1
|
Konishi K, Yoshida K, Sugitani Y, Hara N. Delay-induced amplitude death in multiplex oscillator network with frequency-mismatched layers. Phys Rev E 2024; 109:014220. [PMID: 38366515 DOI: 10.1103/physreve.109.014220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/01/2023] [Indexed: 02/18/2024]
Abstract
The present paper analytically investigates the stability of amplitude death in a multiplex Stuart-Landau oscillator network with a delayed interlayer connection. The network consists of two frequency-mismatched layers, and all oscillators in each layer have identical frequencies. We show that, if the matrices describing the network topologies of each layer commute, then the characteristic equation governing the stability can be reduced to a simple form. This form reveals that the stability of amplitude death in the multiplex network is equally or more conservative than that in a pair of frequency-mismatched oscillators coupled by a delayed connection. In addition, we provide a procedure for designing the delayed interlayer connection such that amplitude death is stable for any commuting matrices and for any intralayer coupling strength. These analytical results are verified through numerical examples. Moreover, we numerically discuss the results for the case in which the commutative property does not hold.
Collapse
Affiliation(s)
- Keiji Konishi
- Department of Electrical and Electronic Systems Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Koki Yoshida
- National Institute of Technology, Toyama College, 13 Hongo-machi, Toyama city, Toyama 939-8630, Japan
| | - Yoshiki Sugitani
- Department of Electrical and Electronic Systems Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Naoyuki Hara
- Department of Electrical and Electronic Systems Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
2
|
Mishra A, Saha S, Dana SK. Chimeras in globally coupled oscillators: A review. CHAOS (WOODBURY, N.Y.) 2023; 33:092101. [PMID: 37703474 DOI: 10.1063/5.0143872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
The surprising phenomenon of chimera in an ensemble of identical oscillators is no more strange behavior of network dynamics and reality. By this time, this symmetry breaking self-organized collective dynamics has been established in many networks, a ring of non-locally coupled oscillators, globally coupled networks, a three-dimensional network, and multi-layer networks. A variety of coupling and dynamical models in addition to the phase oscillators has been used for a successful observation of chimera patterns. Experimental verification has also been done using metronomes, pendula, chemical, and opto-electronic systems. The phenomenon has also been shown to appear in small networks, and hence, it is not size-dependent. We present here a brief review of the origin of chimera patterns restricting our discussions to networks of globally coupled identical oscillators only. The history of chimeras in globally coupled oscillators is older than what has been reported in nonlocally coupled phase oscillators much later. We elaborate the story of the origin of chimeras in globally coupled oscillators in a chronological order, within our limitations, and with brief descriptions of the significant contributions, including our personal experiences. We first introduce chimeras in non-locally coupled and other network configurations, in general, and then discuss about globally coupled networks in more detail.
Collapse
Affiliation(s)
- Arindam Mishra
- Department of Physics, National University of Singapore, Singapore 117551
| | - Suman Saha
- Cognitive Brain Dynamics Laboratory, National Brain Research Centre, Gurugram 122051, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
- Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
3
|
Phillips ET. The synchronizing role of multiplexing noise: Exploring Kuramoto oscillators and breathing chimeras. CHAOS (WOODBURY, N.Y.) 2023; 33:073140. [PMID: 37463090 DOI: 10.1063/5.0135528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/02/2023] [Indexed: 07/20/2023]
Abstract
The synchronization of spatiotemporal patterns in a two-layer multiplex network of identical Kuramoto phase oscillators is studied, where each layer is a non-locally coupled ring. Particular focus is on the role played by a noisy inter-layer communication. It is shown that modulating the inter-layer coupling strength by uncommon noise has a significant impact on the dynamics of the network, in particular, that modulating the interlayer coupling by noise can counter-intuitively induce synchronization in networks. It is further shown that increasing the noise intensity has many other analogous effects to that of increasing the interlayer coupling strength. For example, the noise intensity can also induce state transitions in a similar way, in some cases causing the layers to completely synchronize within themselves. It is discussed how such disturbances may in many cases be beneficial to multilayer systems. These effects are demonstrated both for white noise and for other kinds of colored noise. A "floating" breathing chimera state is also discovered in this system.
Collapse
|
4
|
Andrzejak RG, Espinoso A. Chimera states in multiplex networks: Chameleon-like across-layer synchronization. CHAOS (WOODBURY, N.Y.) 2023; 33:2890080. [PMID: 37163994 DOI: 10.1063/5.0146550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/19/2023] [Indexed: 05/12/2023]
Abstract
Different across-layer synchronization types of chimera states in multilayer networks have been discovered recently. We investigate possible relations between them, for example, if the onset of some synchronization type implies the onset of some other type. For this purpose, we use a two-layer network with multiplex inter-layer coupling. Each layer consists of a ring of non-locally coupled phase oscillators. While oscillators in each layer are identical, the layers are made non-identical by introducing mismatches in the oscillators' mean frequencies and phase lag parameters of the intra-layer coupling. We use different metrics to quantify the degree of various across-layer synchronization types. These include phase-locking between individual interacting oscillators, amplitude and phase synchronization between the order parameters of each layer, generalized synchronization between the driver and response layer, and the alignment of the incoherent oscillator groups' position on the two rings. For positive phase lag parameter mismatches, we get a cascaded onset of synchronization upon a gradual increase of the inter-layer coupling strength. For example, the two order parameters show phase synchronization before any of the interacting oscillator pairs does. For negative mismatches, most synchronization types have their onset in a narrow range of the coupling strength. Weaker couplings can destabilize chimera states in the response layer toward an almost fully coherent or fully incoherent motion. Finally, in the absence of a phase lag mismatch, sufficient coupling turns the response dynamics into a replica of the driver dynamics with the phases of all oscillators shifted by a constant lag.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Anaïs Espinoso
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer Baldiri Reixac 10-12, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
5
|
Manoranjani M, Senthilkumar DV, Chandrasekar VK. Abrupt symmetry-preserving transition from the chimera state. Phys Rev E 2023; 107:034212. [PMID: 37072986 DOI: 10.1103/physreve.107.034212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/09/2023] [Indexed: 04/20/2023]
Abstract
We consider two populations of the globally coupled Sakaguchi-Kuramoto model with the same intra- and interpopulations coupling strengths. The oscillators constituting the intrapopulation are identical whereas the interpopulations are nonidentical with a frequency mismatch. The asymmetry parameters ensure the permutation symmetry among the oscillators constituting the intrapopulation and a reflection symmetry among the oscillators constituting the interpopulation. We show that the chimera state manifests by spontaneously breaking the reflection symmetry and also exists in almost in the entire explored range of the asymmetry parameter without restricting to the near π/2 values of it. The saddle-node bifurcation mediates the abrupt transition from the symmetry breaking chimera state to the symmetry-preserving synchronized oscillatory state in the reverse trace, whereas the homoclinic bifurcation mediates the transition from the synchronized oscillatory state to synchronized steady state in the forward trace. We deduce the governing equations of motion for the macroscopic order parameters employing the finite-dimensional reduction by Watanabe and Strogatz. The analytical saddle-node and homoclinic bifurcation conditions agree well with the simulations results and the bifurcation curves.
Collapse
Affiliation(s)
- M Manoranjani
- Department of Physics, Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| | - D V Senthilkumar
- School of Physics, Indian Institute of Science Education and Research, Thiruvananthapuram-695016, India
| | - V K Chandrasekar
- Department of Physics,Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, India
| |
Collapse
|
6
|
Goodfellow M, Andrzejak RG, Masoller C, Lehnertz K. What Models and Tools can Contribute to a Better Understanding of Brain Activity? FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:907995. [PMID: 36926061 PMCID: PMC10013030 DOI: 10.3389/fnetp.2022.907995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 12/18/2022]
Abstract
Despite impressive scientific advances in understanding the structure and function of the human brain, big challenges remain. A deep understanding of healthy and aberrant brain activity at a wide range of temporal and spatial scales is needed. Here we discuss, from an interdisciplinary network perspective, the advancements in physical and mathematical modeling as well as in data analysis techniques that, in our opinion, have potential to further advance our understanding of brain structure and function.
