1
|
Cornet A, Ronca A, Shen J, Zontone F, Chushkin Y, Cammarata M, Garbarino G, Sprung M, Westermeier F, Deschamps T, Ruta B. High-pressure X-ray photon correlation spectroscopy at fourth-generation synchrotron sources. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:527-539. [PMID: 38597746 PMCID: PMC11075710 DOI: 10.1107/s1600577524001784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/23/2024] [Indexed: 04/11/2024]
Abstract
A new experimental setup combining X-ray photon correlation spectroscopy (XPCS) in the hard X-ray regime and a high-pressure sample environment has been developed to monitor the pressure dependence of the internal motion of complex systems down to the atomic scale in the multi-gigapascal range, from room temperature to 600 K. The high flux of coherent high-energy X-rays at fourth-generation synchrotron sources solves the problems caused by the absorption of diamond anvil cells used to generate high pressure, enabling the measurement of the intermediate scattering function over six orders of magnitude in time, from 10-3 s to 103 s. The constraints posed by the high-pressure generation such as the preservation of X-ray coherence, as well as the sample, pressure and temperature stability, are discussed, and the feasibility of high-pressure XPCS is demonstrated through results obtained on metallic glasses.
Collapse
Affiliation(s)
- Antoine Cornet
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Alberto Ronca
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Jie Shen
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| | - Federico Zontone
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Marco Cammarata
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | | | | | - Thierry Deschamps
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-6922 Villeurbanne, France
| | - Beatrice Ruta
- Institut Néel, Université Grenoble Alpes and Centre National de la Recherche Scientifique, 25 rue des Martyrs – BP 166, 38042 Grenoble, France
| |
Collapse
|
2
|
Chèvremont W, Zinn T, Narayanan T. Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:65-76. [PMID: 37933847 PMCID: PMC10833426 DOI: 10.1107/s1600577523008627] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Recent technical developments and the performance of the X-ray photon correlation spectroscopy (XPCS) method over the ultra-small-angle range with the Extremely Brilliant Source (EBS) at the ESRF are described. With higher monochromatic coherent photon flux (∼1012 photons s-1) provided by the EBS and the availability of a fast pixel array detector (EIGER 500K detector operating at 23000 frames s-1), XPCS has become more competitive for probing faster dynamics in relatively dilute suspensions. One of the goals of the present development is to increase the user-friendliness of the method. This is achieved by means of a Python-based graphical user interface that enables online visualization and analysis of the processed data. The improved performance of XPCS on the Time-Resolved Ultra-Small-Angle X-ray Scattering instrument (ID02 beamline) is demonstrated using dilute model colloidal suspensions in several different applications.
Collapse
Affiliation(s)
- William Chèvremont
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Thomas Zinn
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | | |
Collapse
|
3
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
4
|
Bin M, Reiser M, Filianina M, Berkowicz S, Das S, Timmermann S, Roseker W, Bauer R, Öström J, Karina A, Amann-Winkel K, Ladd-Parada M, Westermeier F, Sprung M, Möller J, Lehmkühler F, Gutt C, Perakis F. Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins. J Phys Chem B 2023. [PMID: 37209106 DOI: 10.1021/acs.jpcb.3c02492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress-relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamics in the deeply supercooled regime (T = 180 K), which is typically not accessible through equilibrium methods. The observed stimulated dynamic response is attributed to collective stress-relaxation as the system transitions from a jammed granular state to an elastically driven regime. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalized variance χT. The amplification of fluctuations is consistent with previous studies of hydrated proteins, which indicate the key role of density and enthalpy fluctuations in hydration water. Our study provides new insights into X-ray stimulated stress-relaxation and the underlying mechanisms behind spatiotemporal fluctuations in biological granular materials.
