1
|
Hou LF, Gao SP, Chang LL, Wu YP, Feng GL, Wang Z, Sun GQ. Vegetation restoration strategies in arid or semi-arid regions-From the perspective of optimal control. CHAOS (WOODBURY, N.Y.) 2024; 34:113109. [PMID: 39496220 DOI: 10.1063/5.0206880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024]
Abstract
Inappropriate human activities contribute to the degradation of ecosystems in arid or semi-arid regions. Therefore, emphasizing the importance of strategies for restoring vegetation in these areas cannot be overstated. However, there has been insufficient research on how to develop effective restoration strategies at minimal cost. This paper addresses this gap by studying how optimizing the spatiotemporal distribution of human activities through local and boundary controls can reduce the level of desertification in vegetation pattern structures, thereby facilitating the recovery of arid land vegetation. The results indicate that vegetation restoration depends on the proportion and number of human activity areas, with a trade-off between them. Furthermore, consistent conclusions were obtained on circular regions, demonstrating the robustness of the approach to boundary shapes. This paper aims to offer new insights into the restoration of arid land vegetation and the prevention of catastrophic ecosystem changes from the perspective of optimal control.
Collapse
Affiliation(s)
- Li-Feng Hou
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
- Department of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
| | - Shu-Peng Gao
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, Hebei, China
| | - Li-Li Chang
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
- Key Laboratory of Complex Systems and Data Science of Ministry of Education, Taiyuan 030006, China
| | - Yong-Ping Wu
- School of Physics Science and Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Guo-Lin Feng
- School of Physics Science and Technology, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Laboratory for Climate Studies, National Climate Center, Beijing 100081, China
| | - Zhen Wang
- School of Artificial Intelligence, Optics and Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Gui-Quan Sun
- Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
- Department of Mathematics, North University of China, Taiyuan 030051, Shanxi, China
- Key Laboratory of Complex Systems and Data Science of Ministry of Education, Taiyuan 030006, China
| |
Collapse
|
2
|
Bennett JJR, Bera BK, Ferré M, Yizhaq H, Getzin S, Meron E. Phenotypic plasticity: A missing element in the theory of vegetation pattern formation. Proc Natl Acad Sci U S A 2023; 120:e2311528120. [PMID: 38060562 PMCID: PMC10723140 DOI: 10.1073/pnas.2311528120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
Regular spatial patterns of vegetation are a common sight in drylands. Their formation is a population-level response to water stress that increases water availability for the few via partial plant mortality. At the individual level, plants can also adapt to water stress by changing their phenotype. Phenotypic plasticity of individual plants and spatial patterning of plant populations have extensively been studied independently, but the likely interplay between the two robust mechanisms has remained unexplored. In this paper, we incorporate phenotypic plasticity into a multi-level theory of vegetation pattern formation and use a fascinating ecological phenomenon, the Namibian "fairy circles," to demonstrate the need for such a theory. We show that phenotypic changes in the root structure of plants, coupled with pattern-forming feedback within soil layers, can resolve two puzzles that the current theory fails to explain: observations of multi-scale patterns and the absence of theoretically predicted large-scale stripe and spot patterns along the rainfall gradient. Importantly, we find that multi-level responses to stress unveil a wide variety of more effective stress-relaxation pathways, compared to single-level responses, implying a previously underestimated resilience of dryland ecosystems.