Collapse
Affiliation(s)
- Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom
| | - Ralph G. Andrzejak
- Department of Information and Communication Technologies, University Pompeu Fabra, Barcelona, Spain
| | - Cristina Masoller
- Department of Physics, Universitat Politecnica de Catalunya, Barcelona, Spain
| | - Klaus Lehnertz
- Department of Epileptology, University of Bonn Medical Centre, Bonn, Germany
- Helmholtz Institute for Radiation and Nuclear Physics, University of Bonn, Bonn, Germany
- Interdisciplinary Center for Complex Systems, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Botha AE, Ansariara M, Emadi S, Kolahchi MR. Chimera Patterns of Synchrony in a Frustrated Array of Hebb Synapses. Front Comput Neurosci 2022; 16:888019. [PMID: 35814347 PMCID: PMC9260432 DOI: 10.3389/fncom.2022.888019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
The union of the Kuramoto–Sakaguchi model and the Hebb dynamics reproduces the Lisman switch through a bistability in synchronized states. Here, we show that, within certain ranges of the frustration parameter, the chimera pattern can emerge, causing a different, time-evolving, distribution in the Hebbian synaptic strengths. We study the stability range of the chimera as a function of the frustration (phase-lag) parameter. Depending on the range of the frustration, two different types of chimeras can appear spontaneously, i.e., from randomized initial conditions. In the first type, the oscillators in the coherent region rotate, on average, slower than those in the incoherent region; while in the second type, the average rotational frequencies of the two regions are reversed, i.e., the coherent region runs, on average, faster than the incoherent region. We also show that non-stationary behavior at finite N can be controlled by adjusting the natural frequency of a single pacemaker oscillator. By slowly cycling the frequency of the pacemaker, we observe hysteresis in the system. Finally, we discuss how we can have a model for learning and memory.
Collapse
Affiliation(s)
- A. E. Botha
- Department of Physics, Science Campus, University of South Africa, Private Bag X6, Johannesburg, South Africa
| | - M. Ansariara
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - S. Emadi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
| | - M. R. Kolahchi
- Department of Physics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran
- *Correspondence: M. R. Kolahchi
| |
Collapse
|
8
|
Majhi S, Rakshit S, Ghosh D. Oscillation suppression and chimera states in time-varying networks. CHAOS (WOODBURY, N.Y.) 2022; 32:042101. [PMID: 35489845 DOI: 10.1063/5.0087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Complex network theory has offered a powerful platform for the study of several natural dynamic scenarios, based on the synergy between the interaction topology and the dynamics of its constituents. With research in network theory being developed so fast, it has become extremely necessary to move from simple network topologies to more sophisticated and realistic descriptions of the connectivity patterns. In this context, there is a significant amount of recent works that have emerged with enormous evidence establishing the time-varying nature of the connections among the constituents in a large number of physical, biological, and social systems. The recent review article by Ghosh et al. [Phys. Rep. 949, 1-63 (2022)] demonstrates the significance of the analysis of collective dynamics arising in temporal networks. Specifically, the authors put forward a detailed excerpt of results on the origin and stability of synchronization in time-varying networked systems. However, among the complex collective dynamical behaviors, the study of the phenomenon of oscillation suppression and that of other diverse aspects of synchronization are also considered to be central to our perception of the dynamical processes over networks. Through this review, we discuss the principal findings from the research studies dedicated to the exploration of the two collective states, namely, oscillation suppression and chimera on top of time-varying networks of both static and mobile nodes. We delineate how temporality in interactions can suppress oscillation and induce chimeric patterns in networked dynamical systems, from effective analytical approaches to computational aspects, which is described while addressing these two phenomena. We further sketch promising directions for future research on these emerging collective behaviors in time-varying networks.
Collapse
Affiliation(s)
- Soumen Majhi
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
9
|
Anwar MS, Ghosh D. Intralayer and interlayer synchronization in multiplex network with higher-order interactions. CHAOS (WOODBURY, N.Y.) 2022; 32:033125. [PMID: 35364852 DOI: 10.1063/5.0074641] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Recent developments in complex systems have witnessed that many real-world scenarios, successfully represented as networks, are not always restricted to binary interactions but often include higher-order interactions among the nodes. These beyond pairwise interactions are preferably modeled by hypergraphs, where hyperedges represent higher-order interactions between a set of nodes. In this work, we consider a multiplex network where the intralayer connections are represented by hypergraphs, called the multiplex hypergraph. The hypergraph is constructed by mapping the maximal cliques of a scale-free network to hyperedges of suitable sizes. We investigate the intralayer and interlayer synchronizations of such multiplex structures. Our study unveils that the intralayer synchronization appreciably enhances when a higher-order structure is taken into consideration in spite of only pairwise connections. We derive the necessary condition for stable synchronization states by the master stability function approach, which perfectly agrees with the numerical results. We also explore the robustness of interlayer synchronization and find that for the multiplex structures with many-body interaction, the interlayer synchronization is more persistent than the multiplex networks with solely pairwise interaction.
Collapse
Affiliation(s)
- Md Sayeed Anwar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
10
|
Effects of Synaptic Pruning on Phase Synchronization in Chimera States of Neural Network. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This research explores the effect of synaptic pruning on a ring-shaped neural network of non-locally coupled FitzHugh–Nagumo (FHN) oscillators. The neurons in the pruned region synchronize with each other, and they repel the coherent domain of the chimera states. Furthermore, the width of the pruned region decides the precision and efficiency of the control effect on the position of coherent domains. This phenomenon gives a systematic comprehension of the relation between pruning and synchronization in neural networks from a new aspect that has never been addressed. An explanation of this mechanism is also given.
Collapse
|
11
|
Sawicki J, Berner R, Löser T, Schöll E. Modeling Tumor Disease and Sepsis by Networks of Adaptively Coupled Phase Oscillators. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 1:730385. [PMID: 36925568 PMCID: PMC10013027 DOI: 10.3389/fnetp.2021.730385] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/19/2021] [Indexed: 06/18/2023]
Abstract
In this study, we provide a dynamical systems perspective to the modelling of pathological states induced by tumors or infection. A unified disease model is established using the innate immune system as the reference point. We propose a two-layer network model for carcinogenesis and sepsis based upon the interaction of parenchymal cells and immune cells via cytokines, and the co-evolutionary dynamics of parenchymal, immune cells, and cytokines. Our aim is to show that the complex cellular cooperation between parenchyma and stroma (immune layer) in the physiological and pathological case can be qualitatively and functionally described by a simple paradigmatic model of phase oscillators. By this, we explain carcinogenesis, tumor progression, and sepsis by destabilization of the healthy homeostatic state (frequency synchronized), and emergence of a pathological state (desynchronized or multifrequency cluster). The coupled dynamics of parenchymal cells (metabolism) and nonspecific immune cells (reaction of innate immune system) are represented by nodes of a duplex layer. The cytokine interaction is modeled by adaptive coupling weights between the nodes representing the immune cells (with fast adaptation time scale) and the parenchymal cells (slow adaptation time scale) and between the pairs of parenchymal and immune cells in the duplex network (fixed bidirectional coupling). Thereby, carcinogenesis, organ dysfunction in sepsis, and recurrence risk can be described in a correct functional context.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | - Rico Berner
- Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
| | | | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
- Institut für Theoretische Physik, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, Berlin, Germany
| |
Collapse
|
12
|
Anesiadis K, Provata A. Synchronization in Multiplex Leaky Integrate-and-Fire Networks With Nonlocal Interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:910862. [PMID: 36926067 PMCID: PMC10013047 DOI: 10.3389/fnetp.2022.910862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
We study synchronization phenomena in a multiplex network composed of two rings with identical Leaky Integrate-and-Fire (LIF) oscillators located on the nodes of the rings. Within each ring the LIF oscillators interact nonlocally, while between rings there are one-to-one inter-ring interactions. This structure is motivated by the observed connectivity between the two hemispheres of the brain: within each hemisphere the various brain regions interact with neighboring regions, while across hemispheres each region interacts, primarily, with the functionally homologous region. We consider both positive (excitatory) and negative (inhibitory) linking. We identify numerically various parameter regimes where the multiplex network develops coexistence of active and subthreshold domains, chimera states, solitary states, full coherence or incoherence. In particular, for weak inter-ring coupling (weak multiplexing) different synchronization patterns on the two rings are supported. These are stable and are obtained when the intra-ring coupling values are near the critical points separating qualitatively distinct synchronization regimes, e.g., between the travelling fronts regime and the chimera state one.