Collapse
Affiliation(s)
- Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Robert Bauer
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Jonatan Öström
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Aigerim Karina
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072 Siegen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
5
|
Ladd-Parada M, Li H, Karina A, Kim KH, Perakis F, Reiser M, Dallari F, Striker N, Sprung M, Westermeier F, Grübel G, Nilsson A, Lehmkühler F, Amann-Winkel K. Using coherent X-rays to follow dynamics in amorphous ices. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1314-1323. [PMID: 36561555 PMCID: PMC9648632 DOI: 10.1039/d2ea00052k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 12/25/2022]
Abstract
Amorphous solid water plays an important role in our overall understanding of water's phase diagram. X-ray scattering is an important tool for characterising the different states of water, and modern storage ring and XFEL facilities have opened up new pathways to simultaneously study structure and dynamics. Here, X-ray photon correlation spectroscopy (XPCS) was used to study the dynamics of high-density amorphous (HDA) ice upon heating. We follow the structural transition from HDA to low-density amorphous (LDA) ice, by using wide-angle X-ray scattering (WAXS), for different heating rates. We used a new type of sample preparation, which allowed us to study μm-sized ice layers rather than powdered bulk samples. The study focuses on the non-equilibrium dynamics during fast heating, spontaneous transformation and crystallization. Performing the XPCS study at ultra-small angle (USAXS) geometry allows us to characterize the transition dynamics at length scales ranging from 60 nm-800 nm. For the HDA-LDA transition we observe a clear separation in three dynamical regimes, which show different dynamical crossovers at different length scales. The crystallization from LDA, instead, is observed to appear homogenously throughout the studied length scales.
Collapse
Affiliation(s)
- Marjorie Ladd-Parada
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Hailong Li
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany
| | - Aigerim Karina
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Kyung Hwan Kim
- Department of ChemistryPOSTECHPohang 37673Republic of Korea
| | - Fivos Perakis
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Mario Reiser
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Francesco Dallari
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Nele Striker
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany
| | | | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Anders Nilsson
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607 HamburgGermany,Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761 HamburgGermany
| | - Katrin Amann-Winkel
- Department of Physics, Stockholm UniversityRoslagstullsbacken 2110691 StockholmSweden,Max-Planck-Institute for Polymer ResearchAckermannweg 1055128 MainzGermany,Institute of Physics, Johannes Gutenberg University MainzStaudingerweg 755128 MainzGermany
| |
Collapse
|
6
|
Otto F, Sun X, Schulz F, Sanchez-Cano C, Feliu N, Westermeier F, Parak WJ. X-Ray Photon Correlation Spectroscopy Towards Measuring Nanoparticle Diameters in Biological Environments Allowing for the In Situ Analysis of their Bio-Nano Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201324. [PMID: 35905490 DOI: 10.1002/smll.202201324] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.
Collapse
Affiliation(s)
- Ferdinand Otto
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Hunan University, Lushan Road (S) 2, Changsha, 410012, P. R. China
| | - Florian Schulz
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Fraunhofer Center for Applied Nanotechnology (IAP-CAN), Grindelallee 117, 20146, Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
7
|
Ragulskaya A, Starostin V, Begam N, Girelli A, Rahmann H, Reiser M, Westermeier F, Sprung M, Zhang F, Gutt C, Schreiber F. Reverse-engineering method for XPCS studies of non-equilibrium dynamics. IUCRJ 2022; 9:439-448. [PMID: 35844477 PMCID: PMC9252156 DOI: 10.1107/s2052252522004560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) is a powerful tool in the investigation of dynamics covering a broad time and length scale. It has been widely used to probe dynamics for systems in both equilibrium and non-equilibrium states; in particular, for systems undergoing a phase transition where the structural growth kinetics and the microscopic dynamics are strongly intertwined. The resulting time-dependent dynamic behavior can be described using the two-time correlation function (TTC), which, however, often contains more interesting features than the component along the diagonal, and cannot be easily interpreted via the classical simulation methods. Here, a reverse engineering (RE) approach is proposed based on particle-based heuristic simulations. This approach is applied to an XPCS measurement on a protein solution undergoing a liquid-liquid phase separation. It is demonstrated that the rich features of experimental TTCs can be well connected with the key control parameters including size distribution, concentration, viscosity and mobility of domains. The dynamic information obtained from this RE analysis goes beyond the existing theory. The RE approach established in this work is applicable for other processes such as film growth, coarsening or evolving systems.
