1
|
Ye Q, Yan G, Chang W, Luo H. Vital node identification based on cycle structure in a multiplex network. THE EUROPEAN PHYSICAL JOURNAL. B 2023; 96:15. [PMID: 36776156 PMCID: PMC9896463 DOI: 10.1140/epjb/s10051-022-00458-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 06/18/2023]
Abstract
ABSTRACT Multiplex networks frame the heterogeneous nature of real systems, where the multiple roles of nodes, both functionally and structurally, are well represented. We identify these vital nodes in a multiplex network so that we can control a pandemic outbreak like COVID-19, eliminate damage from a network attack, maintain traffic, and so on. Vital node identification has attracted scientists in various fields for decades. In this paper, we propose a hybrid supra-cycle number and hybrid supra-cycle ratio based on the cycle structure, and present an extensive experimental analysis by comparing our indexes and several different indexes in four real multiplex networks on layer nodes and multiplex nodes. The experimental results show that these proposed indexes have good robustness, synchronization, and transmission dynamics. Finally, we provide an in-depth understanding of multiplex networks and cycle structure, and we sincerely hope more valuable academic achievements are proposed in the future.
Collapse
Affiliation(s)
- Quan Ye
- School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
| | - Guanghui Yan
- School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
| | - Wenwen Chang
- School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou, 730070 China
| | - Hao Luo
- School of Information Science and Engineering, Gansu University of Traditional Chinese Medicine, Lanzhou, 730070 China
| |
Collapse
|
2
|
Shang Y. Feature-enriched core percolation in multiplex networks. Phys Rev E 2022; 106:054314. [PMID: 36559501 DOI: 10.1103/physreve.106.054314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Percolation models have long served as a paradigm for unraveling the structure and resilience of complex systems comprising interconnected nodes. In many real networks, nodes are identified by not only their connections but nontopological metadata such as age and gender in social systems, geographical location in infrastructure networks, and component contents in biochemical networks. However, there is little known regarding how the nontopological features influence network structures under percolation processes. In this paper we introduce a feature-enriched core percolation framework using a generic multiplex network approach. We thereby analytically determine the corona cluster, size, and number of edges of the feature-enriched cores. We find a hybrid percolation transition combining a jump and a square root singularity at the critical points in both the network connectivity and the feature space. Integrating the degree-feature distribution with the Farlie-Gumbel-Morgenstern copula, we show the existence of continuous and discrete percolation transitions for feature-enriched cores at critical correlation levels. The inner and outer cores are found to undergo distinct phase transitions under the feature-enriched percolation, all limited by a characteristic curve of the feature distribution.
Collapse
Affiliation(s)
- Yilun Shang
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
3
|
Meng Y, Lai YC, Grebogi C. The fundamental benefits of multiplexity in ecological networks. J R Soc Interface 2022; 19:20220438. [PMID: 36167085 PMCID: PMC9514891 DOI: 10.1098/rsif.2022.0438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/12/2022] Open
Abstract
A tipping point presents perhaps the single most significant threat to an ecological system as it can lead to abrupt species extinction on a massive scale. Climate changes leading to the species decay parameter drifts can drive various ecological systems towards a tipping point. We investigate the tipping-point dynamics in multi-layer ecological networks supported by mutualism. We unveil a natural mechanism by which the occurrence of tipping points can be delayed by multiplexity that broadly describes the diversity of the species abundances, the complexity of the interspecific relationships, and the topology of linkages in ecological networks. For a double-layer system of pollinators and plants, coupling between the network layers occurs when there is dispersal of pollinator species. Multiplexity emerges as the dispersing species establish their presence in the destination layer and have a simultaneous presence in both. We demonstrate that the new mutualistic links induced by the dispersing species with the residence species have fundamental benefits to the well-being of the ecosystem in delaying the tipping point and facilitating species recovery. Articulating and implementing control mechanisms to induce multiplexity can thus help sustain certain types of ecosystems that are in danger of extinction as the result of environmental changes.
Collapse
Affiliation(s)
- Yu Meng
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, Dresden 01187, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, Dresden 01307, Germany
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - Celso Grebogi
- Institute for Complex Systems and Mathematical Biology, School of Natural and Computing Sciences, King’s College, University of Aberdeen, AB24 3UE, UK
| |
Collapse
|
4
|
Li Q, Yu H, Han W, Wu Y. Group percolation in interdependent networks with reinforcement network layer. CHAOS (WOODBURY, N.Y.) 2022; 32:093126. [PMID: 36182370 DOI: 10.1063/5.0091342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
In many real-world interdependent network systems, nodes often work together to form groups, which can enhance robustness to resist risks. However, previous group percolation models are always of a first-order phase transition, regardless of the group size distribution. This motivates us to investigate a generalized model for group percolation in interdependent networks with a reinforcement network layer to eliminate collapse. Some backup devices that are equipped for a density ρ of reinforced nodes constitute the reinforcement network layer. For each group, we assume that at least one node of the group can function in one network and a node in another network depends on the group to function. We find that increasing the density ρ of reinforcement nodes and the size S of the dependency group can significantly enhance the robustness of interdependent networks. Importantly, we find the existence of a hybrid phase transition behavior and propose a method for calculating the shift point of percolation types. The most interesting finding is the exact universal solution to the minimal density ρ of reinforced nodes (or the minimum group size S) to prevent abrupt collapse for Erdős-Rényi, scale-free, and regular random interdependent networks. Furthermore, we present the validity of the analytic solutions for a triple point ρ (or S ), the corresponding phase transition point p , and second-order phase transition points p in interdependent networks. These findings might yield a broad perspective for designing more resilient interdependent infrastructure networks.
