI correlations: non-bursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function [Formula: see text], where k is a multiple of the mean ISI. The function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II correlations generated with fast noise. A first-order autoregressive (AR) process with a single parameter is sufficient to predict and accurately match both types of afferent ISI correlation functions, with the type being determined by the sign of the AR parameter. The predicted and experimentally observed correlations are in geometric progression. The theory predicts that the limiting sum of ISI correlations is [Formula: see text] yielding a perfect DC-block in the power spectrum of the spike train. Observed ISI correlations from afferents have a limiting sum that is slightly larger at [Formula: see text] ([Formula: see text]). We conclude that the underlying process for generating ISIs may be a simple combination of low-order AR and moving average processes and discuss the results from the perspective of optimal coding.
Collapse
Affiliation(s)
- Robin S Sidhu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Erik C Johnson
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Douglas L Jones
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rama Ratnam
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Ramlow L, Lindner B. Interspike interval correlations in neuron models with adaptation and correlated noise. PLoS Comput Biol 2021; 17:e1009261. [PMID: 34449771 PMCID: PMC8428727 DOI: 10.1371/journal.pcbi.1009261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022] Open
Abstract
The generation of neural action potentials (spikes) is random but nevertheless may result in a rich statistical structure of the spike sequence. In particular, contrary to the popular renewal assumption of theoreticians, the intervals between adjacent spikes are often correlated. Experimentally, different patterns of interspike-interval correlations have been observed and computational studies have identified spike-frequency adaptation and correlated noise as the two main mechanisms that can lead to such correlations. Analytical studies have focused on the single cases of either correlated (colored) noise or adaptation currents in combination with uncorrelated (white) noise. For low-pass filtered noise or adaptation, the serial correlation coefficient can be approximated as a single geometric sequence of the lag between the intervals, providing an explanation for some of the experimentally observed patterns. Here we address the problem of interval correlations for a widely used class of models, multidimensional integrate-and-fire neurons subject to a combination of colored and white noise sources and a spike-triggered adaptation current. Assuming weak noise, we derive a simple formula for the serial correlation coefficient, a sum of two geometric sequences, which accounts for a large class of correlation patterns. The theory is confirmed by means of numerical simulations in a number of special cases including the leaky, quadratic, and generalized integrate-and-fire models with colored noise and spike-frequency adaptation. Furthermore we study the case in which the adaptation current and the colored noise share the same time scale, corresponding to a slow stochastic population of adaptation channels; we demonstrate that our theory can account for a nonmonotonic dependence of the correlation coefficient on the channel's time scale. Another application of the theory is a neuron driven by network-noise-like fluctuations (green noise). We also discuss the range of validity of our weak-noise theory and show that by changing the relative strength of white and colored noise sources, we can change the sign of the correlation coefficient. Finally, we apply our theory to a conductance-based model which demonstrates its broad applicability.
Collapse
Affiliation(s)
- Lukas Ramlow
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Physics Department, Humboldt University zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Barta T, Kostal L. Regular spiking in high-conductance states: The essential role of inhibition. Phys Rev E 2021; 103:022408. [PMID: 33736083 DOI: 10.1103/physreve.103.022408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Strong inhibitory input to neurons, which occurs in balanced states of neural networks, increases synaptic current fluctuations. This has led to the assumption that inhibition contributes to the high spike-firing irregularity observed in vivo. We used single compartment neuronal models with time-correlated (due to synaptic filtering) and state-dependent (due to reversal potentials) input to demonstrate that inhibitory input acts to decrease membrane potential fluctuations, a result that cannot be achieved with simplified neural input models. To clarify the effects on spike-firing regularity, we used models with different spike-firing adaptation mechanisms, and we observed that the addition of inhibition increased firing regularity in models with dynamic firing thresholds and decreased firing regularity if spike-firing adaptation was implemented through ionic currents or not at all. This fluctuation-stabilization mechanism provides an alternative perspective on the importance of strong inhibitory inputs observed in balanced states of neural networks, and it highlights the key roles of biologically plausible inputs and specific adaptation mechanisms in neuronal modeling.
Collapse
Affiliation(s)
- Tomas Barta
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic; Charles University, First Medical Faculty, 12108 Prague, Czech Republic; and Institute of Ecology and Environmental Sciences, INRAE, 78026 Versailles, France
| | - Lubomir Kostal
- Institute of Physiology of the Czech Academy of Sciences, 14220 Prague, Czech Republic
| |
Collapse
|
5
|
Nesse WH, Maler L, Longtin A. Enhanced Signal Detection by Adaptive Decorrelation of Interspike Intervals. Neural Comput 2020; 33:341-375. [PMID: 33253034 DOI: 10.1162/neco_a_01347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spike trains with negative interspike interval (ISI) correlations, in which long/short ISIs are more likely followed by short/long ISIs, are common in many neurons. They can be described by stochastic models with a spike-triggered adaptation variable. We analyze a phenomenon in these models where such statistically dependent ISI sequences arise in tandem with quasi-statistically independent and identically distributed (quasi-IID) adaptation variable sequences. The sequences of adaptation states and resulting ISIs are linked by a nonlinear decorrelating transformation. We establish general conditions on a family of stochastic spiking models that guarantee this quasi-IID property and establish bounds on the resulting baseline ISI correlations. Inputs that elicit weak firing rate changes in samples with many spikes are known to be more detectible when negative ISI correlations are present because they reduce spike count variance; this defines a variance-reduced firing rate coding benchmark. We performed a Fisher information analysis on these adapting models exhibiting ISI correlations to show that a spike pattern code based on the quasi-IID property achieves the upper bound of detection performance, surpassing rate codes with the same mean rate-including the variance-reduced rate code benchmark-by 20% to 30%. The information loss in rate codes arises because the benefits of reduced spike count variance cannot compensate for the lower firing rate gain due to adaptation. Since adaptation states have similar dynamics to synaptic responses, the quasi-IID decorrelation transformation of the spike train is plausibly implemented by downstream neurons through matched postsynaptic kinetics. This provides an explanation for observed coding performance in sensory systems that cannot be accounted for by rate coding, for example, at the detection threshold where rate changes can be insignificant.