Collapse
Affiliation(s)
- K Anesiadis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece.,School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
13
|
Bönsel F, Krauss P, Metzner C, Yamakou ME. Control of noise-induced coherent oscillations in three-neuron motifs. Cogn Neurodyn 2021; 16:941-960. [PMID: 35847543 PMCID: PMC9279551 DOI: 10.1007/s11571-021-09770-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/27/2021] [Accepted: 11/27/2021] [Indexed: 12/04/2022] Open
Abstract
The phenomenon of self-induced stochastic resonance (SISR) requires a nontrivial scaling limit between the deterministic and the stochastic timescales of an excitable system, leading to the emergence of coherent oscillations which are absent without noise. In this paper, we numerically investigate SISR and its control in single neurons and three-neuron motifs made up of the Morris–Lecar model. In single neurons, we compare the effects of electrical and chemical autapses on the degree of coherence of the oscillations due to SISR. In the motifs, we compare the effects of altering the synaptic time-delayed couplings and the topologies on the degree of SISR. Finally, we provide two enhancement strategies for a particularly poor degree of SISR in motifs with chemical synapses: (1) we show that a poor SISR can be significantly enhanced by attaching an electrical or an excitatory chemical autapse on one of the neurons, and (2) we show that by multiplexing the motif with a poor SISR to another motif (with a high SISR in isolation), the degree of SISR in the former motif can be significantly enhanced. We show that the efficiency of these enhancement strategies depends on the topology of the motifs and the nature of synaptic time-delayed couplings mediating the multiplexing connections.
Collapse
Affiliation(s)
- Florian Bönsel
- Chair for Dynamics, Control and Numerics, Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany
- Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen, Germany
| | - Patrick Krauss
- Neuroscience Lab, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 1, 91054 Erlangen, Germany
| | - Claus Metzner
- Biophysics Group, Friedrich-Alexander-Universität Erlangen-Nürnberg, Henkestr. 91, 91052 Erlangen, Germany
| | - Marius E. Yamakou
- Chair for Dynamics, Control and Numerics, Department of Data Science, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Abstract
Relay synchronization in multi-layer networks implies inter-layer synchronization between two indirectly connected layers through a relay layer. In this work, we study the relay synchronization in a three-layer multiplex network by introducing degree-based weighting mechanisms. The mechanism of within-layer connectivity may be hubs-repelling or hubs-attracting whenever low-degree or high-degree nodes receive strong influence. We adjust the remote layers to hubs-attracting coupling, whereas the relay layer may be unweighted, hubs-repelling, or hubs-attracting network. We establish that relay synchronization is improved when the relay layer is hubs-repelling compared to the other cases. We determine analytically necessary stability conditions of relay synchronization state using the master stability function approach. Finally, we explore the relation between synchronization and the topological property of the relay layer. We find that a higher clustering coefficient hinders synchronizability, and vice versa. We also look into the intra-layer synchronization in the proposed weighted triplex network and establish that intra-layer synchronization occurs in a wider range when relay layer is hubs-attracting.
Collapse
|
15
|
Bera BK, Kundu S, Muruganandam P, Ghosh D, Lakshmanan M. Spiral wave chimera-like transient dynamics in three-dimensional grid of diffusive ecological systems. CHAOS (WOODBURY, N.Y.) 2021; 31:083125. [PMID: 34470253 DOI: 10.1063/5.0062566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
In the present article, we demonstrate the emergence and existence of the spiral wave chimera-like transient pattern in coupled ecological systems, composed of prey-predator patches, where the patches are connected in a three-dimensional medium through local diffusion. We explore the transition scenarios among several collective dynamical behaviors together with transient spiral wave chimera-like states and investigate the long time behavior of these states. The transition from the transient spiral chimera-like pattern to the long time synchronized or desynchronized pattern appears through the deformation of the incoherent region of the spiral core. We discuss the transient dynamics under the influence of the species diffusion at different time instants. By calculating the instantaneous strength of incoherence of the populations, we estimate the duration of the transient dynamics characterized by the persistence of the chimera-like spatial coexistence of coherent and incoherent patterns over the spatial domain. We generalize our observations on the transient dynamics in a three-dimensional grid of diffusive ecological systems by considering two different prey-predator systems.
Collapse
Affiliation(s)
- Bidesh K Bera
- Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | | | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620024, India
| |
Collapse
|
16
|
Kumar A, Jalan S. Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks. CHAOS (WOODBURY, N.Y.) 2021; 31:041103. [PMID: 34251235 DOI: 10.1063/5.0043775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/19/2021] [Indexed: 06/13/2023]
Abstract
Different methods have been proposed in the past few years to incite explosive synchronization (ES) in Kuramoto phase oscillators. In this work, we show that the introduction of a phase shift α in interlayer coupling terms of a two-layer multiplex network of Kuramoto oscillators can also instigate ES in the layers. As α→π/2, ES emerges along with hysteresis. The width of hysteresis depends on the phase shift α, interlayer coupling strength, and natural frequency mismatch between mirror nodes. A mean-field analysis is performed to justify the numerical results. Similar to earlier works, the suppression of synchronization is accountable for the occurrence of ES. The robustness of ES against changes in network topology and natural frequency distribution is tested. Finally, taking a suggestion from the synchronized state of the multiplex networks, we extend the results to classical single networks where some specific links are assigned phase-shifted interactions.
Collapse
Affiliation(s)
- Anil Kumar
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Sarika Jalan
- Complex Systems Lab, Department of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| |
Collapse
|
17
|
Chowdhury SN, Rakshit S, Buldú JM, Ghosh D, Hens C. Antiphase synchronization in multiplex networks with attractive and repulsive interactions. Phys Rev E 2021; 103:032310. [PMID: 33862752 DOI: 10.1103/physreve.103.032310] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
A series of recent publications, within the framework of network science, have focused on the coexistence of mixed attractive and repulsive (excitatory and inhibitory) interactions among the units within the same system, motivated by the analogies with spin glasses as well as to neural networks, or ecological systems. However, most of these investigations have been restricted to single layer networks, requiring further analysis of the complex dynamics and particular equilibrium states that emerge in multilayer configurations. This article investigates the synchronization properties of dynamical systems connected through multiplex architectures in the presence of attractive intralayer and repulsive interlayer connections. This setting enables the emergence of antisynchronization, i.e., intralayer synchronization coexisting with antiphase dynamics between coupled systems of different layers. We demonstrate the existence of a transition from interlayer antisynchronization to antiphase synchrony in any connected bipartite multiplex architecture when the repulsive coupling is introduced through any spanning tree of a single layer. We identify, analytically, the required graph topologies for interlayer antisynchronization and its interplay with intralayer and antiphase synchronization. Next, we analytically derive the invariance of intralayer synchronization manifold and calculate the attractor size of each oscillator exhibiting interlayer antisynchronization together with intralayer synchronization. The necessary conditions for the existence of interlayer antisynchronization along with intralayer synchronization are given and numerically validated by considering Stuart-Landau oscillators. Finally, we also analytically derive the local stability condition of the interlayer antisynchronization state using the master stability function approach.
Collapse
Affiliation(s)
- Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Javier M Buldú
- Laboratory of Biological Networks, Center for Biomedical Technology-UPM, Madrid 28223, Spain
- Complex Systems Group and GISC, Universidad Rey Juan Carlos, Móstoles 28933, Spain
- Unmanned Systems Research Institute, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| |
Collapse
|
18
|
Dixit S, Nag Chowdhury S, Prasad A, Ghosh D, Shrimali MD. Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions. CHAOS (WOODBURY, N.Y.) 2021; 31:011105. [PMID: 33754786 DOI: 10.1063/5.0039879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The role of a new form of dynamic interaction is explored in a network of generic identical oscillators. The proposed design of dynamic coupling facilitates the onset of a plethora of asymptotic states including synchronous states, amplitude death states, oscillation death states, a mixed state (complete synchronized cluster and small amplitude desynchronized domain), and bistable states (coexistence of two attractors). The dynamical transitions from the oscillatory to the death state are characterized using an average temporal interaction approximation, which agrees with the numerical results in temporal interaction. A first-order phase transition behavior may change into a second-order transition in spatial dynamic interaction solely depending on the choice of initial conditions in the bistable regime. However, this possible abrupt first-order like transition is completely non-existent in the case of temporal dynamic interaction. Besides the study on periodic Stuart-Landau systems, we present results for the paradigmatic chaotic model of Rössler oscillators and the MacArthur ecological model.