Collapse
Affiliation(s)
- Qian Li
- Institute of Information Technology, PLA Strategic Support Force, Information Engineering University, Zhengzhou 450000, China
| | - Hongtao Yu
- Institute of Information Technology, PLA Strategic Support Force, Information Engineering University, Zhengzhou 450000, China
| | - Weitao Han
- Institute of Information Technology, PLA Strategic Support Force, Information Engineering University, Zhengzhou 450000, China
| | - Yiteng Wu
- Institute of Information Technology, PLA Strategic Support Force, Information Engineering University, Zhengzhou 450000, China
| |
Collapse
|
5
|
Whi W, Huh Y, Ha S, Lee H, Kang H, Lee DS. Characteristic functional cores revealed by hyperbolic disc embedding and k-core percolation on resting-state fMRI. Sci Rep 2022; 12:4887. [PMID: 35318429 PMCID: PMC8941113 DOI: 10.1038/s41598-022-08975-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/11/2022] [Indexed: 11/15/2022] Open
Abstract
Hyperbolic disc embedding and k-core percolation reveal the hierarchical structure of functional connectivity on resting-state fMRI (rsfMRI). Using 180 normal adults' rsfMRI data from the human connectome project database, we visualized inter-voxel relations by embedding voxels on the hyperbolic space using the [Formula: see text] model. We also conducted k-core percolation on 30 participants to investigate core voxels for each individual. It recursively peels the layer off, and this procedure leaves voxels embedded in the center of the hyperbolic disc. We used independent components to classify core voxels, and it revealed stereotypes of individuals such as visual network dominant, default mode network dominant, and distributed patterns. Characteristic core structures of resting-state brain connectivity of normal subjects disclosed the distributed or asymmetric contribution of voxels to the kmax-core, which suggests the hierarchical dominance of certain IC subnetworks characteristic of subgroups of individuals at rest.
Collapse
Affiliation(s)
- Wonseok Whi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Youngmin Huh
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyekyoung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Hyejin Kang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea.
| | - Dong Soo Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea.
- Department of Nuclear Medicine, Seoul National University and Seoul National University Hospital, Seoul, South Korea.
- Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
6
|
Hidden transition in multiplex networks. Sci Rep 2022; 12:3973. [PMID: 35273259 PMCID: PMC8913666 DOI: 10.1038/s41598-022-07913-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
Weak multiplex percolation generalizes percolation to multi-layer networks, represented as networks with a common set of nodes linked by multiple types (colors) of edges. We report a novel discontinuous phase transition in this problem. This anomalous transition occurs in networks of three or more layers without unconnected nodes, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P(0)\,=\,0$$\end{document}P(0)=0. Above a critical value of a control parameter, the removal of a tiny fraction \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta$$\end{document}Δ of nodes or edges triggers a failure cascade which ends either with the total collapse of the network, or a return to stability with the system essentially intact. The discontinuity is not accompanied by any singularity of the giant component, in contrast to the discontinuous hybrid transition which usually appears in such problems. The control parameter is the fraction of nodes in each layer with a single connection, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Pi \,=\,P(1)$$\end{document}Π=P(1). We obtain asymptotic expressions for the collapse time and relaxation time, above and below the critical point \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Pi _c$$\end{document}Πc, respectively. In the limit \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Delta \rightarrow 0$$\end{document}Δ→0 the total collapse for \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Pi \,>\,\Pi _\text {c}$$\end{document}Π>Πc takes a time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T \propto 1/(\Pi -\Pi _\text {c})$$\end{document}T∝1/(Π-Πc), while there is an exponential relaxation below \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\Pi _\text {c}$$\end{document}Πc with a relaxation time \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau \propto 1/[\Pi _\text {c}-\Pi ]$$\end{document}τ∝1/[Πc-Π].
Collapse
|
7
|
Covantes-Osuna C, López JB, Paredes O, Vélez-Pérez H, Romo-Vázquez R. Multilayer Network Approach in EEG Motor Imagery with an Adaptive Threshold. SENSORS 2021; 21:s21248305. [PMID: 34960399 PMCID: PMC8704651 DOI: 10.3390/s21248305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The brain has been understood as an interconnected neural network generally modeled as a graph to outline the functional topology and dynamics of brain processes. Classic graph modeling is based on single-layer models that constrain the traits conveyed to trace brain topologies. Multilayer modeling, in contrast, makes it possible to build whole-brain models by integrating features of various kinds. The aim of this work was to analyze EEG dynamics studies while gathering motor imagery data through single-layer and multilayer network modeling. The motor imagery database used consists of 18 EEG recordings of four motor imagery tasks: left hand, right hand, feet, and tongue. Brain connectivity was estimated by calculating the coherence adjacency matrices from each electrophysiological band (δ, θ, α and β) from brain areas and then embedding them by considering each band as a single-layer graph and a layer of the multilayer brain models. Constructing a reliable multilayer network topology requires a threshold that distinguishes effective connections from spurious ones. For this reason, two thresholds were implemented, the classic fixed (average) one and Otsu’s version. The latter is a new proposal for an adaptive threshold that offers reliable insight into brain topology and dynamics. Findings from the brain network models suggest that frontal and parietal brain regions are involved in motor imagery tasks.