Collapse
Affiliation(s)
- Jamie J. R. Bennett
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Midreshet Ben-Gurion8499000, Israel
| | - Bidesh K. Bera
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Midreshet Ben-Gurion8499000, Israel
| | - Michel Ferré
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Midreshet Ben-Gurion8499000, Israel
| | - Hezi Yizhaq
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Midreshet Ben-Gurion8499000, Israel
| | - Stephan Getzin
- Department of Ecosystem Modelling, University of Goettingen, Goettingen37073, Germany
| | - Ehud Meron
- The Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert Research (BIDR), Ben-Gurion University of the Negev, Midreshet Ben-Gurion8499000, Israel
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva8410501, Israel
| |
Collapse
|
3
|
Pal MK, Poria S. Role of herbivory in shaping the dryland vegetation ecosystem: Linking spiral vegetation patterns and nonlinear, nonlocal grazing. Phys Rev E 2023; 107:064403. [PMID: 37464659 DOI: 10.1103/physreve.107.064403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 04/17/2023] [Indexed: 07/20/2023]
Abstract
Self-organized vegetation patterns are an amazing aspect of dryland ecosystems; in addition to being visually appealing, patterns control how these water-deprived systems react to escalating environmental stress. Although there is a wide variety of vegetation patterns, little is known about the mechanisms behind spiral patterns. The well-known models that explain other vegetation patterns such stripes, rings, and fairy circles cannot account for these spirals. Here we have adopted a modeling approach in which the interplay between herbivore grazing and vegetation is found to be the reason why spirals form. To comprehend the nonlinear dependence of grazing on the availability vegetation, we have introduced a grazing term that gets saturated when forage is abundant. To account for the impact of the spatial nonhomogeneity in vegetation layout, it is thought that grazing is dependent on mean vegetation density rather than density at a single site. Results show how the system dynamics is changed fundamentally depending on the different types of grazing response. Incorporation of nonlocality into the herbivore grazing leads to spiral-shaped vegetation patterns only in natural grazing scenarios; however, no patterning is seen in human controlled herbivory. Overall, our research points to the nonlocal, nonlinear grazing behavior of herbivores as one of the major driving forces for the development of spiral patterns.
Collapse
Affiliation(s)
- Mrinal Kanti Pal
- Department of Applied Mathematics, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Swarup Poria
- Department of Applied Mathematics, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
4
|
Sun GQ, Li L, Li J, Liu C, Wu YP, Gao S, Wang Z, Feng GL. Impacts of climate change on vegetation pattern: Mathematical modeling and data analysis. Phys Life Rev 2022; 43:239-270. [PMID: 36343569 DOI: 10.1016/j.plrev.2022.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022]
Abstract
Climate change has become increasingly severe, threatening ecosystem stability and, in particular, biodiversity. As a typical indicator of ecosystem evolution, vegetation growth is inevitably affected by climate change, and therefore has a great potential to provide valuable information for addressing such ecosystem problems. However, the impacts of climate change on vegetation growth, especially the spatial and temporal distribution of vegetation, are still lacking of comprehensive exposition. To this end, this review systematically reveals the influences of climate change on vegetation dynamics in both time and space by dynamical modeling the interactions of meteorological elements and vegetation growth. Moreover, we characterize the long-term evolution trend of vegetation growth under climate change in some typical regions based on data analysis. This work is expected to lay a necessary foundation for systematically revealing the coupling effect of climate change on the ecosystem.
Collapse
Affiliation(s)
- Gui-Quan Sun
- Department of Mathematics, North University of China, Taiyuan, 030051, China; Complex Systems Research Center, Shanxi University, Taiyuan, 030006, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| | - Li Li
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, China
| | - Jing Li
- School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan, 030006, China
| | - Chen Liu
- Center for Ecology and Environmental Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yong-Ping Wu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225002, China
| | - Shupeng Gao
- School of Mechanical Engineering and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, 710072, China
| | - Zhen Wang
- School of Mechanical Engineering and School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xian, 710072, China.
| | - Guo-Lin Feng
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225002, China; Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing, 100081, China.