Collapse
Affiliation(s)
- Shiva Dixit
- Department of Physics, Central University of Rajasthan, NH-8,Bandar Sindri, Ajmer 305 817, India
| | - Sayantan Nag Chowdhury
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Awadhesh Prasad
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Manish Dev Shrimali
- Department of Physics, Central University of Rajasthan, NH-8,Bandar Sindri, Ajmer 305 817, India
| |
Collapse
|
19
|
Saha S, Dana SK. Smallest Chimeras Under Repulsive Interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2021; 1:778597. [PMID: 36925584 PMCID: PMC10013064 DOI: 10.3389/fnetp.2021.778597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022]
Abstract
We present an exemplary system of three identical oscillators in a ring interacting repulsively to show up chimera patterns. The dynamics of individual oscillators is governed by the superconducting Josephson junction. Surprisingly, the repulsive interactions can only establish a symmetry of complete synchrony in the ring, which is broken with increasing repulsive interactions when the junctions pass through serials of asynchronous states (periodic and chaotic) but finally emerge into chimera states. The chimera pattern first appears in chaotic rotational motion of the three junctions when two junctions evolve coherently, while the third junction is incoherent. For larger repulsive coupling, the junctions evolve into another chimera pattern in a periodic state when two junctions remain coherent in rotational motion and one junction transits to incoherent librational motion. This chimera pattern is sensitive to initial conditions in the sense that the chimera state flips to another pattern when two junctions switch to coherent librational motion and the third junction remains in rotational motion, but incoherent. The chimera patterns are detected by using partial and global error functions of the junctions, while the librational and rotational motions are identified by a libration index. All the collective states, complete synchrony, desynchronization, and two chimera patterns are delineated in a parameter plane of the ring of junctions, where the boundaries of complete synchrony are demarcated by using the master stability function.
Collapse
Affiliation(s)
- Suman Saha
- National Brain Research Centre, Gurugram, India
| | - Syamal Kumar Dana
- National Institute of Technology, Durgapur, India.,Division of Dynamics, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
20
|
Ruzzene G, Omelchenko I, Sawicki J, Zakharova A, Schöll E, Andrzejak RG. Remote pacemaker control of chimera states in multilayer networks of neurons. Phys Rev E 2020; 102:052216. [PMID: 33327161 DOI: 10.1103/physreve.102.052216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/30/2020] [Indexed: 06/12/2023]
Abstract
Networks of coupled nonlinear oscillators allow for the formation of nontrivial partially synchronized spatiotemporal patterns, such as chimera states, in which there are coexisting coherent (synchronized) and incoherent (desynchronized) domains. These complementary domains form spontaneously, and it is impossible to predict where the synchronized group will be positioned within the network. Therefore, possible ways to control the spatial position of the coherent and incoherent groups forming the chimera states are of high current interest. In this work we investigate how to control chimera patterns in multiplex networks of FitzHugh-Nagumo neurons, and in particular we want to prove that it is possible to remotely control chimera states exploiting the multiplex structure. We introduce a pacemaker oscillator within the network: this is an oscillator that does not receive input from the rest of the network but is sending out information to its neighbors. The pacemakers can be positioned in one or both layers. Their presence breaks the spatial symmetry of the layer in which they are introduced and allows us to control the position of the incoherent domain. We demonstrate how the remote control is possible for both uni- and bidirectional coupling between the layers. Furthermore we show which are the limitations of our control mechanisms when it is generalized from single-layer to multilayer networks.
Collapse
Affiliation(s)
- Giulia Ruzzene
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Iryna Omelchenko
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
21
|
Vadivasova TE, Slepnev AV, Zakharova A. Control of inter-layer synchronization by multiplexing noise. CHAOS (WOODBURY, N.Y.) 2020; 30:091101. [PMID: 33003909 DOI: 10.1063/5.0023071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We study the synchronization of spatio-temporal patterns in a two-layer network of coupled chaotic maps, where each layer is represented by a nonlocally coupled ring. In particular, we focus on noisy inter-layer communication that we call multiplexing noise. We show that noisy modulation of inter-layer coupling strength has a significant impact on the dynamics of the network and specifically on the degree of synchronization of spatio-temporal patterns of interacting layers initially (in the absence of interaction) exhibiting chimera states. Our goal is to develop control strategies based on multiplexing noise for both identical and non-identical layers. We find that for the appropriate choice of intensity and frequency characteristics of parametric noise, complete or partial synchronization of the layers can be observed. Interestingly, for achieving inter-layer synchronization through multiplexing noise, it is crucial to have colored noise with intermediate spectral width. In the limit of white noise, the synchronization is destroyed. These results are the first step toward understanding the role of noisy inter-layer communication for the dynamics of multilayer networks.
Collapse
Affiliation(s)
- T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A V Slepnev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
22
|
Yamakou ME, Hjorth PG, Martens EA. Optimal Self-Induced Stochastic Resonance in Multiplex Neural Networks: Electrical vs. Chemical Synapses. Front Comput Neurosci 2020; 14:62. [PMID: 32848683 PMCID: PMC7427607 DOI: 10.3389/fncom.2020.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 01/23/2023] Open
Abstract
Electrical and chemical synapses shape the dynamics of neural networks, and their functional roles in information processing have been a longstanding question in neurobiology. In this paper, we investigate the role of synapses on the optimization of the phenomenon of self-induced stochastic resonance in a delayed multiplex neural network by using analytical and numerical methods. We consider a two-layer multiplex network in which, at the intra-layer level, neurons are coupled either by electrical synapses or by inhibitory chemical synapses. For each isolated layer, computations indicate that weaker electrical and chemical synaptic couplings are better optimizers of self-induced stochastic resonance. In addition, regardless of the synaptic strengths, shorter electrical synaptic delays are found to be better optimizers of the phenomenon than shorter chemical synaptic delays, while longer chemical synaptic delays are better optimizers than longer electrical synaptic delays; in both cases, the poorer optimizers are, in fact, worst. It is found that electrical, inhibitory, or excitatory chemical multiplexing of the two layers having only electrical synapses at the intra-layer levels can each optimize the phenomenon. Additionally, only excitatory chemical multiplexing of the two layers having only inhibitory chemical synapses at the intra-layer levels can optimize the phenomenon. These results may guide experiments aimed at establishing or confirming to the mechanism of self-induced stochastic resonance in networks of artificial neural circuits as well as in real biological neural networks.
Collapse
Affiliation(s)
- Marius E. Yamakou
- Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Germany
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
| | - Erik A. Martens
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Lyngby, Denmark
- Department of Biomedical Science, University of Copenhagen, Copenhagen, Denmark
- Centre for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Frolov N, Maksimenko V, Majhi S, Rakshit S, Ghosh D, Hramov A. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling. CHAOS (WOODBURY, N.Y.) 2020; 30:081102. [PMID: 32872824 DOI: 10.1063/5.0019200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Interaction within an ensemble of coupled nonlinear oscillators induces a variety of collective behaviors. One of the most fascinating is a chimera state that manifests the coexistence of spatially distinct populations of coherent and incoherent elements. Understanding of the emergent chimera behavior in controlled experiments or real systems requires a focus on the consideration of heterogeneous network models. In this study, we explore the transitions in a heterogeneous Kuramoto model under the monotonical increase of the coupling strength and specifically find that this system exhibits a frequency-modulated chimera-like pattern during the explosive transition to synchronization. We demonstrate that this specific dynamical regime originates from the interplay between (the evolved) attractively and repulsively coupled subpopulations. We also show that the above-mentioned chimera-like state is induced under weakly non-local, small-world, and sparse scale-free coupling and suppressed in globally coupled, strongly rewired, and dense scale-free networks due to the emergence of the large-scale connections.