Collapse
Affiliation(s)
- William H Nesse
- Department of Mathematics, University of Utah, Salt Lake City, UT 84112, U.S.A.
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - André Longtin
- Department of Physics, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
6
|
Rapp H, Nawrot MP. A spiking neural program for sensorimotor control during foraging in flying insects. Proc Natl Acad Sci U S A 2020; 117:28412-28421. [PMID: 33122439 PMCID: PMC7668073 DOI: 10.1073/pnas.2009821117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Foraging is a vital behavioral task for living organisms. Behavioral strategies and abstract mathematical models thereof have been described in detail for various species. To explore the link between underlying neural circuits and computational principles, we present how a biologically detailed neural circuit model of the insect mushroom body implements sensory processing, learning, and motor control. We focus on cast and surge strategies employed by flying insects when foraging within turbulent odor plumes. Using a spike-based plasticity rule, the model rapidly learns to associate individual olfactory sensory cues paired with food in a classical conditioning paradigm. We show that, without retraining, the system dynamically recalls memories to detect relevant cues in complex sensory scenes. Accumulation of this sensory evidence on short time scales generates cast-and-surge motor commands. Our generic systems approach predicts that population sparseness facilitates learning, while temporal sparseness is required for dynamic memory recall and precise behavioral control. Our work successfully combines biological computational principles with spike-based machine learning. It shows how knowledge transfer from static to arbitrary complex dynamic conditions can be achieved by foraging insects and may serve as inspiration for agent-based machine learning.
Collapse
Affiliation(s)
- Hannes Rapp
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
7
|
Betkiewicz R, Lindner B, Nawrot MP. Circuit and Cellular Mechanisms Facilitate the Transformation from Dense to Sparse Coding in the Insect Olfactory System. eNeuro 2020; 7:ENEURO.0305-18.2020. [PMID: 32132095 PMCID: PMC7294456 DOI: 10.1523/eneuro.0305-18.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
Transformations between sensory representations are shaped by neural mechanisms at the cellular and the circuit level. In the insect olfactory system, the encoding of odor information undergoes a transition from a dense spatiotemporal population code in the antennal lobe to a sparse code in the mushroom body. However, the exact mechanisms shaping odor representations and their role in sensory processing are incompletely identified. Here, we investigate the transformation from dense to sparse odor representations in a spiking model of the insect olfactory system, focusing on two ubiquitous neural mechanisms: spike frequency adaptation at the cellular level and lateral inhibition at the circuit level. We find that cellular adaptation is essential for sparse representations in time (temporal sparseness), while lateral inhibition regulates sparseness in the neuronal space (population sparseness). The interplay of both mechanisms shapes spatiotemporal odor representations, which are optimized for the discrimination of odors during stimulus onset and offset. Response pattern correlation across different stimuli showed a nonmonotonic dependence on the strength of lateral inhibition with an optimum at intermediate levels, which is explained by two counteracting mechanisms. In addition, we find that odor identity is stored on a prolonged timescale in the adaptation levels but not in the spiking activity of the principal cells of the mushroom body, providing a testable hypothesis for the location of the so-called odor trace.
Collapse
Affiliation(s)
- Rinaldo Betkiewicz
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Department of Physics, Humboldt University Berlin, 12489 Berlin, Germany
| | - Martin P Nawrot
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
8
|
Rapp H, Nawrot MP, Stern M. Numerical Cognition Based on Precise Counting with a Single Spiking Neuron. iScience 2020; 23:100852. [PMID: 32058964 PMCID: PMC7005464 DOI: 10.1016/j.isci.2020.100852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/24/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
Insects are able to solve basic numerical cognition tasks. We show that estimation of numerosity can be realized and learned by a single spiking neuron with an appropriate synaptic plasticity rule. This model can be efficiently trained to detect arbitrary spatiotemporal spike patterns on a noisy and dynamic background with high precision and low variance. When put to test in a task that requires counting of visual concepts in a static image it required considerably less training epochs than a convolutional neural network to achieve equal performance. When mimicking a behavioral task in free-flying bees that requires numerical cognition, the model reaches a similar success rate in making correct decisions. We propose that using action potentials to represent basic numerical concepts with a single spiking neuron is beneficial for organisms with small brains and limited neuronal resources.