Collapse
Affiliation(s)
- Anastasia Ragulskaya
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Vladimir Starostin
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Nafisa Begam
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Anita Girelli
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Mario Reiser
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
- European X-ray free-electron laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Fajun Zhang
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| | - Christian Gutt
- Department of Physics, University of Siegen, Emmy-Noether-Campus, Walter-Flex-Straße 3, 57076 Siegen, Germany
| | - Frank Schreiber
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany
| |
Collapse
|
8
|
From Femtoseconds to Hours—Measuring Dynamics over 18 Orders of Magnitude with Coherent X-rays. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136179] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS) enables the study of sample dynamics between micrometer and atomic length scales. As a coherent scattering technique, it benefits from the increased brilliance of the next-generation synchrotron radiation and Free-Electron Laser (FEL) sources. In this article, we will introduce the XPCS concepts and review the latest developments of XPCS with special attention on the extension of accessible time scales to sub-μs and the application of XPCS at FELs. Furthermore, we will discuss future opportunities of XPCS and the related technique X-ray speckle visibility spectroscopy (XSVS) at new X-ray sources. Due to its particular signal-to-noise ratio, the time scales accessible by XPCS scale with the square of the coherent flux, allowing to dramatically extend its applications. This will soon enable studies over more than 18 orders of magnitude in time by XPCS and XSVS.
Collapse
|
9
|
Hoshino T, Okamoto Y, Yamamoto A, Masunaga H. Heterogeneous dynamics in the curing process of epoxy resins. Sci Rep 2021; 11:9767. [PMID: 34001939 PMCID: PMC8129072 DOI: 10.1038/s41598-021-89155-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 11/23/2022] Open
Abstract
Epoxy resin is indispensable for modern industry because of its excellent mechanical properties, chemical resistance, and excellent moldability. To date, various methods have been used to investigate the physical properties of the cured product and the kinetics of the curing process, but its microscopic dynamics have been insufficiently studied. In this study, the microscopic dynamics in the curing process of a catalytic epoxy resin were investigated under different temperature conditions utilizing X-ray photon correlation spectroscopy. Our results revealed that the temperature conditions greatly affected the dynamical heterogeneity and cross-linking density of the cured materials. An overview of the microscopic mechanism of the curing process was clearly presented through comparison with the measurement results of other methods, such as 1H-pulse nuclear magnetic resonance spectroscopy. The quantification of such heterogeneous dynamics is particularly useful for optimizing the curing conditions of various materials to improve their physical properties.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan.