Collapse
|
8
|
Sun H, Bianconi G. Higher-order percolation processes on multiplex hypergraphs. Phys Rev E 2021; 104:034306. [PMID: 34654130 DOI: 10.1103/physreve.104.034306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/19/2021] [Indexed: 11/07/2022]
Abstract
Higher-order interactions are increasingly recognized as a fundamental aspect of complex systems ranging from the brain to social contact networks. Hypergraphs as well as simplicial complexes capture the higher-order interactions of complex systems and allow us to investigate the relation between their higher-order structure and their function. Here we establish a general framework for assessing hypergraph robustness and we characterize the critical properties of simple and higher-order percolation processes. This general framework builds on the formulation of the random multiplex hypergraph ensemble where each layer is characterized by hyperedges of given cardinality. We observe that in presence of the structural cutoff the ensemble of multiplex hypergraphs can be mapped to an ensemble of multiplex bipartite networks. We reveal the relation between higher-order percolation processes in random multiplex hypergraphs, interdependent percolation of multiplex networks, and K-core percolation. The structural correlations of the random multiplex hypergraphs are shown to have a significant effect on their percolation properties. The wide range of critical behaviors observed for higher-order percolation processes on multiplex hypergraphs elucidates the mechanisms responsible for the emergence of discontinuous transition and uncovers interesting critical properties which can be applied to the study of epidemic spreading and contagion processes on higher-order networks.
Collapse
Affiliation(s)
- Hanlin Sun
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom.,The Alan Turing Institute, The British Library, 96 Euston Road, London NW1 2DB, United Kingdom
| |
Collapse
|
9
|
Identifying super-spreaders in information–epidemic coevolving dynamics on multiplex networks. Knowl Based Syst 2021. [DOI: 10.1016/j.knosys.2021.107365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Paredes O, López JB, Covantes-Osuna C, Ocegueda-Hernández V, Romo-Vázquez R, Morales JA. A Transcriptome Community-and-Module Approach of the Human Mesoconnectome. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1031. [PMID: 34441171 PMCID: PMC8393183 DOI: 10.3390/e23081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Graph analysis allows exploring transcriptome compartments such as communities and modules for brain mesostructures. In this work, we proposed a bottom-up model of a gene regulatory network to brain-wise connectome workflow. We estimated the gene communities across all brain regions from the Allen Brain Atlas transcriptome database. We selected the communities method to yield the highest number of functional mesostructures in the network hierarchy organization, which allowed us to identify specific brain cell functions (e.g., neuroplasticity, axonogenesis and dendritogenesis communities). With these communities, we built brain-wise region modules that represent the connectome. Our findings match with previously described anatomical and functional brain circuits, such the default mode network and the default visual network, supporting the notion that the brain dynamics that carry out low- and higher-order functions originate from the modular composition of a GRN complex network.
Collapse
Affiliation(s)
| | | | | | | | - Rebeca Romo-Vázquez
- Computer Sciences Department, Exact Sciences and Engineering University Centre, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.P.); (J.B.L.); (C.C.-O.); (V.O.-H.)
| | - J. Alejandro Morales
- Computer Sciences Department, Exact Sciences and Engineering University Centre, Universidad de Guadalajara, Guadalajara 44430, Mexico; (O.P.); (J.B.L.); (C.C.-O.); (V.O.-H.)
| |
Collapse
|
11
|
Shang Y. Percolation of attack with tunable limited knowledge. Phys Rev E 2021; 103:042316. [PMID: 34005897 DOI: 10.1103/physreve.103.042316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/06/2021] [Indexed: 12/28/2022]
Abstract
Percolation models shed a light on network integrity and functionality and have numerous applications in network theory. This paper studies a targeted percolation (α model) with incomplete knowledge where the highest degree node in a randomly selected set of n nodes is removed at each step, and the model features a tunable probability that the removed node is instead a random one. A "mirror image" process (β model) in which the target is the lowest degree node is also investigated. We analytically calculate the giant component size, the critical occupation probability, and the scaling law for the percolation threshold with respect to the knowledge level n under both models. We also derive self-consistency equations to analyze the k-core organization including the size of the k core and its corona in the context of attacks under tunable limited knowledge. These percolation models are characterized by some interesting critical phenomena and reveal profound quantitative structure discrepancies between Erdős-Rényi networks and power-law networks.