Collapse
Affiliation(s)
- Hannes Rapp
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50923 Cologne, Germany.
| | - Martin Paul Nawrot
- Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Zülpicher Straße 47b, 50923 Cologne, Germany
| | - Merav Stern
- Department of Applied Mathematics, University of Washington, Lewis Hall 201, Box 353925, Seattle, WA 98195-3925, USA
| |
Collapse
|
9
|
Nolte M, Reimann MW, King JG, Markram H, Muller EB. Cortical reliability amid noise and chaos. Nat Commun 2019; 10:3792. [PMID: 31439838 PMCID: PMC6706377 DOI: 10.1038/s41467-019-11633-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 07/23/2019] [Indexed: 02/01/2023] Open
Abstract
Typical responses of cortical neurons to identical sensory stimuli appear highly variable. It has thus been proposed that the cortex primarily uses a rate code. However, other studies have argued for spike-time coding under certain conditions. The potential role of spike-time coding is directly limited by the internally generated variability of cortical circuits, which remains largely unexplored. Here, we quantify this internally generated variability using a biophysical model of rat neocortical microcircuitry with biologically realistic noise sources. We find that stochastic neurotransmitter release is a critical component of internally generated variability, causing rapidly diverging, chaotic recurrent network dynamics. Surprisingly, the same nonlinear recurrent network dynamics can transiently overcome the chaos in response to weak feed-forward thalamocortical inputs, and support reliable spike times with millisecond precision. Our model shows that the noisy and chaotic network dynamics of recurrent cortical microcircuitry are compatible with stimulus-evoked, millisecond spike-time reliability, resolving a long-standing debate.
Collapse
Affiliation(s)
- Max Nolte
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland.
| | - Michael W Reimann
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - James G King
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Eilif B Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland.
| |
Collapse
|
10
|
Cui ED, Strowbridge BW. Selective attenuation of Ether-a-go-go related K + currents by endogenous acetylcholine reduces spike-frequency adaptation and network correlation. eLife 2019; 8:e44954. [PMID: 31032798 PMCID: PMC6488300 DOI: 10.7554/elife.44954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/21/2022] Open
Abstract
Most neurons do not simply convert inputs into firing rates. Instead, moment-to-moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-à-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties.
Collapse
Affiliation(s)
- Edward D Cui
- Department of NeurosciencesCase Western Reserve UniversityClevelandUnited States
| | - Ben W Strowbridge
- Department of NeurosciencesCase Western Reserve UniversityClevelandUnited States
| |
Collapse
|
11
|
Braun W, Longtin A. Interspike interval correlations in networks of inhibitory integrate-and-fire neurons. Phys Rev E 2019; 99:032402. [PMID: 30999498 DOI: 10.1103/physreve.99.032402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 11/07/2022]
Abstract
We study temporal correlations of interspike intervals, quantified by the network-averaged serial correlation coefficient (SCC), in networks of both current- and conductance-based purely inhibitory integrate-and-fire neurons. Numerical simulations reveal transitions to negative SCCs at intermediate values of bias current drive and network size. As bias drive and network size are increased past these values, the SCC returns to zero. The SCC is maximally negative at an intermediate value of the network oscillation strength. The dependence of the SCC on two canonical schemes for synaptic connectivity is studied, and it is shown that the results occur robustly in both schemes. For conductance-based synapses, the SCC becomes negative at the onset of both a fast and slow coherent network oscillation. We then show by means of offline simulations using prerecorded network activity that a neuron's SCC is highly sensitive to its number of presynaptic inputs. Finally, we devise a noise-reduced diffusion approximation for current-based networks that accounts for the observed temporal correlation transitions.
Collapse
Affiliation(s)
- Wilhelm Braun
- Neural Network Dynamics and Computation, Institut für Genetik, Universität Bonn, Kirschallee 1, 53115 Bonn, Germany.,Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
| | - André Longtin
- Department of Physics and Centre for Neural Dynamics, University of Ottawa, 598 King Edward, Ottawa K1N 6N5, Canada
| |
Collapse
|
12
|
Albert M, Bouret Y, Fromont M, Reynaud-Bouret P. Surrogate Data Methods Based on a Shuffling of the Trials for Synchrony Detection: The Centering Issue. Neural Comput 2018; 28:2352-2392. [PMID: 27782778 DOI: 10.1162/neco_a_00839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
We investigate several distribution-free dependence detection procedures, all based on a shuffling of the trials, from a statistical point of view. The mathematical justification of such procedures lies in the bootstrap principle and its approximation properties. In particular, we show that such a shuffling has mainly to be done on centered quantities-that is, quantities with zero mean under independence-to construct correct p-values, meaning that the corresponding tests control their false positive (FP) rate. Thanks to this study, we introduce a method, named permutation UE, which consists of a multiple testing procedure based on permutation of experimental trials and delayed coincidence count. Each involved single test of this procedure achieves the prescribed level, so that the corresponding multiple testing procedure controls the false discovery rate (FDR), and this with as few assumptions as possible on the underneath distribution, except independence and identical distribution across trials. The mathematical meaning of this assumption is discussed, and it is in particular argued that it does not mean what is commonly referred in neuroscience to as cross-trials stationarity. Some simulations show, moreover, that permutation UE outperforms the trial-shuffling of Pipa and Grün ( 2003 ) and the MTGAUE method of Tuleau-Malot et al. ( 2014 ) in terms of single levels and FDR, for a comparable amount of false negatives. Application to real data is also provided.