| | - Yasushi Okamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Atsushi Yamamoto
- DENSO CORPORATION, 1-1, Showa-cho, Kariya, Aichi, 448-8661, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| |
Collapse
|
10
|
Begam N, Ragulskaya A, Girelli A, Rahmann H, Chandran S, Westermeier F, Reiser M, Sprung M, Zhang F, Gutt C, Schreiber F. Kinetics of Network Formation and Heterogeneous Dynamics of an Egg White Gel Revealed by Coherent X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:098001. [PMID: 33750145 DOI: 10.1103/physrevlett.126.098001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The kinetics of heat-induced gelation and the microscopic dynamics of a hen egg white gel are probed using x-ray photon correlation spectroscopy along with ultrasmall-angle x-ray scattering. The kinetics of structural growth reveals a reaction-limited aggregation process with a gel fractal dimension of ≈2 and an average network mesh size of ca. 400 nm. The dynamics probed at these length scales reveals an exponential growth of the characteristic relaxation times followed by an intriguing steady state in combination with a compressed exponential correlation function and a temporal heterogeneity. The degree of heterogeneity increases with decreasing length scale. We discuss our results in the broader context of experiments and models describing attractive colloidal gels.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | | | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Sivasurender Chandran
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Mario Reiser
- Department Physik, Universität Siegen, 57072 Siegen, Germany
- European X-ray Free-Electron Laser GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - Christian Gutt
- Department Physik, Universität Siegen, 57072 Siegen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
11
|
Emergence of anomalous dynamics in soft matter probed at the European XFEL. Proc Natl Acad Sci U S A 2020; 117:24110-24116. [PMID: 32934145 DOI: 10.1073/pnas.2003337117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamics and kinetics in soft matter physics, biology, and nanoscience frequently occur on fast (sub)microsecond but not ultrafast timescales which are difficult to probe experimentally. The European X-ray Free-Electron Laser (European XFEL), a megahertz hard X-ray Free-Electron Laser source, enables such experiments via taking series of diffraction patterns at repetition rates of up to 4.5 MHz. Here, we demonstrate X-ray photon correlation spectroscopy (XPCS) with submicrosecond time resolution of soft matter samples at the European XFEL. We show that the XFEL driven by a superconducting accelerator provides unprecedented beam stability within a pulse train. We performed microsecond sequential XPCS experiments probing equilibrium and nonequilibrium diffusion dynamics in water. We find nonlinear heating on microsecond timescales with dynamics beyond hot Brownian motion and superheated water states persisting up to 100 μs at high fluences. At short times up to 20 μs we observe that the dynamics do not obey the Stokes-Einstein predictions.
Collapse
|
12
|
Begam N, Da Vela S, Matsarskaia O, Braun MK, Mariani A, Zhang F, Schreiber F. Packing and dynamics of a protein solution approaching the jammed state. SOFT MATTER 2020; 16:7751-7759. [PMID: 32744265 DOI: 10.1039/d0sm00962h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The packing of proteins and their collective behavior in crowded media is crucial for the understanding of biological processes. Here we study the structural and dynamical evolution of solutions of the globular protein bovine serum albumin with increasing concentration via drying using small angle X-ray scattering and dynamic light scattering. We probe an evolving correlation peak on the scattering profile, corresponding to the inter-protein distance, ξ, which decreases following a power law of the protein volume fraction, φ. The rate of decrease in ξ becomes faster above a protein concentration of ∼200 mg ml-1 (φ = 0.15). The power law exponent changes from 0.33, which is typical of colloidal or protein solutions, to 0.41. During the entire drying process, we observe the development and the growth of two-step relaxation dynamics with increasing φ as revealed by dynamic light scattering. We find three different regimes of the dependence of ξ as a function of φ. In the dilute regime (φ < 0.22), protein molecules are far apart from each other compared to their size. In this case, the dynamics mainly corresponds to Brownian motion. At an intermediate concentration (0.22 < φ < 0.47), inter-protein distances become comparable to the size of protein molecules, leading to a preferential orientation of the ellipsoidal protein molecules along with a possible deformation. In this regime, the dynamics shows two distinct relaxation times. At a very high concentration (φ > 0.47), the system reaches a jammed state. Subsequently, the secondary relaxation time in this state becomes extremely slow. In this state, the protein molecules have approximately one hydration layer. This study contributes to the understanding of protein molecular packing in crowded environments and the phenomenon of density-driven jamming for soft matter systems.