Collapse
Affiliation(s)
- Nikita Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Alexander Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| |
Collapse
|
24
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera-like states induced by additional dynamic nonlocal wirings. CHAOS (WOODBURY, N.Y.) 2020; 30:063106. [PMID: 32611102 DOI: 10.1063/1.5144929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the existence of chimera-like states in a small-world network of chaotically oscillating identical Rössler systems with an addition of randomly switching nonlocal links. By varying the small-world coupling strength, we observe no chimera-like state either in the absence of nonlocal wirings or with static nonlocal wirings. When we give an additional nonlocal wiring to randomly selected nodes and if we allow the random selection of nodes to change with time, we observe the onset of chimera-like states. Upon increasing the number of randomly selected nodes gradually, we find that the incoherent window keeps on shrinking, whereas the chimera-like window widens up. Moreover, the system attains a completely synchronized state comparatively sooner for a lower coupling strength. Also, we show that one can induce chimera-like states by a suitable choice of switching times, coupling strengths, and a number of nonlocal links. We extend the above-mentioned randomized injection of nonlocal wirings for the cases of globally coupled Rössler oscillators and a small-world network of coupled FitzHugh-Nagumo oscillators and obtain similar results.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
25
|
Verma UK, Ambika G. Amplitude chimera and chimera death induced by external agents in two-layer networks. CHAOS (WOODBURY, N.Y.) 2020; 30:043104. [PMID: 32357668 DOI: 10.1063/5.0002457] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
We report the emergence of stable amplitude chimeras and chimera death in a two-layer network where one layer has an ensemble of identical nonlinear oscillators interacting directly through local coupling and indirectly through dynamic agents that form the second layer. The nonlocality in the interaction among the dynamic agents in the second layer induces different types of chimera-related dynamical states in the first layer. The amplitude chimeras developed in them are found to be extremely stable, while chimera death states are prevalent for increased coupling strengths. The results presented are for a system of coupled Stuart-Landau oscillators and can, in general, represent systems with short-range interactions coupled to another set of systems with long-range interactions. In this case, by tuning the range of interactions among the oscillators or the coupling strength between two types of systems, we can control the nature of chimera states and the system can also be restored to homogeneous steady states. The dynamic agents interacting nonlocally with long-range interactions can be considered as a dynamic environment or a medium interacting with the system. We indicate how the second layer can act as a reinforcement mechanism on the first layer under various possible interactions for desirable effects.
Collapse
Affiliation(s)
- Umesh Kumar Verma
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - G Ambika
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
26
|
Blondeau Soh G, Louodop P, Kengne R, Tchitnga R. Chimera dynamics in an array of coupled FitzHugh-Nagumo system with shift of close neighbors. Heliyon 2020; 6:e03739. [PMID: 32280805 PMCID: PMC7139117 DOI: 10.1016/j.heliyon.2020.e03739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 11/30/2022] Open
Abstract
In this paper, we consider an array of FitzHugh-Nagumo (FHN) systems with R close neighbors. Each element (j) connects to another (m) and its 2R neighbors. Shifting these neighbors produces particular phenomena such as chimera and multi-chimera. Step traveling chimera is observed for a time dependent shift. Results show that, basing oneself on both shift parameter m and close neighbors R, a full control on the chimera dynamics of the network can be ensured.
Collapse
Affiliation(s)
- Guy Blondeau Soh
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67 Dschang, Cameroon
| | - Patrick Louodop
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67 Dschang, Cameroon
| | - Romanic Kengne
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67 Dschang, Cameroon
| | - Robert Tchitnga
- Laboratory of Electronics, Automation and Signal Processing, Faculty of Science, Department of Physics, University of Dschang, P.O. Box 67 Dschang, Cameroon
- Institute of Surface Chemistry and Catalysis, University of Ulm, Albert-Einstein-Allee 47, 89081 Ulm, Germany
| |
Collapse
|
27
|
Berner R, Sawicki J, Schöll E. Birth and Stabilization of Phase Clusters by Multiplexing of Adaptive Networks. PHYSICAL REVIEW LETTERS 2020; 124:088301. [PMID: 32167358 DOI: 10.1103/physrevlett.124.088301] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
We propose a concept to generate and stabilize diverse partial synchronization patterns (phase clusters) in adaptive networks which are widespread in neuroscience and social sciences, as well as biology, engineering, and other disciplines. We show by theoretical analysis and computer simulations that multiplexing in a multilayer network with symmetry can induce various stable phase cluster states in a situation where they are not stable or do not even exist in the single layer. Further, we develop a method for the analysis of Laplacian matrices of multiplex networks which allows for insight into the spectral structure of these networks enabling a reduction to the stability problem of single layers. We employ the multiplex decomposition to provide analytic results for the stability of the multilayer patterns. As local dynamics we use the paradigmatic Kuramoto phase oscillator, which is a simple generic model and has been successfully applied in the modeling of synchronization phenomena in a wide range of natural and technological systems.
Collapse
Affiliation(s)
- Rico Berner
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
- Institut für Mathematik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Jakub Sawicki
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
28
|
Rakshit S, Bera BK, Kurths J, Ghosh D. Enhancing synchrony in multiplex network due to rewiring frequency. Proc Math Phys Eng Sci 2019. [DOI: 10.1098/rspa.2019.0460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most of the previous studies on synchrony in multiplex networks have been investigated using different types of intralayer network architectures which are either static or temporal. Effect of a temporal layer on intralayer synchrony in a multilayered network still remains elusive. In this paper, we discuss intralayer synchrony in a multiplex network consisting of static and temporal layers and how a temporal layer influences other static layers to enhance synchrony simultaneously. We analytically derive local stability conditions for intralayer synchrony based on the master stability function approach. The analytically derived results are illustrated by numerical simulations on up to five-layers multiplex networks with the paradigmatic Lorenz system as the node dynamics in each individual layer.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Bidesh K. Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
29
|
Liu Y, Khalaf AJM, Jafari S, Hussain I. Chimera state in a two-dimensional network of coupled genetic oscillators. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/127/40001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Nikitin D, Omelchenko I, Zakharova A, Avetyan M, Fradkov AL, Schöll E. Complex partial synchronization patterns in networks of delay-coupled neurons. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180128. [PMID: 31329071 PMCID: PMC6661322 DOI: 10.1098/rsta.2018.0128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/21/2019] [Indexed: 05/26/2023]
Abstract
We study the spatio-temporal dynamics of a multiplex network of delay-coupled FitzHugh-Nagumo oscillators with non-local and fractal connectivities. Apart from chimera states, a new regime of coexistence of slow and fast oscillations is found. An analytical explanation for the emergence of such coexisting partial synchronization patterns is given. Furthermore, we propose a control scheme for the number of fast and slow neurons in each layer. This article is part of the theme issue 'Nonlinear dynamics of delay systems'.
Collapse
Affiliation(s)
- D. Nikitin
- Saint Petersburg State University, Saint Petersburg, Russia
| | - I. Omelchenko
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - A. Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - M. Avetyan
- Saint Petersburg State University, Saint Petersburg, Russia
| | - A. L. Fradkov
- Saint Petersburg State University, Saint Petersburg, Russia
- Institute for Problems of Mechanical Engineering, Saint Petersburg, Russia
| | - E. Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| |
Collapse
|
31
|
Yamakou ME, Jost J. Control of coherence resonance by self-induced stochastic resonance in a multiplex neural network. Phys Rev E 2019; 100:022313. [PMID: 31574701 DOI: 10.1103/physreve.100.022313] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Indexed: 06/10/2023]
Abstract
We consider a two-layer multiplex network of diffusively coupled FitzHugh-Nagumo (FHN) neurons in the excitable regime. We show that the phenomenon of coherence resonance (CR) in one layer can not only be controlled by the network topology, the intra- and interlayer time-delayed couplings, but also by another phenomenon, namely, self-induced stochastic resonance (SISR) in the other layer. Numerical computations show that when the layers are isolated, each of these noise-induced phenomena is weakened (strengthened) by a sparser (denser) ring network topology, stronger (weaker) intralayer coupling forces, and longer (shorter) intralayer time delays. However, CR shows a much higher sensitivity than SISR to changes in these control parameters. It is also shown, in contrast to SISR in a single isolated FHN neuron, that the maximum noise amplitude at which SISR occurs in the network of coupled FHN neurons is controllable, especially in the regime of strong coupling forces and long time delays. In order to use SISR in the first layer of the multiplex network to control CR in the second layer, we first choose the control parameters of the second layer in isolation such that in one case CR is poor and in another case, nonexistent. It is then shown that a pronounced SISR can not only significantly improve a poor CR, but can also induce a pronounced CR, which was nonexistent in the isolated second layer. In contrast to strong intralayer coupling forces, strong interlayer coupling forces are found to enhance CR, while long interlayer time delays, just as long intralayer time delays, deteriorate CR. Most importantly, we find that in a strong interlayer coupling regime, SISR in the first layer performs better than CR in enhancing CR in the second layer. But in a weak interlayer coupling regime, CR in the first layer performs better than SISR in enhancing CR in the second layer. Our results could find novel applications in noisy neural network dynamics and engineering.