Collapse
Affiliation(s)
| | | | - Magalie Fromont
- Université Bretagne Loire, CNRS, IRMAR, UMR 6625, 35043 Rennes Cedex, France
| | | |
Collapse
|
13
|
Riehle A, Brochier T, Nawrot M, Grün S. Behavioral Context Determines Network State and Variability Dynamics in Monkey Motor Cortex. Front Neural Circuits 2018; 12:52. [PMID: 30050415 PMCID: PMC6052126 DOI: 10.3389/fncir.2018.00052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/15/2018] [Indexed: 11/13/2022] Open
Abstract
Variability of spiking activity is ubiquitous throughout the brain but little is known about its contextual dependance. Trial-to-trial spike count variability, estimated by the Fano Factor (FF), and within-trial spike time irregularity, quantified by the coefficient of variation (CV), reflect variability on long and short time scales, respectively. We co-analyzed FF and the local coefficient of variation (CV2) in monkey motor cortex comparing two behavioral contexts, movement preparation (wait) and execution (movement). We find that the FF significantly decreases from wait to movement, while the CV2 increases. The more regular firing (expressed by a low CV2) during wait is related to an increased power of local field potential (LFP) beta oscillations and phase locking of spikes to these oscillations. In renewal processes, a widely used model for spiking activity under stationary input conditions, both measures are related as FF ≈ CV2. This expectation was met during movement, but not during wait where FF ≫ CV22. Our interpretation is that during movement preparation, ongoing brain processes result in changing network states and thus in high trial-to-trial variability (expressed by a high FF). During movement execution, the network is recruited for performing the stereotyped motor task, resulting in reliable single neuron output. Our interpretation is in the light of recent computational models that generate non-stationary network conditions.
Collapse
Affiliation(s)
- Alexa Riehle
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France.,Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I, Forschungszentrum Jülich, Jülich, Germany
| | - Thomas Brochier
- UMR7289 Institut de Neurosciences de la Timone (INT), Centre National de la Recherche Scientifique (CNRS)-Aix-Marseille Université (AMU), Marseille, France
| | - Martin Nawrot
- Computational Systems Neuroscience, Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6), Institute for Advanced Simulation (IAS-6) and JARA Brain Institute I, Forschungszentrum Jülich, Jülich, Germany.,RIKEN Brain Science Institute (BSI), Wako, Japan.,Theoretical Systems Neurobiology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Rost T, Deger M, Nawrot MP. Winnerless competition in clustered balanced networks: inhibitory assemblies do the trick. BIOLOGICAL CYBERNETICS 2018; 112:81-98. [PMID: 29075845 PMCID: PMC5908874 DOI: 10.1007/s00422-017-0737-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Balanced networks are a frequently employed basic model for neuronal networks in the mammalian neocortex. Large numbers of excitatory and inhibitory neurons are recurrently connected so that the numerous positive and negative inputs that each neuron receives cancel out on average. Neuronal firing is therefore driven by fluctuations in the input and resembles the irregular and asynchronous activity observed in cortical in vivo data. Recently, the balanced network model has been extended to accommodate clusters of strongly interconnected excitatory neurons in order to explain persistent activity in working memory-related tasks. This clustered topology introduces multistability and winnerless competition between attractors and can capture the high trial-to-trial variability and its reduction during stimulation that has been found experimentally. In this prospect article, we review the mean field description of balanced networks of binary neurons and apply the theory to clustered networks. We show that the stable fixed points of networks with clustered excitatory connectivity tend quickly towards firing rate saturation, which is generally inconsistent with experimental data. To remedy this shortcoming, we then present a novel perspective on networks with locally balanced clusters of both excitatory and inhibitory neuron populations. This approach allows for true multistability and moderate firing rates in activated clusters over a wide range of parameters. Our findings are supported by mean field theory and numerical network simulations. Finally, we discuss possible applications of the concept of joint excitatory and inhibitory clustering in future cortical network modelling studies.
Collapse
Affiliation(s)
- Thomas Rost
- Computational Systems Neuroscience, Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Moritz Deger
- Computational Systems Neuroscience, Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Martin P Nawrot
- Computational Systems Neuroscience, Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| |
Collapse
|
15
|
Torre E, Canova C, Denker M, Gerstein G, Helias M, Grün S. ASSET: Analysis of Sequences of Synchronous Events in Massively Parallel Spike Trains. PLoS Comput Biol 2016; 12:e1004939. [PMID: 27420734 PMCID: PMC4946788 DOI: 10.1371/journal.pcbi.1004939] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/24/2016] [Indexed: 11/19/2022] Open
Abstract
With the ability to observe the activity from large numbers of neurons simultaneously using modern recording technologies, the chance to identify sub-networks involved in coordinated processing increases. Sequences of synchronous spike events (SSEs) constitute one type of such coordinated spiking that propagates activity in a temporally precise manner. The synfire chain was proposed as one potential model for such network processing. Previous work introduced a method for visualization of SSEs in massively parallel spike trains, based on an intersection matrix that contains in each entry the degree of overlap of active neurons in two corresponding time bins. Repeated SSEs are reflected in the matrix as diagonal structures of high overlap values. The method as such, however, leaves the task of identifying these diagonal structures to visual inspection rather than to a quantitative analysis. Here we present ASSET (Analysis of Sequences of Synchronous EvenTs), an improved, fully automated method which determines diagonal structures in the intersection matrix by a robust mathematical procedure. The method consists of a sequence of steps that i) assess which entries in the matrix potentially belong to a diagonal structure, ii) cluster these entries into individual diagonal structures and iii) determine the neurons composing the associated SSEs. We employ parallel point processes generated by stochastic simulations as test data to demonstrate the performance of the method under a wide range of realistic scenarios, including different types of non-stationarity of the spiking activity and different correlation structures. Finally, the ability of the method to discover SSEs is demonstrated on complex data from large network simulations with embedded synfire chains. Thus, ASSET represents an effective and efficient tool to analyze massively parallel spike data for temporal sequences of synchronous activity.