Collapse
Affiliation(s)
- Yilun Shang
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| |
Collapse
|
12
|
Baxter GJ, da Costa RA, Dorogovtsev SN, Mendes JFF. Exotic critical behavior of weak multiplex percolation. Phys Rev E 2020; 102:032301. [PMID: 33076014 DOI: 10.1103/physreve.102.032301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/18/2020] [Indexed: 11/07/2022]
Abstract
We describe the critical behavior of weak multiplex percolation, a generalization of percolation to multiplex or interdependent networks. A node can determine its active or inactive status simply by referencing neighboring nodes. This is not the case for the more commonly studied generalization of percolation to multiplex networks, the mutually connected clusters, which requires an interconnecting path within each layer between any two vertices in the giant mutually connected component. We study the emergence of a giant connected component of active nodes under the weak percolation rule, finding several nontypical phenomena. In two layers, the giant component emerges with a continuous phase transition, but with quadratic growth above the critical threshold. In three or more layers, a discontinuous hybrid transition occurs, similar to that found in the giant mutually connected component. In networks with asymptotically powerlaw degree distributions, defined by the decay exponent γ, the discontinuity vanishes but at γ=1.5 in three layers, more generally at γ=1+1/(M-1) in M layers.
Collapse
Affiliation(s)
- G J Baxter
- Department of Physics, University of Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - R A da Costa
- Department of Physics, University of Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - S N Dorogovtsev
- Department of Physics, University of Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - J F F Mendes
- Department of Physics, University of Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Pei S. Influencer identification in dynamical complex systems. JOURNAL OF COMPLEX NETWORKS 2020; 8:cnz029. [PMID: 32774857 PMCID: PMC7391989 DOI: 10.1093/comnet/cnz029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/13/2019] [Indexed: 06/11/2023]
Abstract
The integrity and functionality of many real-world complex systems hinge on a small set of pivotal nodes, or influencers. In different contexts, these influencers are defined as either structurally important nodes that maintain the connectivity of networks, or dynamically crucial units that can disproportionately impact certain dynamical processes. In practice, identification of the optimal set of influencers in a given system has profound implications in a variety of disciplines. In this review, we survey recent advances in the study of influencer identification developed from different perspectives, and present state-of-the-art solutions designed for different objectives. In particular, we first discuss the problem of finding the minimal number of nodes whose removal would breakdown the network (i.e. the optimal percolation or network dismantle problem), and then survey methods to locate the essential nodes that are capable of shaping global dynamics with either continuous (e.g. independent cascading models) or discontinuous phase transitions (e.g. threshold models). We conclude the review with a summary and an outlook.
Collapse
Affiliation(s)
- Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| |
Collapse
|
14
|
Shang Y. Generalized k-core percolation on correlated and uncorrelated multiplex networks. Phys Rev E 2020; 101:042306. [PMID: 32422722 DOI: 10.1103/physreve.101.042306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
It has been recognized that multiplexes and interlayer degree correlations can play a crucial role in the resilience of many real-world complex systems. Here we introduce a multiplex pruning process that removes nodes of degree less than k_{i} and their nearest neighbors in layer i for i=1,...,m, and establish a generic framework of generalized k-core (Gk-core) percolation over interlayer uncorrelated and correlated multiplex networks of m layers, where k=(k_{1},...,k_{m}) and m is the total number of layers. Gk-core exhibits a discontinuous phase transition for all k owing to cascading failures. We have unraveled the existence of a tipping point of the number of layers, above which the Gk-core collapses abruptly. This dismantling effect of multiplexity on Gk-core percolation shows a diminishing marginal utility in homogeneous networks when the number of layers increases. Moreover, we have found the assortative mixing for interlayer degrees strengthens the Gk-core but still gives rise to discontinuous phase transitions as compared to the uncorrelated counterparts. Interlayer disassortativity on the other hand weakens the Gk-core structure. The impact of correlation effect on Gk-core tends to be more salient systematically over k for heterogenous networks than homogeneous ones.
Collapse
Affiliation(s)
- Yilun Shang
- Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
15
|
Zhang H, Zhou J, Zou Y, Tang M, Xiao G, Stanley HE. Asymmetric interdependent networks with multiple-dependence relation. Phys Rev E 2020; 101:022314. [PMID: 32168681 DOI: 10.1103/physreve.101.022314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 11/07/2022]
Abstract
In this paper, we study the robustness of interdependent networks with multiple-dependence (MD) relation which is defined that a node is interdependent on several nodes on another layer, and this node will fail if any of these dependent nodes are failed. We propose a two-layered asymmetric interdependent network (AIN) model to address this problem, where the asymmetric feature is that nodes in one layer may be dependent on more than one node in the other layer with MD relation, while nodes in the other layer are dependent on exactly one node in this layer. We show that in this model the layer where nodes are allowed to have MD relation exhibits different types of phase transitions (discontinuous and hybrid), while the other layer only presents discontinuous phase transition. A heuristic theory based on message-passing approach is developed to understand the structural feature of interdependent networks and an intuitive picture for the emergence of a tricritical point is provided. Moreover, we study the correlation between the intralayer degree and interlayer degree of the nodes and find that this correlation has prominent impact to the continuous phase transition but has feeble effect on the discontinuous phase transition. Furthermore, we extend the two-layered AIN model to general multilayered AIN, and the percolation behaviors and properties of relevant phase transitions are elaborated.