Collapse
Affiliation(s)
- Marius E Yamakou
- Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, 04103 Leipzig, Germany
| | - Jürgen Jost
- Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, 04103 Leipzig, Germany
- Santa Fe Institute for the Sciences of Complexity, Santa Fe, New Mexico 87501, USA
| |
Collapse
|
32
|
Andreev AV, Frolov NS, Pisarchik AN, Hramov AE. Chimera state in complex networks of bistable Hodgkin-Huxley neurons. Phys Rev E 2019; 100:022224. [PMID: 31574636 DOI: 10.1103/physreve.100.022224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Indexed: 06/10/2023]
Abstract
In this paper we study a chimera state in complex networks of bistable Hodgkin-Huxley neurons with excitatory coupling, which manifests as a termination of spiking activity of a part of interacting neurons. We provide a detailed investigation of this phenomenon in scale-free, small-world, and random networks and show that the chimera state is robust to the network topology. Nevertheless, network topological properties determine the stability of spatiotemporal states and therefore affect the excitability of the chimera state in the whole network. In particular, the scale-free network whose higher degree nodes are more stable to small perturbations is least exposed to chimera formation and exhibits an abrupt transition from a spiking to a silent regime. On the other hand, small-world and random networks are more likely to provide transitions to the chimera state.
Collapse
Affiliation(s)
- A V Andreev
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya, 1, Innopolis, Republic of Tatarstan, 420500, Russia
| | - N S Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya, 1, Innopolis, Republic of Tatarstan, 420500, Russia
| | - A N Pisarchik
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya, 1, Innopolis, Republic of Tatarstan, 420500, Russia
- Center for Biomedical Technology, Technical University of Madrid, Campus Montegancedo, 28223 Madrid, Spain
| | - A E Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, Universitetskaya, 1, Innopolis, Republic of Tatarstan, 420500, Russia
- Saratov State Medical University, Bolshaya Kazachia st., 112, Saratov, 410012, Russia
| |
Collapse
|
33
|
Winkler M, Sawicki J, Omelchenko I, Zakharova A, Anishchenko V, Schöll E. Relay synchronization in multiplex networks of discrete maps. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/126/50004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Majhi S, Bera BK, Ghosh D, Perc M. Chimeras at the interface of physics and life sciences: Reply to comments on "Chimera states in neuronal networks: A review". Phys Life Rev 2019; 28:142-147. [PMID: 31147278 DOI: 10.1016/j.plrev.2019.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India; Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India.
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; Complexity Science Hub Vienna, Josefstädterstraße 39, A-1080 Vienna, Austria.
| |
Collapse
|
35
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera states in coupled logistic maps with additional weak nonlocal topology. CHAOS (WOODBURY, N.Y.) 2019; 29:053125. [PMID: 31154761 DOI: 10.1063/1.5084301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/01/2019] [Indexed: 06/09/2023]
Abstract
We demonstrate the occurrence of coexisting domains of partially coherent and incoherent patterns or simply known as chimera states in a network of globally coupled logistic maps upon addition of weak nonlocal topology. We find that the chimera states survive even after we disconnect nonlocal connections of some of the nodes in the network. Also, we show that the chimera states exist when we introduce symmetric gaps in the nonlocal coupling between predetermined nodes. We ascertain our results, for the existence of chimera states, by carrying out the recurrence quantification analysis and by computing the strength of incoherence. We extend our analysis for the case of small-world networks of coupled logistic maps and found the emergence of chimeralike states under the influence of weak nonlocal topology.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H.H. The Rajah's College, Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H.H. The Rajah's College, Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
36
|
Bukh AV, Schöll E, Anishchenko VS. Synchronization of spiral wave patterns in two-layer 2D lattices of nonlocally coupled discrete oscillators. CHAOS (WOODBURY, N.Y.) 2019; 29:053105. [PMID: 31154795 DOI: 10.1063/1.5092352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
The paper describes the effects of mutual and external synchronization of spiral wave structures in two coupled two-dimensional lattices of coupled discrete-time oscillators. Each lattice is given by a 2D N×N network of nonlocally coupled Nekorkin maps which model neuronal activity. We show numerically that spiral wave structures, including spiral wave chimeras, can be synchronized and establish the mechanism of the synchronization scenario. Our numerical studies indicate that when the coupling strength between the lattices is sufficiently weak, only a certain part of oscillators of the interacting networks is imperfectly synchronized, while the other part demonstrates a partially synchronous behavior. If the spatiotemporal patterns in the lattices do not include incoherent cores, imperfect synchronization is realized for most oscillators above a certain value of the coupling strength. In the regime of spiral wave chimeras, the imperfect synchronization of all oscillators cannot be achieved even for sufficiently large values of the coupling strength.
Collapse
Affiliation(s)
- A V Bukh
- Department of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| | - E Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, Berlin 10623, Germany
| | - V S Anishchenko
- Department of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| |
Collapse
|
37
|
Bera BK, Rakshit S, Ghosh D, Kurths J. Spike chimera states and firing regularities in neuronal hypernetworks. CHAOS (WOODBURY, N.Y.) 2019; 29:053115. [PMID: 31154769 DOI: 10.1063/1.5088833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A complex spatiotemporal pattern with coexisting coherent and incoherent domains in a network of identically coupled oscillators is known as a chimera state. Here, we report the emergence and existence of a novel type of nonstationary chimera pattern in a network of identically coupled Hindmarsh-Rose neuronal oscillators in the presence of synaptic couplings. The development of brain function is mainly dependent on the interneuronal communications via bidirectional electrical gap junctions and unidirectional chemical synapses. In our study, we first consider a network of nonlocally coupled neurons where the interactions occur through chemical synapses. We uncover a new type of spatiotemporal pattern, which we call "spike chimera" induced by the desynchronized spikes of the coupled neurons with the coherent quiescent state. Thereafter, imperfect traveling chimera states emerge in a neuronal hypernetwork (which is characterized by the simultaneous presence of electrical and chemical synapses). Using suitable characterizations, such as local order parameter, strength of incoherence, and velocity profile, the existence of several dynamical states together with chimera states is identified in a wide range of parameter space. We also investigate the robustness of these nonstationary chimera states together with incoherent, coherent, and resting states with respect to initial conditions by using the basin stability measurement. Finally, we extend our study for the effect of firing regularity in the observed states. Interestingly, we find that the coherent motion of the neuronal network promotes the entire system to regular firing.
Collapse
Affiliation(s)
- Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
| |
Collapse
|
38
|
Rybalova EV, Vadivasova TE, Strelkova GI, Anishchenko VS, Zakharova AS. Forced synchronization of a multilayer heterogeneous network of chaotic maps in the chimera state mode. CHAOS (WOODBURY, N.Y.) 2019; 29:033134. [PMID: 30927837 DOI: 10.1063/1.5090184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
We study numerically forced synchronization of a heterogeneous multilayer network in the regime of a complex spatiotemporal pattern. Retranslating the master chimera structure in a driving layer along subsequent layers is considered, and the peculiarities of forced synchronization are studied depending on the nature and degree of heterogeneity of the network, as well as on the degree of asymmetry of the inter-layer coupling. We also analyze the possibility of synchronizing all the network layers with a given accuracy when the coupling parameters are varied.