Collapse
Affiliation(s)
- Emiliano Torre
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- * E-mail:
| | - Carlos Canova
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - Michael Denker
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
| | - George Gerstein
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Moritz Helias
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - Sonja Grün
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany
- Department of Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
16
|
Colliaux D, Yger P, Kaneko K. Impact of sub and supra-threshold adaptation currents in networks of spiking neurons. J Comput Neurosci 2015; 39:255-70. [PMID: 26400658 PMCID: PMC4649064 DOI: 10.1007/s10827-015-0575-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 07/30/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Neuronal adaptation is the intrinsic capacity of the brain to change, by various mechanisms, its dynamical responses as a function of the context. Such a phenomena, widely observed in vivo and in vitro, is known to be crucial in homeostatic regulation of the activity and gain control. The effects of adaptation have already been studied at the single-cell level, resulting from either voltage or calcium gated channels both activated by the spiking activity and modulating the dynamical responses of the neurons. In this study, by disentangling those effects into a linear (sub-threshold) and a non-linear (supra-threshold) part, we focus on the the functional role of those two distinct components of adaptation onto the neuronal activity at various scales, starting from single-cell responses up to recurrent networks dynamics, and under stationary or non-stationary stimulations. The effects of slow currents on collective dynamics, like modulation of population oscillation and reliability of spike patterns, is quantified for various types of adaptation in sparse recurrent networks.
Collapse
Affiliation(s)
- David Colliaux
- Institut des Systèmes Intelligents et de Robotique (ISIR), CNRS UMR 7222, UPMC University Paris, 4 Place Jussieu, 75005, Paris, France.
| | - Pierre Yger
- Institut d'Etudes de la Cognition, ENS, Paris, France
- Sorbonne Université, UPMC University Paris06 UMRS968, Insititut de la Vision, Paris, France
- INSERM, U968, Paris, France
- CNRS, UMR7210, Paris, France
| | - Kunihiko Kaneko
- Department of Basic Science, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
17
|
Logiaco L, Quilodran R, Procyk E, Arleo A. Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex. PLoS Biol 2015; 13:e1002222. [PMID: 26266537 PMCID: PMC4534466 DOI: 10.1371/journal.pbio.1002222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 11/18/2022] Open
Abstract
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70-200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys' behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators.
Collapse
Affiliation(s)
- Laureline Logiaco
- INSERM, U968, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- * E-mail: (LL); (AA)
| | - René Quilodran
- Escuela de Medicina, Departamento de Pre-clínicas, Universidad de Valparaíso, Hontaneda, Valparaíso, Chile
| | - Emmanuel Procyk
- Stem Cell and Brain Research Institute, Institut National de la Santé et de la Recherche Médicale U846, 69500 Bron, France
- Université de Lyon, Université Lyon 1, Lyon, France
| | - Angelo Arleo
- INSERM, U968, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- * E-mail: (LL); (AA)
| |
Collapse
|
18
|
Benedetto E, Polito F, Sacerdote L. On Firing Rate Estimation for Dependent Interspike Intervals. Neural Comput 2015; 27:699-724. [DOI: 10.1162/neco_a_00709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
If interspike intervals are dependent, the instantaneous firing rate does not catch important features of spike trains. In this case, the conditional instantaneous rate plays the role of the instantaneous firing rate for the case of samples of independent interspike intervals. If the conditional distribution of the interspikes intervals (ISIs) is unknown, it becomes difficult to evaluate the conditional firing rate. We propose a nonparametric estimator for the conditional instantaneous firing rate for Markov, stationary, and ergodic ISIs. An algorithm to check the reliability of the proposed estimator is introduced, and its consistency properties are proved. The method is applied to data obtained from a stochastic two-compartment model and to in vitro experimental data.
Collapse
Affiliation(s)
- Elisa Benedetto
- Department of Mathematics G. Peano, University of Torino, Via Carlo Alberto 10, 10123, Turin, Italy
| | - Federico Polito
- Department of Mathematics G. Peano, University of Torino, Via Carlo Alberto 10, 10123, Turin, Italy
| | - Laura Sacerdote
- Department of Mathematics G. Peano, University of Torino, Via Carlo Alberto 10, 10123, Turin, Italy
| |
Collapse
|
19
|
WANG LEI, LIANG PEIJI, ZHANG PUMING, QIU YIHONG. ADAPTATION-DEPENDENT SYNCHRONIZATION TRANSITIONS AND BURST GENERATIONS IN ELECTRICALLY COUPLED NEURAL NETWORKS. Int J Neural Syst 2014; 24:1450033. [DOI: 10.1142/s0129065714500336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A typical feature of neurons is their ability to encode neural information dynamically through spike frequency adaptation (SFA). Previous studies of SFA on neuronal synchronization were mainly concentrated on the correlated firing between neuron pairs, while the synchronization of neuron populations in the presence of SFA is still unclear. In this study, the influence of SFA on the population synchronization of neurons was numerically explored in electrically coupled networks, with regular, small-world, and random connectivity, respectively. The simulation results indicate that cross-correlation indices decrease significantly when the neurons have adaptation compared with those of nonadapting neurons, similar to previous experimental observations. However, the synchronous activity of population neurons exhibits a rather complex adaptation-dependent manner. Specifically, synchronization strength of neuron populations changes nonmonotonically, depending on the degree of adaptation. In addition, single neurons in the networks can switch from regular spiking to bursting with the increase of adaptation degree. Furthermore, the connection probability among neurons exhibits significant influence on the population synchronous activity, but has little effect on the burst generation of single neurons. Accordingly, the results may suggest that synchronous activity and burst firing of population neurons are both adaptation-dependent.