Collapse
Affiliation(s)
- Hang Zhang
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Jie Zhou
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.,Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts, 02215, USA
| | - Yong Zou
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Ming Tang
- School of Mathematical Sciences, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, China
| | - Gaoxi Xiao
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts, 02215, USA
| |
Collapse
|
16
|
Azimi-Tafreshi N, Osat S, Dorogovtsev SN. Generalization of core percolation on complex networks. Phys Rev E 2019; 99:022312. [PMID: 30934300 DOI: 10.1103/physreve.99.022312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 06/09/2023]
Abstract
We introduce a k-leaf removal algorithm as a generalization of the so-called leaf removal algorithm. In this pruning algorithm, vertices of degree smaller than k, together with their first nearest neighbors and all incident edges, are progressively removed from a random network. As the result of this pruning the network is reduced to a subgraph which we call the Generalized k-core (Gk-core). Performing this pruning for the sequence of natural numbers k, we decompose the network into a hierarchy of progressively nested Gk-cores. We present an analytical framework for description of Gk-core percolation for undirected uncorrelated networks with arbitrary degree distributions (configuration model). To confirm our results, we also derive rate equations for the k-leaf removal algorithm which enable us to obtain the structural characteristics of the Gk-cores in another way. Also we apply our algorithm to a number of real-world networks and perform the Gk-core decomposition for them.
Collapse
Affiliation(s)
- N Azimi-Tafreshi
- Physics Department, Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran
| | - S Osat
- Quantum Complexity Science Initiative, Skolkovo Institute of Science and Technology, Skoltech Building 3, Moscow, 143026, Russia
| | - S N Dorogovtsev
- Departamento de Física da Universidade de Aveiro and I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal and A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
| |
Collapse
|
17
|
Battiston F, Guillon J, Chavez M, Latora V, De Vico Fallani F. Multiplex core-periphery organization of the human connectome. J R Soc Interface 2018; 15:20180514. [PMID: 30209045 PMCID: PMC6170773 DOI: 10.1098/rsif.2018.0514] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/16/2018] [Indexed: 01/16/2023] Open
Abstract
What is the core of the human brain is a fundamental question that has been mainly addressed by studying the anatomical connections between differently specialized areas, thus neglecting the possible contributions from their functional interactions. While many methods are available to identify the core of a network when connections between nodes are all of the same type, a principled approach to define the core when multiple types of connectivity are allowed is still lacking. Here, we introduce a general framework to define and extract the core-periphery structure of multi-layer networks by explicitly taking into account the connectivity patterns at each layer. We first validate our algorithm on synthetic networks of different size and density, and with tunable overlap between the cores at different layers. We then use our method to merge information from structural and functional brain networks, obtaining in this way an integrated description of the core of the human connectome. Results confirm the role of the main known cortical and subcortical hubs, but also suggest the presence of new areas in the sensori-motor cortex that are crucial for intrinsic brain functioning. Taken together these findings provide fresh evidence on a fundamental question in modern neuroscience and offer new opportunities to explore the mesoscale properties of multimodal brain networks.
Collapse
Affiliation(s)
- Federico Battiston
- Inria Paris, Aramis project-team, 75013 Paris, France
- CNRS, Sorbonne Universites, UPMC Univ Paris 06, Inserm, Institut du cerveau et la moelle epiniere (ICM), Hopital Pitie-Salpetriere, 75013 Paris, France
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Jeremy Guillon
- Inria Paris, Aramis project-team, 75013 Paris, France
- CNRS, Sorbonne Universites, UPMC Univ Paris 06, Inserm, Institut du cerveau et la moelle epiniere (ICM), Hopital Pitie-Salpetriere, 75013 Paris, France
| | - Mario Chavez
- CNRS, Sorbonne Universites, UPMC Univ Paris 06, Inserm, Institut du cerveau et la moelle epiniere (ICM), Hopital Pitie-Salpetriere, 75013 Paris, France
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, UK
- Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, 95123 Catania, Italy
| | - Fabrizio De Vico Fallani
- Inria Paris, Aramis project-team, 75013 Paris, France
- CNRS, Sorbonne Universites, UPMC Univ Paris 06, Inserm, Institut du cerveau et la moelle epiniere (ICM), Hopital Pitie-Salpetriere, 75013 Paris, France
| |
Collapse
|
18
|
Liu RR, Eisenberg DA, Seager TP, Lai YC. The "weak" interdependence of infrastructure systems produces mixed percolation transitions in multilayer networks. Sci Rep 2018; 8:2111. [PMID: 29391411 PMCID: PMC5794991 DOI: 10.1038/s41598-018-20019-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/09/2018] [Indexed: 11/25/2022] Open
Abstract
Previous studies of multilayer network robustness model cascading failures via a node-to-node percolation process that assumes "strong" interdependence across layers-once a node in any layer fails, its neighbors in other layers fail immediately and completely with all links removed. This assumption is not true of real interdependent infrastructures that have emergency procedures to buffer against cascades. In this work, we consider a node-to-link failure propagation mechanism and establish "weak" interdependence across layers via a tolerance parameter α which quantifies the likelihood that a node survives when one of its interdependent neighbors fails. Analytical and numerical results show that weak interdependence produces a striking phenomenon: layers at different positions within the multilayer system experience distinct percolation transitions. Especially, layers with high super degree values percolate in an abrupt manner, while those with low super degree values exhibit both continuous and discontinuous transitions. This novel phenomenon we call mixed percolation transitions has significant implications for network robustness. Previous results that do not consider cascade tolerance and layer super degree may be under- or over-estimating the vulnerability of real systems. Moreover, our model reveals how nodal protection activities influence failure dynamics in interdependent, multilayer systems.
