1
|
Deng H, Cui Y, Liu H, Zhang G, Chai X, Yang X, Gong Q, Yu S, Guo D, Xia Y, Yao D, Chen K. The influence of electrode types to the visually induced gamma oscillations in mouse primary visual cortex. Cereb Cortex 2024; 34:bhae191. [PMID: 38725292 DOI: 10.1093/cercor/bhae191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 01/28/2025] Open
Abstract
The local field potential (LFP) is an extracellular electrical signal associated with neural ensemble input and dendritic signaling. Previous studies have linked gamma band oscillations of the LFP in cortical circuits to sensory stimuli encoding, attention, memory, and perception. Inconsistent results regarding gamma tuning for visual features were reported, but it remains unclear whether these discrepancies are due to variations in electrode properties. Specifically, the surface area and impedance of the electrode are important characteristics in LFP recording. To comprehensively address these issues, we conducted an electrophysiological study in the V1 region of lightly anesthetized mice using two types of electrodes: one with higher impedance (1 MΩ) and a sharp tip (10 μm), while the other had lower impedance (100 KΩ) but a thicker tip (200 μm). Our findings demonstrate that gamma oscillations acquired by sharp-tip electrodes were significantly stronger than those obtained from thick-tip electrodes. Regarding size tuning, most gamma power exhibited surround suppression at larger gratings when recorded from sharp-tip electrodes. However, the majority showed enhanced gamma power at larger gratings when recorded from thick-tip electrodes. Therefore, our study suggests that microelectrode parameters play a significant role in accurately recording gamma oscillations and responsive tuning to sensory stimuli.
Collapse
Affiliation(s)
- Haoran Deng
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yan Cui
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Haolun Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Guizhi Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaoqian Chai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Xiaotong Yang
- Department of Cardiology, Guizhou Provincial People's Hospital, 83 Zhongshan East Road, Nanming District, Guiyang, Guizhou, 550002, P.R. China
| | - Qiang Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Shuang Yu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Daqing Guo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Yang Xia
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
| | - Dezhong Yao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035, Xiyuan road 2006, Chengdu 611731, China
| | - Ke Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu, Sichuan 611731, P.R. China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, 32 West Second Section of First Ring Road, Chengdu, Sichuan, 610072, P.R. China
| |
Collapse
|
2
|
Vannini E, Restani L, Dilillo M, McDonnell LA, Caleo M, Marra V. Synaptic Vesicles Dynamics in Neocortical Epilepsy. Front Cell Neurosci 2020; 14:606142. [PMID: 33362472 PMCID: PMC7758433 DOI: 10.3389/fncel.2020.606142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/30/2020] [Indexed: 11/30/2022] Open
Abstract
Neuronal hyperexcitability often results from an unbalance between excitatory and inhibitory neurotransmission, but the synaptic alterations leading to enhanced seizure propensity are only partly understood. Taking advantage of a mouse model of neocortical epilepsy, we used a combination of photoconversion and electron microscopy to assess changes in synaptic vesicles pools in vivo. Our analyses reveal that epileptic networks show an early onset lengthening of active zones at inhibitory synapses, together with a delayed spatial reorganization of recycled vesicles at excitatory synapses. Proteomics of synaptic content indicate that specific proteins were increased in epileptic mice. Altogether, our data reveal a complex landscape of nanoscale changes affecting the epileptic synaptic release machinery. In particular, our findings show that an altered positioning of release-competent vesicles represent a novel signature of epileptic networks.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom.,Fondazione Umberto Veronesi, Milan, Italy
| | - Laura Restani
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy
| | | | | | - Matteo Caleo
- Neuroscience Institute, National Research Council (CNR), Pisa, Italy.,Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Vincenzo Marra
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Vannini E, Caleo M, Chillemi S, Di Garbo A. Dynamical properties of LFPs from mice with unilateral injection of TeNT. Biosystems 2017; 161:57-66. [PMID: 28918300 DOI: 10.1016/j.biosystems.2017.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 01/08/2023]
Abstract
Local field potential (LFP) recordings were performed from the visual cortex (V1) of a focal epilepsy mouse model. Epilepsy was induced by a unilateral injection of the synaptic blocker tetanus neurotoxin (TeNT). LFP signals were simultaneously recorded from V1 of both hemispheres of each animal under acute and chronic conditions (i.e. during and after the period of TeNT action). All data were analysed by using nonlinear time series methods. Suitable values of the lag time and embedding dimension for phase space reconstruction were estimated by employing well-known methods. The results showed that lag times are sensitive to the presence of TeNT. Interestingly, TeNT promoted an increase in the level of linear and nonlinear correlation of LFP signals. The values of the embedding dimension failed to show any dependence on the presence of the neurotoxin. However, a local nonlinear prediction method showed that the presence of TeNT increases the predictability, quantified by the normalized prediction error, of the neural recordings. From a neurophysiological point of view, the above results suggest that TeNT injected in one hemisphere strongly impacts the local electrical activity of the neural populations in the opposite hemisphere. We hypothesize that this could arise from a qualitative and quantitative alteration of the transmission properties of the callosal fibers.
Collapse
Affiliation(s)
- Eleonora Vannini
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - Matteo Caleo
- Neuroscience Institute, CNR-National Research Council, 56124 Pisa, Italy
| | - Santi Chillemi
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy
| | - Angelo Di Garbo
- Institute of Biophysics, CNR-National Research Council, 56124 Pisa, Italy.
| |
Collapse
|