Collapse
Affiliation(s)
- LEI WANG
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - PEI-JI LIANG
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - PU-MING ZHANG
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - YI-HONG QIU
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
20
|
Hertäg L, Durstewitz D, Brunel N. Analytical approximations of the firing rate of an adaptive exponential integrate-and-fire neuron in the presence of synaptic noise. Front Comput Neurosci 2014; 8:116. [PMID: 25278872 PMCID: PMC4167001 DOI: 10.3389/fncom.2014.00116] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 08/31/2014] [Indexed: 11/17/2022] Open
Abstract
Computational models offer a unique tool for understanding the network-dynamical mechanisms which mediate between physiological and biophysical properties, and behavioral function. A traditional challenge in computational neuroscience is, however, that simple neuronal models which can be studied analytically fail to reproduce the diversity of electrophysiological behaviors seen in real neurons, while detailed neuronal models which do reproduce such diversity are intractable analytically and computationally expensive. A number of intermediate models have been proposed whose aim is to capture the diversity of firing behaviors and spike times of real neurons while entailing the simplest possible mathematical description. One such model is the exponential integrate-and-fire neuron with spike rate adaptation (aEIF) which consists of two differential equations for the membrane potential (V) and an adaptation current (w). Despite its simplicity, it can reproduce a wide variety of physiologically observed spiking patterns, can be fit to physiological recordings quantitatively, and, once done so, is able to predict spike times on traces not used for model fitting. Here we compute the steady-state firing rate of aEIF in the presence of Gaussian synaptic noise, using two approaches. The first approach is based on the 2-dimensional Fokker-Planck equation that describes the (V,w)-probability distribution, which is solved using an expansion in the ratio between the time constants of the two variables. The second is based on the firing rate of the EIF model, which is averaged over the distribution of the w variable. These analytically derived closed-form expressions were tested on simulations from a large variety of model cells quantitatively fitted to in vitro electrophysiological recordings from pyramidal cells and interneurons. Theoretical predictions closely agreed with the firing rate of the simulated cells fed with in-vivo-like synaptic noise.
Collapse
Affiliation(s)
- Loreen Hertäg
- Department Theoretical Neuroscience, Bernstein-Center for Computational Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany
| | - Daniel Durstewitz
- Department Theoretical Neuroscience, Bernstein-Center for Computational Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University Mannheim, Germany ; Faculty of Science and Environment, School of Computing and Mathematics, Plymouth University Plymouth, UK
| | - Nicolas Brunel
- Departments of Statistics and Neurobiology, University of Chicago Chicago, IL, USA
| |
Collapse
|
21
|
Ocker GK, Doiron B. Kv7 channels regulate pairwise spiking covariability in health and disease. J Neurophysiol 2014; 112:340-52. [PMID: 24790164 DOI: 10.1152/jn.00084.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Low-threshold M currents are mediated by the Kv7 family of potassium channels. Kv7 channels are important regulators of spiking activity, having a direct influence on the firing rate, spike time variability, and filter properties of neurons. How Kv7 channels affect the joint spiking activity of populations of neurons is an important and open area of study. Using a combination of computational simulations and analytic calculations, we show that the activation of Kv7 conductances reduces the covariability between spike trains of pairs of neurons driven by common inputs. This reduction is beyond that explained by the lowering of firing rates and involves an active cancellation of common fluctuations in the membrane potentials of the cell pair. Our theory shows that the excess covariance reduction is due to a Kv7-induced shift from low-pass to band-pass filtering of the single neuron spike train response. Dysfunction of Kv7 conductances is related to a number of neurological diseases characterized by both elevated firing rates and increased network-wide correlations. We show how changes in the activation or strength of Kv7 conductances give rise to excess correlations that cannot be compensated for by synaptic scaling or homeostatic modulation of passive membrane properties. In contrast, modulation of Kv7 activation parameters consistent with pharmacological treatments for certain hyperactivity disorders can restore normal firing rates and spiking correlations. Our results provide key insights into how regulation of a ubiquitous potassium channel class can control the coordination of population spiking activity.
Collapse
Affiliation(s)
- Gabriel Koch Ocker
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| | - Brent Doiron
- Department of Mathematics, University of Pittsburgh, Pittsburgh, Pennsylvania; and Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Schwalger T, Lindner B. Patterns of interval correlations in neural oscillators with adaptation. Front Comput Neurosci 2013; 7:164. [PMID: 24348372 PMCID: PMC3843362 DOI: 10.3389/fncom.2013.00164] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/26/2013] [Indexed: 11/24/2022] Open
Abstract
Neural firing is often subject to negative feedback by adaptation currents. These currents can induce strong correlations among the time intervals between spikes. Here we study analytically the interval correlations of a broad class of noisy neural oscillators with spike-triggered adaptation of arbitrary strength and time scale. Our weak-noise theory provides a general relation between the correlations and the phase-response curve (PRC) of the oscillator, proves anti-correlations between neighboring intervals for adapting neurons with type I PRC and identifies a single order parameter that determines the qualitative pattern of correlations. Monotonically decaying or oscillating correlation structures can be related to qualitatively different voltage traces after spiking, which can be explained by the phase plane geometry. At high firing rates, the long-term variability of the spike train associated with the cumulative interval correlations becomes small, independent of model details. Our results are verified by comparison with stochastic simulations of the exponential, leaky, and generalized integrate-and-fire models with adaptation.