| |
Collapse
|
5
|
Pal MK, Poria S. Effect of nonlocal grazing on dry-land vegetation dynamics. Phys Rev E 2022; 106:054407. [PMID: 36559433 DOI: 10.1103/physreve.106.054407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/22/2022] [Indexed: 06/17/2023]
Abstract
Dry-land ecosystems have become a matter of grave concern, due to the growing threat of land degradation and bioproductivity loss. Self-organized vegetation patterns are a remarkable characteristic of these ecosystems; apart from being visually captivating, patterns modulate the system response to increasing environmental stress. Empirical studies hinted that herbivory is one the key regulatory mechanisms behind pattern formation and overall ecosystem functioning. However, most of the mathematical models have taken a mean-field strategy to grazing; foraging has been considered to be independent of spatial distribution of vegetation. To this end, an extended version of the celebrated plant-water model due to Klausmeier has been taken as the base here. To encompass the effect of heterogeneous vegetation distribution on foraging intensity and subsequent impact on entire ecosystem, grazing is considered here to depend on spatially weighted average vegetation density instead of density at a particular point. Moreover, varying influence of vegetation at any location over gazing elsewhere is incorporated by choosing a suitable averaging function. A comprehensive analysis demonstrates that inclusion of spatial nonlocality alters the understanding of system dynamics significantly. The grazing ecosystem is found to be more resilient to increasing aridity than it was anticipated to be in earlier studies on nonlocal grazing. The system response to rising environmental pressure is also observed to vary depending on the grazer. Obtained results also suggest the possibility of multistability due to the history dependence of the system response. Overall, this work indicates that the spatial heterogeneity in grazing intensity has a decisive role to play in the functioning of water-limited ecosystems.
Collapse
Affiliation(s)
- Mrinal Kanti Pal
- Department of Applied Mathematics, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Swarup Poria
- Department of Applied Mathematics, University of Calcutta, 92 APC Road, Kolkata 700009, India
| |
Collapse
|
6
|
High-integrity human intervention in ecosystems: Tracking self-organization modes. PLoS Comput Biol 2021; 17:e1009427. [PMID: 34587157 PMCID: PMC8504872 DOI: 10.1371/journal.pcbi.1009427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 10/11/2021] [Accepted: 09/06/2021] [Indexed: 11/19/2022] Open
Abstract
Humans play major roles in shaping and transforming the ecology of Earth. Unlike natural drivers of ecosystem change, which are erratic and unpredictable, human intervention in ecosystems generally involves planning and management, but often results in detrimental outcomes. Using model studies and aerial-image analysis, we argue that the design of a successful human intervention form calls for the identification of the self-organization modes that drive ecosystem change, and for studying their dynamics. We demonstrate this approach with two examples: grazing management in drought-prone ecosystems, and rehabilitation of degraded vegetation by water harvesting. We show that grazing can increase the resilience to droughts, rather than imposing an additional stress, if managed in a spatially non-uniform manner, and that fragmental restoration along contour bunds is more resilient than the common practice of continuous restoration in vegetation stripes. We conclude by discussing the need for additional studies of self-organization modes and their dynamics. Human intervention in ecosystems is motivated by various functional needs, such as provisioning ecosystem services, but often has unexpected detrimental outcomes. A major question in ecology is how to manage human intervention so as to achieve its goal without impairing ecosystem function. The main idea pursued here is the need to identify the inherent response ways of ecosystems to disturbances, and use them as road maps for conducting interventions. This approach is demonstrated mathematically using two contexts, grazing management and vegetation restoration, and compared to remote sensing data for the latter. Among the surprising insights obtained is the beneficial effect of grazing, in terms of resilience to droughts, that can be achieved by managing it non-uniformly in space.