Collapse
Affiliation(s)
- Run-Ran Liu
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| | - Daniel A Eisenberg
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Thomas P Seager
- School of Sustainable Engineering and Built Environment, Arizona State University, Tempe, AZ, 85287, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85287, USA
- Department of Physics, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
19
|
Kryven I. Finite connected components in infinite directed and multiplex networks with arbitrary degree distributions. Phys Rev E 2018; 96:052304. [PMID: 29347790 DOI: 10.1103/physreve.96.052304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Indexed: 11/07/2022]
Abstract
This work presents exact expressions for size distributions of weak and multilayer connected components in two generalizations of the configuration model: networks with directed edges and multiplex networks with an arbitrary number of layers. The expressions are computable in a polynomial time and, under some restrictions, are tractable from the asymptotic theory point of view. If first partial moments of the degree distribution are finite, the size distribution for two-layer connected components in multiplex networks exhibits an exponent -3/2 in the critical regime, whereas the size distribution of weakly connected components in directed networks exhibits two critical exponents -1/2 and -3/2.
Collapse
Affiliation(s)
- Ivan Kryven
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94214, 1090 GE Amsterdam, Netherlands
| |
Collapse
|
20
|
Panduranga NK, Gao J, Yuan X, Stanley HE, Havlin S. Generalized model for k-core percolation and interdependent networks. Phys Rev E 2017; 96:032317. [PMID: 29346973 DOI: 10.1103/physreve.96.032317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Indexed: 06/07/2023]
Abstract
Cascading failures in complex systems have been studied extensively using two different models: k-core percolation and interdependent networks. We combine the two models into a general model, solve it analytically, and validate our theoretical results through extensive simulations. We also study the complete phase diagram of the percolation transition as we tune the average local k-core threshold and the coupling between networks. We find that the phase diagram of the combined processes is very rich and includes novel features that do not appear in the models studying each of the processes separately. For example, the phase diagram consists of first- and second-order transition regions separated by two tricritical lines that merge and enclose a two-stage transition region. In the two-stage transition, the size of the giant component undergoes a first-order jump at a certain occupation probability followed by a continuous second-order transition at a lower occupation probability. Furthermore, at certain fixed interdependencies, the percolation transition changes from first-order → second-order → two-stage → first-order as the k-core threshold is increased. The analytic equations describing the phase boundaries of the two-stage transition region are set up, and the critical exponents for each type of transition are derived analytically.
Collapse
Affiliation(s)
- Nagendra K Panduranga
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 USA
| | - Jianxi Gao
- Computer Science Department & Network Science and Technology Center, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Xin Yuan
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 USA
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215 USA
| | - Shlomo Havlin
- Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
21
|
Serrano AB, Gómez-Gardeñes J, Andrade RFS. Optimizing diffusion in multiplexes by maximizing layer dissimilarity. Phys Rev E 2017; 95:052312. [PMID: 28618567 DOI: 10.1103/physreve.95.052312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 06/07/2023]
Abstract
Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.
Collapse
Affiliation(s)
- Alfredo B Serrano
- Instituto de Física, Universidade Federal da Bahia, 40210-210 Salvador, Brazil
| | - Jesús Gómez-Gardeñes
- Department of Condensed Matter Physics, University of Zaragoza, 50009 Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, 50018 Zaragoza, Spain
| | - Roberto F S Andrade
- Instituto de Física, Universidade Federal da Bahia, 40210-210 Salvador, Brazil
| |
Collapse
|
22
|
Zhuang Y, Arenas A, Yağan O. Clustering determines the dynamics of complex contagions in multiplex networks. Phys Rev E 2017; 95:012312. [PMID: 28208373 PMCID: PMC7217513 DOI: 10.1103/physreve.95.012312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Indexed: 12/04/2022]
Abstract
We present the mathematical analysis of generalized complex contagions in a class of clustered multiplex networks. The model is intended to understand spread of influence, or any other spreading process implying a threshold dynamics, in setups of interconnected networks with significant clustering. The contagion is assumed to be general enough to account for a content-dependent linear threshold model, where each link type has a different weight (for spreading influence) that may depend on the content (e.g., product, rumor, political view) that is being spread. Using the generating functions formalism, we determine the conditions, probability, and expected size of the emergent global cascades. This analysis provides a generalization of previous approaches and is especially useful in problems related to spreading and percolation. The results present nontrivial dependencies between the clustering coefficient of the networks and its average degree. In particular, several phase transitions are shown to occur depending on these descriptors. Generally speaking, our findings reveal that increasing clustering decreases the probability of having global cascades and their size, however, this tendency changes with the average degree. There exists a certain average degree from which on clustering favors the probability and size of the contagion. By comparing the dynamics of complex contagions over multiplex networks and their monoplex projections, we demonstrate that ignoring link types and aggregating network layers may lead to inaccurate conclusions about contagion dynamics, particularly when the correlation of degrees between layers is high.