Collapse
Affiliation(s)
- Nafisa Begam
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Stefano Da Vela
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Olga Matsarskaia
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Michal K Braun
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Alessandro Mariani
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Fajun Zhang
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| | - Frank Schreiber
- Institut für Angewandte Physik, Universtitat Tübingen, 70276, Tübingen, Germany.
| |
Collapse
|
13
|
Jain A, Schulz F, Lokteva I, Frenzel L, Grübel G, Lehmkühler F. Anisotropic and heterogeneous dynamics in an aging colloidal gel. SOFT MATTER 2020; 16:2864-2872. [PMID: 32108204 DOI: 10.1039/c9sm02230a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigate the out-of-equilibrium dynamics of a colloidal gel obtained by quenching a suspension of soft polymer-coated gold nanoparticles close to and below its gelation point using X-ray Photon Correlation Spectroscopy (XPCS). A faster relaxation process emergent from the localized motions of the nanoparticles reveals a dynamically-arrested network at the nanoscale as a key signature of the gelation process. We find that the slower network dynamics is hyperdiffusive with a compressed exponential form, consistent with stress-driven relaxation processes. Specifically, we use direction-dependent correlation functions to characterize the anisotropy in dynamics. We show that the anisotropy is greater for the gel close to its gelation point than at lower temperatures, and the anisotropy decreases as the gel ages. We quantify the anisotropic dynamical heterogeneities emergent in such a stress-driven dynamical system using higher order intensity correlations, and demonstrate that the aging phenomenon contributes significantly to the properties evaluated by the fluctuations in the intensity correlations. Our results provide important insights into the structural origin of the emergent anisotropic and cooperative heterogeneous dynamics, and we discuss analogies with previous work on other soft disordered systems.
Collapse
Affiliation(s)
- Avni Jain
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
14
|
Hoshino T, Fujinami S, Nakatani T, Kohmura Y. Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. PHYSICAL REVIEW LETTERS 2020; 124:118004. [PMID: 32242701 DOI: 10.1103/physrevlett.124.118004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
We experimentally studied the shear effect on dynamical heterogeneity near glass transition temperature. X-ray photon correlation spectroscopy was utilized to study the dynamics of polyvinyl acetate with tracer particles near its glass transition temperature, to determine the local shear rate from the anisotropic behavior of the time autocorrelation function and to calculate the dynamical heterogeneity using higher-order correlation function. The obtained results show a decrease in the dynamical heterogeneity and faster dynamics with increasing shear rate. This is the first experimental result that proved the predictions of previous molecular dynamics simulations.
Collapse
Affiliation(s)
- Taiki Hoshino
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - So Fujinami
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tomotaka Nakatani
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Yoshiki Kohmura
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
15
|
Dallari F, Martinelli A, Caporaletti F, Sprung M, Grübel G, Monaco G. Microscopic pathways for stress relaxation in repulsive colloidal glasses. SCIENCE ADVANCES 2020; 6:eaaz2982. [PMID: 32219168 PMCID: PMC7083620 DOI: 10.1126/sciadv.aaz2982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/12/2019] [Indexed: 05/27/2023]
Abstract
Residual stresses are well-known companions of all glassy materials. They affect and, in many cases, even strongly modify important material properties like the mechanical response and the optical transparency. The mechanisms through which stresses affect such properties are, in many cases, still under study, and their full understanding can pave the way to a full exploitation of stress as a primary control parameter. It is, for example, known that stresses promote particle mobility at small length scales, e.g., in colloidal glasses, gels, and metallic glasses, but this connection still remains essentially qualitative. Exploiting a preparation protocol that leads to colloidal glasses with an exceptionally directional built-in stress field, we characterize the stress-induced dynamics and show that it can be visualized as a collection of "flickering," mobile regions with linear sizes of the order of ≈20 particle diameters (≈2 μm here) that move cooperatively, displaying an overall stationary but locally ballistic dynamics.