Collapse
|
7
|
Continuum Modeling of Discrete Plant Communities: Why Does It Work and Why Is It Advantageous? MATHEMATICS 2019. [DOI: 10.3390/math7100987] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding ecosystem response to drier climates calls for modeling the dynamics of dryland plant populations, which are crucial determinants of ecosystem function, as they constitute the basal level of whole food webs. Two modeling approaches are widely used in population dynamics, individual (agent)-based models and continuum partial-differential-equation (PDE) models. The latter are advantageous in lending themselves to powerful methodologies of mathematical analysis, but the question of whether they are suitable to describe small discrete plant populations, as is often found in dryland ecosystems, has remained largely unaddressed. In this paper, we first draw attention to two aspects of plants that distinguish them from most other organisms—high phenotypic plasticity and dispersal of stress-tolerant seeds—and argue in favor of PDE modeling, where the state variables that describe population sizes are not discrete number densities, but rather continuous biomass densities. We then discuss a few examples that demonstrate the utility of PDE models in providing deep insights into landscape-scale behaviors, such as the onset of pattern forming instabilities, multiplicity of stable ecosystem states, regular and irregular, and the possible roles of front instabilities in reversing desertification. We briefly mention a few additional examples, and conclude by outlining the nature of the information we should and should not expect to gain from PDE model studies.
Collapse
|
8
|
Pattern formation – A missing link in the study of ecosystem response to environmental changes. Math Biosci 2016; 271:1-18. [DOI: 10.1016/j.mbs.2015.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/17/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022]
|
9
|
Haim L, Hagberg A, Meron E. Non-monotonic resonance in a spatially forced Lengyel-Epstein model. CHAOS (WOODBURY, N.Y.) 2015; 25:064307. [PMID: 26117118 DOI: 10.1063/1.4921768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We study resonant spatially periodic solutions of the Lengyel-Epstein model modified to describe the chlorine dioxide-iodine-malonic acid reaction under spatially periodic illumination. Using multiple-scale analysis and numerical simulations, we obtain the stability ranges of 2:1 resonant solutions, i.e., solutions with wavenumbers that are exactly half of the forcing wavenumber. We show that the width of resonant wavenumber response is a non-monotonic function of the forcing strength, and diminishes to zero at sufficiently strong forcing. We further show that strong forcing may result in a π/2 phase shift of the resonant solutions, and argue that the nonequilibrium Ising-Bloch front bifurcation can be reversed. We attribute these behaviors to an inherent property of forcing by periodic illumination, namely, the increase of the mean spatial illumination as the forcing amplitude is increased.
Collapse
Affiliation(s)
- Lev Haim
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Aric Hagberg
- Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Ehud Meron
- Physics Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Siero E, Doelman A, Eppinga MB, Rademacher JDM, Rietkerk M, Siteur K. Striped pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. CHAOS (WOODBURY, N.Y.) 2015; 25:036411. [PMID: 25833449 DOI: 10.1063/1.4914450] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
For water-limited arid ecosystems, where water distribution and infiltration play a vital role, various models have been set up to explain vegetation patterning. On sloped terrains, vegetation aligned in bands has been observed ubiquitously. In this paper, we consider the appearance, stability, and bifurcations of 2D striped or banded patterns in an arid ecosystem model. We numerically show that the resilience of the vegetation bands is larger on steeper slopes by computing the stability regions (Busse balloons) of striped patterns with respect to 1D and transverse 2D perturbations. This is corroborated by numerical simulations with a slowly decreasing water input parameter. Here, long wavelength striped patterns are unstable against transverse perturbations, which we also rigorously prove on flat ground through an Evans function approach. In addition, we prove a "Squire theorem" for a class of two-component reaction-advection-diffusion systems that includes our model, showing that the onset of pattern formation in 2D is due to 1D instabilities in the direction of advection, which naturally leads to striped patterns.
Collapse
Affiliation(s)
- E Siero
- Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - A Doelman
- Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - M B Eppinga
- Department of Environmental Sciences, Copernicus Institute, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC, Utrecht, The Netherlands
| | - J D M Rademacher
- Fachbereich Mathematik, Universität Bremen, Postfach 33 04 40, 28359 Bremen, Germany
| | - M Rietkerk
- Department of Environmental Sciences, Copernicus Institute, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC, Utrecht, The Netherlands
| | - K Siteur
- Department of Environmental Sciences, Copernicus Institute, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC, Utrecht, The Netherlands
| |
Collapse
|