Collapse
Affiliation(s)
- Yong Zhuang
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Alex Arenas
- Departament d'Enginyeria Informática i Matemátiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Osman Yağan
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
23
|
Cellai D, Dorogovtsev SN, Bianconi G. Message passing theory for percolation models on multiplex networks with link overlap. Phys Rev E 2016; 94:032301. [PMID: 27739774 DOI: 10.1103/physreve.94.032301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Multiplex networks describe a large variety of complex systems, including infrastructures, transportation networks, and biological systems. Most of these networks feature a significant link overlap. It is therefore of particular importance to characterize the mutually connected giant component in these networks. Here we provide a message passing theory for characterizing the percolation transition in multiplex networks with link overlap and an arbitrary number of layers M. Specifically we propose and compare two message passing algorithms that generalize the algorithm widely used to study the percolation transition in multiplex networks without link overlap. The first algorithm describes a directed percolation transition and admits an epidemic spreading interpretation. The second algorithm describes the emergence of the mutually connected giant component, that is the percolation transition, but does not preserve the epidemic spreading interpretation. We obtain the phase diagrams for the percolation and directed percolation transition in simple representative cases. We demonstrate that for the same multiplex network structure, in which the directed percolation transition has nontrivial tricritical points, the percolation transition has a discontinuous phase transition, with the exception of the trivial case in which all the layers completely overlap.
Collapse
Affiliation(s)
- Davide Cellai
- Idiro Analytics, Clarendon House, 39 Clarendon Street, Dublin 2, Ireland and MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
| | - Sergey N Dorogovtsev
- Departamento de Fisica da Universidade de Aveiro, 13N, 3810-193, Aveiro, Portugal and A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
24
|
Yuan X, Dai Y, Stanley HE, Havlin S. k-core percolation on complex networks: Comparing random, localized, and targeted attacks. Phys Rev E 2016; 93:062302. [PMID: 27415275 DOI: 10.1103/physreve.93.062302] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Indexed: 06/06/2023]
Abstract
The type of malicious attack inflicting on networks greatly influences their stability under ordinary percolation in which a node fails when it becomes disconnected from the giant component. Here we study its generalization, k-core percolation, in which a node fails when it loses connection to a threshold k number of neighbors. We study and compare analytically and by numerical simulations of k-core percolation the stability of networks under random attacks (RA), localized attacks (LA) and targeted attacks (TA), respectively. By mapping a network under LA or TA into an equivalent network under RA, we find that in both single and interdependent networks, TA exerts the greatest damage to the core structure of a network. We also find that for Erdős-Rényi (ER) networks, LA and RA exert equal damage to the core structure, whereas for scale-free (SF) networks, LA exerts much more damage than RA does to the core structure.
Collapse
Affiliation(s)
- Xin Yuan
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Yang Dai
- School of Economics and Management, Southwest Jiaotong University, Chengdu 610031, China
| | - H Eugene Stanley
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Shlomo Havlin
- Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
25
|
Cellai D, Bianconi G. Multiplex networks with heterogeneous activities of the nodes. Phys Rev E 2016; 93:032302. [PMID: 27078361 DOI: 10.1103/physreve.93.032302] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 11/07/2022]
Abstract
In multiplex networks with a large number of layers, the nodes can have different activities, indicating the total number of layers in which the nodes are present. Here we model multiplex networks with heterogeneous activity of the nodes and we study their robustness properties. We introduce a percolation model where nodes need to belong to the giant component only on the layers where they are active (i.e., their degree on that layer is larger than zero). We show that when there are enough nodes active only in one layer, the multiplex becomes more resilient and the transition becomes continuous. We find that multiplex networks with a power-law distribution of node activities are more fragile if the distribution of activity is broader. We also show that while positive correlations between node activity and degree can enhance the robustness of the system, the phase transition may become discontinuous, making the system highly unpredictable.
Collapse
Affiliation(s)
- Davide Cellai
- Idiro Analytics, Clarendon House, 39 Clarendon Street, Dublin 2, Ireland.,MACSI, Department of Mathematics and Statistics, University of Limerick, Ireland
| | - Ginestra Bianconi
- School of Mathematical Sciences, Queen Mary University of London, London E1 4NS, United Kingdom
| |
Collapse
|
26
|
Abnormal Behavior in Cascading Dynamics with Node Weight. PLoS One 2015; 10:e0139941. [PMID: 26451594 PMCID: PMC4599914 DOI: 10.1371/journal.pone.0139941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/19/2015] [Indexed: 11/19/2022] Open
Abstract
Considering a preferential selection mechanism of load destination, we introduce a new method to quantify initial load distribution and subsequently construct a simple cascading model. By attacking the node with the highest load, we investigate the cascading dynamics in some synthetic networks. Surprisingly, we observe that for several networks of different structural patterns, a counterintuitive phenomenon emerges if the highest load attack is applied to the system, i.e., investing more resources to protect every node in a network inversely makes the whole network more vulnerable. We explain this ability paradox by analyzing the micro-structural components of the underlying network and therefore reveals how specific structural patterns may influence the cascading dynamics. We discover that the robustness of the network oscillates as the capacity of each node increases. The conclusion of the paper may shed lights on future investigations to avoid the demonstrated ability paradox and subsequent cascading failures in real-world networks.