Collapse
Affiliation(s)
- E V Rybalova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - G I Strelkova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - V S Anishchenko
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A S Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
39
|
Majhi S, Ghosh D, Kurths J. Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys Rev E 2019; 99:012308. [PMID: 30780214 DOI: 10.1103/physreve.99.012308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Different aspects of synchronization emerging in networks of coupled oscillators have been examined prominently in the last decades. Nevertheless, little attention has been paid on the emergence of this imperative collective phenomenon in networks displaying temporal changes in the connectivity patterns. However, there are numerous practical examples where interactions are present only at certain points of time owing to physical proximity. In this work, we concentrate on exploring the emergence of interlayer and intralayer synchronization states in a multiplex dynamical network comprising of layers having mobile nodes performing two-dimensional lattice random walk. We thoroughly illustrate the impacts of the network parameters, in particular, the vision range ϕ and the step size u together with the inter- and intralayer coupling strengths ε and k on these synchronous states arising in coupled Rössler systems. The presented numerical results are very well validated by analytically derived necessary conditions for the emergence and stability of the synchronous states. Furthermore, the robustness of the states of synchrony is studied under both structural and dynamical perturbations. We find interesting results on interlayer synchronization for a continuous removal of the interlayer links as well as for progressively created static nodes. We demonstrate that the mobility parameters responsible for intralayer movement of the nodes can retrieve interlayer synchrony under such structural perturbations. For further analysis of survivability of interlayer synchrony against dynamical perturbations, we proceed through the investigation of single-node basin stability, where again the intralayer mobility properties have noticeable impacts. We also discuss the scenarios related mainly to effects of the mobility parameters in cases of varying lattice size and percolation of the whole network.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany.,Saratov State University, Saratov, Russia
| |
Collapse
|
40
|
Mikhaylenko M, Ramlow L, Jalan S, Zakharova A. Weak multiplexing in neural networks: Switching between chimera and solitary states. CHAOS (WOODBURY, N.Y.) 2019; 29:023122. [PMID: 30823738 DOI: 10.1063/1.5057418] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
We investigate spatio-temporal patterns occurring in a two-layer multiplex network of oscillatory FitzHugh-Nagumo neurons, where each layer is represented by a nonlocally coupled ring. We show that weak multiplexing, i.e., when the coupling between the layers is smaller than that within the layers, can have a significant impact on the dynamics of the neural network. We develop control strategies based on weak multiplexing and demonstrate how the desired state in one layer can be achieved without manipulating its parameters, but only by adjusting the other layer. We find that for coupling range mismatch, weak multiplexing leads to the appearance of chimera states with different shapes of the mean velocity profile for parameter ranges where they do not exist in isolation. Moreover, we show that introducing a coupling strength mismatch between the layers can suppress chimera states with one incoherent domain (one-headed chimeras) and induce various other regimes such as in-phase synchronization or two-headed chimeras. Interestingly, small intra-layer coupling strength mismatch allows to achieve solitary states throughout the whole network.
Collapse
Affiliation(s)
- Maria Mikhaylenko
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, 9 Lomonosova Str., Saint Petersburg 197101, Russian Federation
| | - Lukas Ramlow
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623, Germany
| | - Sarika Jalan
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, Indore 453552, India
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, Berlin 10623, Germany
| |
Collapse
|
41
|
Kundu S, Bera BK, Ghosh D, Lakshmanan M. Chimera patterns in three-dimensional locally coupled systems. Phys Rev E 2019; 99:022204. [PMID: 30934225 DOI: 10.1103/physreve.99.022204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The coexistence of coherent and incoherent domains, namely the appearance of chimera states, has been studied extensively in many contexts of science and technology since the past decade, though the previous studies are mostly built on the framework of one-dimensional and two-dimensional interaction topologies. Recently, the emergence of such fascinating phenomena has been studied in a three-dimensional (3D) grid formation while considering only the nonlocal interaction. Here we study the emergence and existence of chimera patterns in a three-dimensional network of coupled Stuart-Landau limit-cycle oscillators and Hindmarsh-Rose neuronal oscillators with local (nearest-neighbor) interaction topology. The emergence of different types of spatiotemporal chimera patterns is investigated by taking two distinct nonlinear interaction functions. We provide appropriate analytical explanations in the 3D grid of the network formation and the corresponding numerical justifications are given. We extend our analysis on the basis of the Ott-Antonsen reduction approach in the case of Stuart-Landau oscillators containing infinite numbers of oscillators. Particularly, in the Hindmarsh-Rose neuronal network the existence of nonstationary chimera states is characterized by an instantaneous strength of incoherence and an instantaneous local order parameter. Besides, the condition for achieving exact neuronal synchrony is obtained analytically through a linear stability analysis. The different types of collective dynamics together with chimera states are mapped over a wide range of various parameter spaces.
Collapse
Affiliation(s)
- Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700108, India
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700108, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620024, India
| |
Collapse
|
42
|
Majhi S, Kapitaniak T, Ghosh D. Solitary states in multiplex networks owing to competing interactions. CHAOS (WOODBURY, N.Y.) 2019; 29:013108. [PMID: 30709135 DOI: 10.1063/1.5061819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
Recent researches in network science demonstrate the coexistence of different types of interactions among the individuals within the same system. A wide range of situations appear in ecological and neuronal systems that incorporate positive and negative interactions. Also, there are numerous examples of systems that are best represented by the multiplex configuration. The present article investigates a possible scenario for the emergence of a newly observed remarkable phenomenon named as solitary state in coupled dynamical units in which one or a few units split off and behave differently from the other units. For this, we consider dynamical systems connected through a multiplex architecture in the presence of both positive and negative couplings. We explore our findings through analysis of the paradigmatic FitzHugh-Nagumo system in both equilibrium and periodic regimes on the top of a multiplex network having positive inter-layer and negative intra-layer interactions. We further substantiate our proposition using a periodic Lorenz system with the same scheme and show that an opposite scheme of competitive interactions may also work for the Lorenz system in the chaotic regime.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
43
|
Maslennikov OV, Nekorkin VI. Hierarchical transitions in multiplex adaptive networks of oscillatory units. CHAOS (WOODBURY, N.Y.) 2018; 28:121101. [PMID: 30599540 DOI: 10.1063/1.5077075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
In this work, we consider two-layer multiplex networks of coupled Stuart-Landau oscillators. The first layer contains oscillators with amplitude heterogeneity and all-to-all adaptive links, while the second layer contains identical oscillators all-to-all coupled by links with constant weights. The links between different layers are adaptive and organized in a one-to-one manner. We study the evolution of one-layer and two-layer networks depending on intra- and interlayer coupling strengths and show hierarchical transitions between oscillatory and quenched regimes.
Collapse
Affiliation(s)
- Oleg V Maslennikov
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
44
|
Majhi S, Bera BK, Ghosh D, Perc M. Chimera states in neuronal networks: A review. Phys Life Rev 2018; 28:100-121. [PMID: 30236492 DOI: 10.1016/j.plrev.2018.09.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
Neuronal networks, similar to many other complex systems, self-organize into fascinating emergent states that are not only visually compelling, but also vital for the proper functioning of the brain. Synchronous spatiotemporal patterns, for example, play an important role in neuronal communication and plasticity, and in various cognitive processes. Recent research has shown that the coexistence of coherent and incoherent states, known as chimera states or simply chimeras, is particularly important and characteristic for neuronal systems. Chimeras have also been linked to the Parkinson's disease, epileptic seizures, and even to schizophrenia. The emergence of this unique collective behavior is due to diverse factors that characterize neuronal dynamics and the functioning of the brain in general, including neural bumps and unihemispheric slow-wave sleep in some aquatic mammals. Since their discovery, chimera states have attracted ample attention of researchers that work at the interface of physics and life sciences. We here review contemporary research dedicated to chimeras in neuronal networks, focusing on the relevance of different synaptic connections, and on the effects of different network structures and coupling setups. We also cover the emergence of different types of chimera states, we highlight their relevance in other related physical and biological systems, and we outline promising research directions for the future, including possibilities for experimental verification.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India.
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, SI-2000 Maribor, Slovenia; School of Electronic and Information Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
45
|
Kasatkin DV, Nekorkin VI. Synchronization of chimera states in a multiplex system of phase oscillators with adaptive couplings. CHAOS (WOODBURY, N.Y.) 2018; 28:093115. [PMID: 30278636 DOI: 10.1063/1.5031681] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Abstract
We study the interaction of chimera states in multiplex two-layer systems, where each layer represents a network of interacting phase oscillators with adaptive couplings. A feature of this study is the consideration of synchronization processes for a wide range of chimeras with essentially different properties, which are achieved due to the use of different types of coupling adaptation within isolated layers. We study the effect of forced synchronization of chimera states under unidirectional action between layers. This process is accompanied not only by changes in the frequency characteristics of the oscillators, but also by the transformation of the structure of interactions within the slave layer that become close to the properties of the master layer of the system. We show that synchronization close to identical is possible, even in the case of interaction of chimeras with essentially different structural properties (number and size of coherent clusters) formed by means of a relatively large parameter mismatch between the layers. In the case of mutual action of the layers in chimera states, we found a number of new scenarios of the multiplex system behavior along with those already known, when identical or different chimeras appear in both layers. In particular, we have shown that a fairly weak interlayer coupling can lead to suppression of the chimera state when one or both layers of the system demonstrate an incoherent state. On the contrary, a strong interlayer coupling provides a complete synchronization of the layer dynamics, accompanied by the appearance of multicluster states in the system's layers.