Collapse
Affiliation(s)
- F. Dallari
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - A. Martinelli
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - F. Caporaletti
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| | - M. Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - G. Monaco
- Dipartimento di Fisica, Università di Trento, I-38123 Povo (Trento), Italy
| |
Collapse
|
16
|
Nigro V, Ruzicka B, Ruta B, Zontone F, Bertoldo M, Buratti E, Angelini R. Relaxation Dynamics, Softness, and Fragility of Microgels with Interpenetrated Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b01560] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Valentina Nigro
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Barbara Ruzicka
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Beatrice Ruta
- France Univ Lyon, Universitè Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69100 Villeurbanne, France
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Federico Zontone
- ESRF The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - Monica Bertoldo
- Istituto per la Sintesi Organica e la Fotoreattività del Consiglio Nazionale delle Ricerche (ISOF-CNR), via P. Gobetti
101, 40129 Bologna, Italy
| | - Elena Buratti
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
| | - Roberta Angelini
- Istituto dei Sistemi Complessi del Consiglio Nazionale delle Ricerche (ISC-CNR), sede Sapienza, Pz.le Aldo Moro 5, I-00185 Roma, Italy
- Dipartimento di Fisica, Sapienza Università di Roma, I-00185 Roma, Italy
| |
Collapse
|
17
|
Frenzel L, Lehmkühler F, Lokteva I, Narayanan S, Sprung M, Grübel G. Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels. J Phys Chem Lett 2019; 10:5231-5236. [PMID: 31433650 DOI: 10.1021/acs.jpclett.9b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.
Collapse
Affiliation(s)
- Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
18
|
Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Chushkin Y, Sutton M. Anisotropic and heterogeneous dynamics in stretched elastomer nanocomposites. SOFT MATTER 2019; 15:3796-3806. [PMID: 30990483 DOI: 10.1039/c8sm02289e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use X-ray photon correlation spectroscopy (XPCS) to investigate the dynamics of a stretched elastomer by means of probe particles. The particles dispersed in the elastomer were carbon black or silica aggregates classically used for elastomer reinforcement but their volume fraction is very low (φ < 10-2). We show that their dynamics is slower in the direction of the tensile strain than in the perpendicular one. For hydroxylated silica which is poorly wetted by the elastomer, there is no anisotropy. Two-time correlation functions confirm anisotropic dynamics and suggest dynamical heterogeneity already expected from the q-1 behavior of the relaxation times. The height χ* of the peak of the dynamical susceptibility, determined by the normalized variance of the instantaneous correlation function, is larger in the direction parallel to the strain than in the perpendicular one. It also appears that its q dependence changes with the morphology of the probe particle. Therefore, the heterogeneous dynamic probed by the particles is not related only to that of the strained elastomer matrix. In fact, it results from modification of the dynamics of the polymer chains near the surface of the particles and within the aggregate porosity (bound polymer). It is concluded that XPCS is a powerful method for investigating the dynamics, at a given strain, of the bound polymer-particle units which are responsible, at large volume fractions, for the reinforcement.
Collapse
|
19
|
Lehmkühler F, Valerio J, Sheyfer D, Roseker W, Schroer MA, Fischer B, Tono K, Yabashi M, Ishikawa T, Grübel G. Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCRJ 2018; 5:801-807. [PMID: 30443363 PMCID: PMC6211528 DOI: 10.1107/s2052252518013696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joana Valerio
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin A. Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
20
|
Microscopic structural response of nanoparticles in styrene–butadiene rubber under cyclic uniaxial elongation. Polym J 2018. [DOI: 10.1038/s41428-018-0135-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Perakis F, Amann-Winkel K, Lehmkühler F, Sprung M, Mariedahl D, Sellberg JA, Pathak H, Späh A, Cavalca F, Schlesinger D, Ricci A, Jain A, Massani B, Aubree F, Benmore CJ, Loerting T, Grübel G, Pettersson LGM, Nilsson A. Diffusive dynamics during the high-to-low density transition in amorphous ice. Proc Natl Acad Sci U S A 2017; 114:8193-8198. [PMID: 28652327 PMCID: PMC5547632 DOI: 10.1073/pnas.1705303114] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.