Collapse
|
27
|
Improving the accuracy of the k-shell method by removing redundant links: From a perspective of spreading dynamics. Sci Rep 2015; 5:13172. [PMID: 26277903 PMCID: PMC4538382 DOI: 10.1038/srep13172] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/20/2015] [Indexed: 11/26/2022] Open
Abstract
Recent study shows that the accuracy of the k-shell method in determining node coreness in a spreading process is largely impacted due to the existence of core-like group, which has a large k-shell index but a low spreading efficiency. Based on the analysis of the structure of core-like groups in real-world networks, we discover that nodes in the core-like group are mutually densely connected with very few out-leaving links from the group. By defining a measure of diffusion importance for each edge based on the number of out-leaving links of its both ends, we are able to identify redundant links in the spreading process, which have a relatively low diffusion importance but lead to form the locally densely connected core-like group. After filtering out the redundant links and applying the k-shell method to the residual network, we obtain a renewed coreness ks for each node which is a more accurate index to indicate its location importance and spreading influence in the original network. Moreover, we find that the performance of the ranking algorithms based on the renewed coreness are also greatly enhanced. Our findings help to more accurately decompose the network core structure and identify influential nodes in spreading processes.
Collapse
|
28
|
Liu Y, Tang M, Zhou T, Younghae Do. Core-like groups result in invalidation of identifying super-spreader by k-shell decomposition. Sci Rep 2015; 5:9602. [PMID: 25946319 PMCID: PMC5386204 DOI: 10.1038/srep09602] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/11/2015] [Indexed: 11/17/2022] Open
Abstract
Identifying the most influential spreaders is an important issue in understanding and controlling spreading processes on complex networks. Recent studies showed that nodes located in the core of a network as identified by the k-shell decomposition are the most influential spreaders. However, through a great deal of numerical simulations, we observe that not in all real networks do nodes in high shells are very influential: in some networks the core nodes are the most influential which we call true core, while in others nodes in high shells, even the innermost core, are not good spreaders which we call core-like group. By analyzing the k-core structure of the networks, we find that the true core of a network links diversely to the shells of the network, while the core-like group links very locally within the group. For nodes in the core-like group, the k-shell index cannot reflect their location importance in the network. We further introduce a measure based on the link diversity of shells to effectively distinguish the true core and core-like group, and identify core-like groups throughout the networks. Our findings help to better understand the structural features of real networks and influential nodes.
Collapse
Affiliation(s)
- Ying Liu
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Computer Science, Southwest Petroleum University, Chengdu 610500, China
| | - Ming Tang
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tao Zhou
- Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China
- Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Younghae Do
- Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
| |
Collapse
|
29
|
Lee KM, Brummitt CD, Goh KI. Threshold cascades with response heterogeneity in multiplex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:062816. [PMID: 25615156 DOI: 10.1103/physreve.90.062816] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Indexed: 06/04/2023]
Abstract
Threshold cascade models have been used to describe the spread of behavior in social networks and cascades of default in financial networks. In some cases, these networks may have multiple kinds of interactions, such as distinct types of social ties or distinct types of financial liabilities; furthermore, nodes may respond in different ways to influence from their neighbors of multiple types. To start to capture such settings in a stylized way, we generalize a threshold cascade model to a multiplex network in which nodes follow one of two response rules: some nodes activate when, in at least one layer, a large enough fraction of neighbors is active, while the other nodes activate when, in all layers, a large enough fraction of neighbors is active. Varying the fractions of nodes following either rule facilitates or inhibits cascades. Near the inhibition regime, global cascades appear discontinuously as the network density increases; however, the cascade grows more slowly over time. This behavior suggests a way in which various collective phenomena in the real world could appear abruptly yet slowly.
Collapse
Affiliation(s)
- Kyu-Min Lee
- Department of Physics and Institute of Basic Science, Korea University, Seoul 136-713, Korea
| | - Charles D Brummitt
- Department of Mathematics and Complexity Sciences Center, University of California, Davis, California 95616, USA
| | - K-I Goh
- Department of Physics and Institute of Basic Science, Korea University, Seoul 136-713, Korea
| |
Collapse
|
30
|
Azimi-Tafreshi N, Dorogovtsev SN, Mendes JFF. Giant components in directed multiplex networks. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052809. [PMID: 25493836 DOI: 10.1103/physreve.90.052809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Indexed: 06/04/2023]
Abstract
We describe the complex global structure of giant components in directed multiplex networks that generalizes the well-known bow-tie structure, generic for ordinary directed networks. By definition, a directed multiplex network contains vertices of one type and directed edges of m different types. In directed multiplex networks, we distinguish a set of different giant components based on the existence of directed paths of different types between their vertices such that for each type of edges, the paths run entirely through only edges of that type. If, in particular, m=2, we define a strongly viable component as a set of vertices in which for each type of edges each two vertices are interconnected by at least two directed paths in both directions, running through the edges of only this type. We show that in this case, a directed multiplex network contains in total nine different giant components including the strongly viable component. In general, the total number of giant components is 3^{m}. For uncorrelated directed multiplex networks, we obtain exactly the size and the emergence point of the strongly viable component and estimate the sizes of other giant components.
Collapse
Affiliation(s)
- N Azimi-Tafreshi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, 45195-1159 Zanjan, Iran
| | - S N Dorogovtsev
- Departamento de Física da Universidade de Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal and A.F. Ioffe Physico-Technical Institute, 194021 St. Petersburg, Russia
| | - J F F Mendes
- Departamento de Física da Universidade de Aveiro & I3N, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|