Collapse
Affiliation(s)
- D V Kasatkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| | - V I Nekorkin
- Institute of Applied Physics of RAS, 46 Ul'yanov Street, 603950 Nizhny Novgorod, Russia
| |
Collapse
|
46
|
Andrzejak RG, Ruzzene G, Malvestio I, Schindler K, Schöll E, Zakharova A. Mean field phase synchronization between chimera states. CHAOS (WOODBURY, N.Y.) 2018; 28:091101. [PMID: 30278634 DOI: 10.1063/1.5049750] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
We study two-layer networks of identical phase oscillators. Each individual layer is a ring network for which a non-local intra-layer coupling leads to the formation of a chimera state. The number of oscillators and their natural frequencies is in general different across the layers. We couple the phases of individual oscillators in one layer to the phase of the mean field of the other layer. This coupling from the mean field to individual oscillators is done in both directions. For a sufficient strength of this inter-layer coupling, the phases of the mean fields lock across the two layers. In contrast, both layers continue to exhibit chimera states with no locking between the phases of individual oscillators across layers, and the two mean field amplitudes remain uncorrelated. Hence, the networks' mean fields show phase synchronization which is analogous to the one between low-dimensional chaotic oscillators. The required coupling strength to achieve this mean field phase synchronization increases with the mismatches in the network sizes and the oscillators' natural frequencies.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Giulia Ruzzene
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Irene Malvestio
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Kaspar Schindler
- Department of Neurology, Sleep-Wake-Epilepsy-Center, Inselspital, University Hospital, University Bern, Freiburgstrasse 18, 3010 Bern, Switzerland
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|
47
|
Frolov NS, Maksimenko VA, Makarov VV, Kirsanov DV, Hramov AE, Kurths J. Macroscopic chimeralike behavior in a multiplex network. Phys Rev E 2018; 98:022320. [PMID: 30253535 DOI: 10.1103/physreve.98.022320] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Indexed: 06/08/2023]
Abstract
In this paper we study the dynamics of a multiplex multilayer network, where each layer is composed of identical Kuramoto-Sakaguchi phase oscillators with nonlocal coupling. We focus on a three-layer multiplex network and observe a specific form of multiplex network behavior, the macroscopic chimeralike state. It is decomposed by a splitting of the layers with initially close dynamics into subgroups. The first group consists of two layers performing one type of dynamics, whereas the rest perform the other type, after the introduction of interlayer coupling. Based on an intensive computational analysis, we show that areas of macroscopic chimeralike states are observed close to the critical transition points of intralayer (microscopic) states in the parameter space. We find that this macroscopic chimeralike state is excited at weak and medium interlayer coupling strength, wherein the interlayer phase lag here plays an important role, since this is a network parameter which controls macroscopic dynamics and transforms boundaries between intralayer states. The obtained numerical results are validated analytically by considering the multiplex network dynamics using the Ott-Antonsen reduction of the governing network equations.
Collapse
Affiliation(s)
- Nikita S Frolov
- Research and Educational Center "Artificial Intelligence Systems and Neurotechnology," Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| | - Vladimir A Maksimenko
- Research and Educational Center "Artificial Intelligence Systems and Neurotechnology," Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia
| | - Vladimir V Makarov
- Research and Educational Center "Artificial Intelligence Systems and Neurotechnology," Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia
| | - Daniil V Kirsanov
- Research and Educational Center "Artificial Intelligence Systems and Neurotechnology," Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia
| | - Alexander E Hramov
- Research and Educational Center "Artificial Intelligence Systems and Neurotechnology," Yuri Gagarin State Technical University of Saratov, Saratov 410054, Russia
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
- Department of Physics, Humboldt University, 12489 Berlin, Germany
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| |
Collapse
|
48
|
Majhi S, Ghosh D. Alternating chimeras in networks of ephaptically coupled bursting neurons. CHAOS (WOODBURY, N.Y.) 2018; 28:083113. [PMID: 30180636 DOI: 10.1063/1.5022612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The distinctive phenomenon of the chimera state has been explored in neuronal systems under a variety of different network topologies during the last decade. Nevertheless, in all the works, the neurons are presumed to interact with each other directly with the help of synapses only. But, the influence of ephaptic coupling, particularly magnetic flux across the membrane, is mostly unexplored and should essentially be dealt with during the emergence of collective electrical activities and propagation of signals among the neurons in a network. Through this article, we report the development of an emerging dynamical state, namely, the alternating chimera, in a network of identical neuronal systems induced by an external electromagnetic field. Owing to this interaction scenario, the nonlinear neuronal oscillators are coupled indirectly via electromagnetic induction with magnetic flux, through which neurons communicate in spite of the absence of physical connections among them. The evolution of each neuron, here, is described by the three-dimensional Hindmarsh-Rose dynamics. We demonstrate that the presence of such non-locally and globally interacting external environments induces a stationary alternating chimera pattern in the ensemble of neurons, whereas in the local coupling limit, the network exhibits a transient chimera state whenever the local dynamics of the neurons is of the chaotic square-wave bursting type. For periodic square-wave bursting of the neurons, a similar qualitative phenomenon has been witnessed with the exception of the disappearance of cluster states for non-local and global interactions. Besides these observations, we advance our work while providing confirmation of the findings for neuronal ensembles exhibiting plateau bursting dynamics and also put forward the fact that the plateau pattern actually favors the alternating chimera more than others. These results may deliver better interpretations for different aspects of synchronization appearing in a network of neurons through field coupling that also relaxes the prerequisite of synaptic connectivity for realizing the chimera state in neuronal networks.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
49
|
Semenova N, Zakharova A. Weak multiplexing induces coherence resonance. CHAOS (WOODBURY, N.Y.) 2018; 28:051104. [PMID: 29857656 DOI: 10.1063/1.5037584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Using the model of a FitzHugh-Nagumo system in the excitable regime, we study the impact of multiplexing on coherence resonance in a two-layer network. We show that multiplexing allows for the control of the noise-induced dynamics. In particular, we find that multiplexing induces coherence resonance in networks that do not demonstrate this phenomenon in isolation. Examples are provided by deterministic networks and networks where the strength of interaction between the elements is not optimal for coherence resonance. In both cases, we show that the control strategy based on multiplexing can be successfully applied even for weak coupling between the layers. Moreover, for the case of deterministic networks, we obtain a counter-intuitive result: the multiplex-induced coherence resonance in the layer which is deterministic in isolation manifests itself even more strongly than that in the noisy layer.
Collapse
Affiliation(s)
- Nadezhda Semenova
- Department of Physics, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
50
|
Kundu S, Majhi S, Bera BK, Ghosh D, Lakshmanan M. Chimera states in two-dimensional networks of locally coupled oscillators. Phys Rev E 2018; 97:022201. [PMID: 29548198 DOI: 10.1103/physreve.97.022201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 06/08/2023]
Abstract
Chimera state is defined as a mixed type of collective state in which synchronized and desynchronized subpopulations of a network of coupled oscillators coexist and the appearance of such anomalous behavior has strong connection to diverse neuronal developments. Most of the previous studies on chimera states are not extensively done in two-dimensional ensembles of coupled oscillators by taking neuronal systems with nonlinear coupling function into account while such ensembles of oscillators are more realistic from a neurobiological point of view. In this paper, we report the emergence and existence of chimera states by considering locally coupled two-dimensional networks of identical oscillators where each node is interacting through nonlinear coupling function. This is in contrast with the existence of chimera states in two-dimensional nonlocally coupled oscillators with rectangular kernel in the coupling function. We find that the presence of nonlinearity in the coupling function plays a key role to produce chimera states in two-dimensional locally coupled oscillators. We analytically verify explicitly in the case of a network of coupled Stuart-Landau oscillators in two dimensions that the obtained results using Ott-Antonsen approach and our analytical finding very well matches with the numerical results. Next, we consider another type of important nonlinear coupling function which exists in neuronal systems, namely chemical synaptic function, through which the nearest-neighbor (locally coupled) neurons interact with each other. It is shown that such synaptic interacting function promotes the emergence of chimera states in two-dimensional lattices of locally coupled neuronal oscillators. In numerical simulations, we consider two paradigmatic neuronal oscillators, namely Hindmarsh-Rose neuron model and Rulkov map for each node which exhibit bursting dynamics. By associating various spatiotemporal behaviors and snapshots at particular times, we study the chimera states in detail over a large range of coupling parameter. The existence of chimera states is confirmed by instantaneous angular frequency, order parameter and strength of incoherence.
Collapse
Affiliation(s)
- Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata-700108, India
| | - Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata-700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata-700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata-700108, India
| | - M Lakshmanan
- Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli-620024, India
| |
Collapse
|