Collapse
Affiliation(s)
- Tilo Schwalger
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Department of Physics, Humboldt Universität zu Berlin Berlin, Germany
| | - Benjamin Lindner
- Bernstein Center for Computational Neuroscience Berlin, Germany ; Department of Physics, Humboldt Universität zu Berlin Berlin, Germany
| |
Collapse
|
23
|
Natural image sequences constrain dynamic receptive fields and imply a sparse code. Brain Res 2013; 1536:53-67. [PMID: 23933349 DOI: 10.1016/j.brainres.2013.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 07/28/2013] [Accepted: 07/31/2013] [Indexed: 11/22/2022]
Abstract
In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input.
Collapse
|
24
|
Ladenbauer J, Augustin M, Obermayer K. How adaptation currents change threshold, gain, and variability of neuronal spiking. J Neurophysiol 2013; 111:939-53. [PMID: 24174646 DOI: 10.1152/jn.00586.2013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many types of neurons exhibit spike rate adaptation, mediated by intrinsic slow K(+) currents, which effectively inhibit neuronal responses. How these adaptation currents change the relationship between in vivo like fluctuating synaptic input, spike rate output, and the spike train statistics, however, is not well understood. In this computational study we show that an adaptation current that primarily depends on the subthreshold membrane voltage changes the neuronal input-output relationship (I-O curve) subtractively, thereby increasing the response threshold, and decreases its slope (response gain) for low spike rates. A spike-dependent adaptation current alters the I-O curve divisively, thus reducing the response gain. Both types of an adaptation current naturally increase the mean interspike interval (ISI), but they can affect ISI variability in opposite ways. A subthreshold current always causes an increase of variability while a spike-triggered current decreases high variability caused by fluctuation-dominated inputs and increases low variability when the average input is large. The effects on I-O curves match those caused by synaptic inhibition in networks with asynchronous irregular activity, for which we find subtractive and divisive changes caused by external and recurrent inhibition, respectively. Synaptic inhibition, however, always increases the ISI variability. We analytically derive expressions for the I-O curve and ISI variability, which demonstrate the robustness of our results. Furthermore, we show how the biophysical parameters of slow K(+) conductances contribute to the two different types of an adaptation current and find that Ca(2+)-activated K(+) currents are effectively captured by a simple spike-dependent description, while muscarine-sensitive or Na(+)-activated K(+) currents show a dominant subthreshold component.
Collapse
Affiliation(s)
- Josef Ladenbauer
- Neural Information Processing Group, Technische Universität Berlin, Berlin, Germany; and
| | | | | |
Collapse
|
25
|
Farkhooi F, Froese A, Muller E, Menzel R, Nawrot MP. Cellular adaptation facilitates sparse and reliable coding in sensory pathways. PLoS Comput Biol 2013; 9:e1003251. [PMID: 24098101 PMCID: PMC3789775 DOI: 10.1371/journal.pcbi.1003251] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/16/2013] [Indexed: 11/30/2022] Open
Abstract
Most neurons in peripheral sensory pathways initially respond vigorously when a preferred stimulus is presented, but adapt as stimulation continues. It is unclear how this phenomenon affects stimulus coding in the later stages of sensory processing. Here, we show that a temporally sparse and reliable stimulus representation develops naturally in sequential stages of a sensory network with adapting neurons. As a modeling framework we employ a mean-field approach together with an adaptive population density treatment, accompanied by numerical simulations of spiking neural networks. We find that cellular adaptation plays a critical role in the dynamic reduction of the trial-by-trial variability of cortical spike responses by transiently suppressing self-generated fast fluctuations in the cortical balanced network. This provides an explanation for a widespread cortical phenomenon by a simple mechanism. We further show that in the insect olfactory system cellular adaptation is sufficient to explain the emergence of the temporally sparse and reliable stimulus representation in the mushroom body. Our results reveal a generic, biophysically plausible mechanism that can explain the emergence of a temporally sparse and reliable stimulus representation within a sequential processing architecture.
Collapse
Affiliation(s)
- Farzad Farkhooi
- Neuroinformatics & Theoretical Neuroscience, Freie Universität Berlin, and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Anja Froese
- Institute für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Eilif Muller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Randolf Menzel
- Institute für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Martin P. Nawrot
- Neuroinformatics & Theoretical Neuroscience, Freie Universität Berlin, and Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
26
|
Kostal L, Lansky P. Information capacity and its approximations under metabolic cost in a simple homogeneous population of neurons. Biosystems 2013; 112:265-75. [PMID: 23562831 DOI: 10.1016/j.biosystems.2013.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/11/2013] [Accepted: 03/26/2013] [Indexed: 11/25/2022]
Abstract
We calculate and analyze the information capacity-achieving conditions and their approximations in a simple neuronal system. The input-output properties of individual neurons are described by an empirical stimulus-response relationship and the metabolic cost of neuronal activity is taken into account. The exact (numerical) results are compared with a popular "low-noise" approximation method which employs the concepts of parameter estimation theory. We show, that the approximate method gives reliable results only in the case of significantly low response variability. By employing specialized numerical procedures we demonstrate, that optimal information transfer can be near-achieved by a number of different input distributions. It implies that the precise structure of the capacity-achieving input is of lesser importance than the value of capacity. Finally, we illustrate on an example that an innocuously looking stimulus-response relationship may lead to a problematic interpretation of the obtained Fisher information values.