Collapse
Affiliation(s)
- Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Jonas A Sellberg
- Biomedical and X-ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, S-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Filippo Cavalca
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Daniel Schlesinger
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | | | - Avni Jain
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
| | - Bernhard Massani
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Flora Aubree
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Chris J Benmore
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Thomas Loerting
- Institute of Physical Chemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), 22607 Hamburg, Germany
- Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Lars G M Pettersson
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, S-10691 Stockholm, Sweden;
| |
Collapse
|
22
|
Bouzid M, Colombo J, Barbosa LV, Del Gado E. Elastically driven intermittent microscopic dynamics in soft solids. Nat Commun 2017. [PMID: 28635964 PMCID: PMC5482056 DOI: 10.1038/ncomms15846] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.
Collapse
Affiliation(s)
- Mehdi Bouzid
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington District Of Columbia 20057, USA
| | - Jader Colombo
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington District Of Columbia 20057, USA
| | - Lucas Vieira Barbosa
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington District Of Columbia 20057, USA.,CAPES Foundation, Ministry of Education of Brazil, Brasilia - DF 70.040-020, Brazil
| | - Emanuela Del Gado
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington District Of Columbia 20057, USA
| |
Collapse
|
23
|
Tyagi M, Casalini R, Roland CM. SHORT TIME AND STRUCTURAL DYNAMICS IN POLYPROPYLENE GLYCOL NANOCOMPOSITE. RUBBER CHEMISTRY AND TECHNOLOGY 2017. [DOI: 10.5254/rct.17.82664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
The dynamics of polypropylene glycol, both neat and attached to silica nanoparticles, were investigated using elastic neutron backscattering and dielectric spectroscopy. The mean square displacement measured by the former is suppressed by the particles at temperatures corresponding to a dielectric secondary relaxation (that involves only a portion of the repeat unit) and the segmental relaxation (glass transition). Despite the suppression of the displacements, the motions are faster in the nanocomposite, primarily due to poorer packing (lower density) at the particle interface. At very low temperatures we discovered a new dynamic process in the polymer. Reflecting its very local nature, this process is unaffected by attachment of the chains to the silica.
Collapse
Affiliation(s)
- M. Tyagi
- NIST Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899-6102
- Department of Materials Science, University of Maryland, College Park, MD 20742
| | - R. Casalini
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342
| | - C. M. Roland
- Naval Research Laboratory, Chemistry Division, Washington, DC 20375-5342
| |
Collapse
|
24
|
Bikondoa O. On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis. J Appl Crystallogr 2017; 50:357-368. [PMID: 28381968 PMCID: PMC5377338 DOI: 10.1107/s1600576717000577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/11/2017] [Indexed: 11/10/2022] Open
Abstract
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.
Collapse
Affiliation(s)
- Oier Bikondoa
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- XMaS, The UK–CRG Beamline, ESRF – The European Synchrotron, CS40220, F-38043 Grenoble Cedex 09, France
| |
Collapse
|
25
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
26
|
|
27
|
|
28
|
Lehmkühler F, Kwaśniewski P, Roseker W, Fischer B, Schroer MA, Tono K, Katayama T, Sprung M, Sikorski M, Song S, Glownia J, Chollet M, Nelson S, Robert A, Gutt C, Yabashi M, Ishikawa T, Grübel G. Sequential Single Shot X-ray Photon Correlation Spectroscopy at the SACLA Free Electron Laser. Sci Rep 2015; 5:17193. [PMID: 26610328 PMCID: PMC4661692 DOI: 10.1038/srep17193] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/26/2015] [Indexed: 11/09/2022] Open
Abstract
Hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shot based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Paweł Kwaśniewski
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Birgit Fischer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Martin A Schroer
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Marcin Sikorski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - James Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Aymeric Robert
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill road, Menlo Park, CA 94025, USA
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Str. 3, 57072 Siegen, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kuoto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.,The Hamburg Centre of Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
29
|
|