Collapse
Affiliation(s)
- Lubomir Kostal
- Institute of Physiology AS CR, v.v.i., Videnska 1083, Praha 4, Czech Republic.
| | | |
Collapse
|
27
|
Pokora O, Lansky P. Estimating individual firing frequencies in a multiple spike train record. J Neurosci Methods 2012; 211:191-202. [PMID: 23000722 DOI: 10.1016/j.jneumeth.2012.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/09/2012] [Accepted: 09/11/2012] [Indexed: 11/25/2022]
Abstract
Neuronal activity of several neurons is commonly recorded by a single electrode and then the individual spike trains are separated. If the separation is difficult or fails, then as a minimal result of the experiment, the individual firing rates are of interest. The proposed method solves the problem of their identification. This is possible under the condition that the recorded neurons are independent in their activities. The number of the neurons in the multi-unit record needs to be given (known or assumed) prior the calculation. The proposed method is based on the presence of the refractory period in neuronal firing, however, its precise value is not required. In addition to the determination of the individual firing rates the method can be used for an inference about the refractory period itself.
Collapse
Affiliation(s)
- Ondrej Pokora
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 14220 Prague, Czech Republic.
| | | |
Collapse
|
28
|
Naud R, Gerstner W. Coding and decoding with adapting neurons: a population approach to the peri-stimulus time histogram. PLoS Comput Biol 2012; 8:e1002711. [PMID: 23055914 PMCID: PMC3464223 DOI: 10.1371/journal.pcbi.1002711] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/03/2012] [Indexed: 11/18/2022] Open
Abstract
The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also to arbitrary point processes with negative self-interaction. How can information be encoded and decoded in populations of adapting neurons? A quantitative answer to this question requires a mathematical expression relating neuronal activity to the external stimulus, and, conversely, stimulus to neuronal activity. Although widely used equations and models exist for the special problem of relating external stimulus to the action potentials of a single neuron, the analogous problem of relating the external stimulus to the activity of a population has proven more difficult. There is a bothersome gap between the dynamics of single adapting neurons and the dynamics of populations. Moreover, if we ignore the single neurons and describe directly the population dynamics, we are faced with the ambiguity of the adapting neural code. The neural code of adapting populations is ambiguous because it is possible to observe a range of population activities in response to a given instantaneous input. Somehow the ambiguity is resolved by the knowledge of the population history, but how precisely? In this article we use approximation methods to provide mathematical expressions that describe the encoding and decoding of external stimuli in adapting populations. The theory presented here helps to bridge the gap between the dynamics of single neurons and that of populations.
Collapse
Affiliation(s)
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne-EPFL, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Deger M, Helias M, Boucsein C, Rotter S. Statistical properties of superimposed stationary spike trains. J Comput Neurosci 2011; 32:443-63. [PMID: 21964584 PMCID: PMC3343236 DOI: 10.1007/s10827-011-0362-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 11/28/2022]
Abstract
The Poisson process is an often employed model for the activity of neuronal populations. It is known, though, that superpositions of realistic, non- Poisson spike trains are not in general Poisson processes, not even for large numbers of superimposed processes. Here we construct superimposed spike trains from intracellular in vivo recordings from rat neocortex neurons and compare their statistics to specific point process models. The constructed superimposed spike trains reveal strong deviations from the Poisson model. We find that superpositions of model spike trains that take the effective refractoriness of the neurons into account yield a much better description. A minimal model of this kind is the Poisson process with dead-time (PPD). For this process, and for superpositions thereof, we obtain analytical expressions for some second-order statistical quantities—like the count variability, inter-spike interval (ISI) variability and ISI correlations—and demonstrate the match with the in vivo data. We conclude that effective refractoriness is the key property that shapes the statistical properties of the superposition spike trains. We present new, efficient algorithms to generate superpositions of PPDs and of gamma processes that can be used to provide more realistic background input in simulations of networks of spiking neurons. Using these generators, we show in simulations that neurons which receive superimposed spike trains as input are highly sensitive for the statistical effects induced by neuronal refractoriness.
Collapse
Affiliation(s)
- Moritz Deger
- Bernstein Center Freiburg & Faculty of Biology, Albert-Ludwig University, 79104 Freiburg, Germany.
| | | | | | | |
Collapse
|
30
|
Urdapilleta E. Onset of negative interspike interval correlations in adapting neurons. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 84:041904. [PMID: 22181172 DOI: 10.1103/physreve.84.041904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Negative serial correlations in single spike trains are an effective method to reduce the variability of spike counts. One of the factors contributing to the development of negative correlations between successive interspike intervals is the presence of adaptation currents. In this work, based on a hidden Markov model and a proper statistical description of conditional responses, we obtain analytically these correlations in an adequate dynamical neuron model resembling adaptation. We derive the serial correlation coefficients for arbitrary lags, under a small adaptation scenario. In this case, the behavior of correlations is universal and depends on the first-order statistical description of an exponentially driven time-inhomogeneous stochastic process.
Collapse
Affiliation(s)
- Eugenio Urdapilleta
- División de Física Estadística e Interdisciplinaria & Instituto Balseiro, Centro Atómico Bariloche, Avenida E. Bustillo Km 9.500, S.C. de Bariloche (8400), Río Negro, Argentina.
| |
Collapse
|