1
|
SureshKumar H, Iyer SS, Banerjee A, Poduval P, Lyman E, Srivastava A. Signatures of glassy dynamics in highly ordered lipid bilayers with emergence of soft dynamic channels. J Chem Phys 2025; 162:145103. [PMID: 40197587 DOI: 10.1063/5.0250190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 03/15/2025] [Indexed: 04/10/2025] Open
Abstract
Over the last few decades, extensive investigations on spatial and dynamic heterogeneity have been performed on carefully reconstituted biological lipid membranes. Characterizing the molecular features in heterogeneous membranes is extremely challenging due to the experimentally inaccessible time- and length-scales of these emergent systems. In this context, simulations can provide important insights into molecular-level interactions leading to membrane heterogeneity and associated functions. To that end, we use the non-affine displacement (NAD) framework (a concept borrowed from the physics of granular materials) to faithfully capture molecular-scale local membrane order in simulated heterogeneous bilayers. In our latest application of NAD, we investigate the temperature-dependent spatial and temporal organization on microsecond trajectories of liquid-ordered bilayer systems at all-atom resolution (DPPC/DOPC/CHOL: 0.55:0.15:0.30; 40 × 40 nm2 with a total of 5600 lipids and 2 × 106 atoms). Lateral organization in these large bilayer patches shows noticeable dynamic heterogeneity despite their liquid-ordered nature. Moreover, our NAD analyses reveal soft fluid channels within the tightly packed membrane reminiscent of the classical two-component Kob-Andersen glass-forming binary mixture. Hence, we characterized these systems using classical glass physics markers for dynamic heterogeneities such as overlap, four-point susceptibility, Van Hove, and intermediate scattering functions to quantify the multiple time scales underlying the lipid dynamics. Our analyses reveal that highly ordered membrane systems can have glass-like dynamics with distinct soft fluid channels inside them. Biologically, these dynamic channels could act as conduits for facilitating molecular encounters for biological functions even in highly ordered phases such as lipid nanodomains and rafts.
Collapse
Affiliation(s)
- Harini SureshKumar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, KA 560012, India
| | - Sahithya S Iyer
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA
| | - Atreyee Banerjee
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- FRIAS, University of Freiburg, Albertstraße 19, 79104 Freiburg, Germany
| | - Prathyush Poduval
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Edward Lyman
- Department of Physics and Astronomy, and Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, KA 560012, India
| |
Collapse
|
2
|
Tanaka H. Structural Origin of Dynamic Heterogeneity in Supercooled Liquids. J Phys Chem B 2025; 129:789-813. [PMID: 39793974 PMCID: PMC11770765 DOI: 10.1021/acs.jpcb.4c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/13/2025]
Abstract
As a liquid is supercooled toward the glass transition point, its dynamics slow significantly, provided that crystallization is avoided. With increased supercooling, the particle dynamics become more spatially heterogeneous, a phenomenon known as dynamic heterogeneity. Since its discovery, this characteristic of metastable supercooled liquids has garnered considerable attention in glass science. However, the precise physical origins of dynamic heterogeneity remain elusive and widely debated. In this perspective, we examine the relationship between dynamic heterogeneity and structural order, based on numerical simulations of fragile liquids with isotropic potentials and strong liquids with directional interactions. We demonstrate that angular ordering, arising from many-body steric interactions, plays a crucial role in the slow dynamics and dynamic cooperativity of fragile liquids. Additionally, we explore how the growth of static order correlates with slower dynamics. In fragile liquids exhibiting super-Arrhenius behavior, the spatial extent of regions with high angular order grows upon cooling, and the sequential propagation of particle rearrangements within these ordered regions increases the activation energy for particle motion. In contrast, strong liquids with spatially constrained local ordering display a distinct "two-state" dynamic characteristic, marked by a transition between two Arrhenius-type behaviors. We argue that dynamic heterogeneity, irrespective of a liquid's fragility, arises from underlying structural order, with its spatial extent determined by static ordering. This perspective aims to deepen our understanding of the interplay between structural and dynamic properties in metastable supercooled liquids.
Collapse
Affiliation(s)
- Hajime Tanaka
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Institute
of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
3
|
Sharma A, Liu C, Ozawa M. Selecting relevant structural features for glassy dynamics by information imbalance. J Chem Phys 2024; 161:184506. [PMID: 39530372 DOI: 10.1063/5.0235084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
We numerically investigate the identification of relevant structural features that contribute to the dynamical heterogeneity in a model glass-forming liquid. By employing the recently proposed information imbalance technique, we select these features from a range of physically motivated descriptors. This selection process is performed in a supervised manner (using both dynamical and structural data) and an unsupervised manner (using only structural data). We then apply the selected features to predict future dynamics using a machine learning technique. One of the advantages of the information imbalance technique is that it does not assume any model a priori, i.e., it is a non-parametric method. Finally, we discuss the potential applications of this approach in identifying the dominant mechanisms governing the glassy slow dynamics.
Collapse
Affiliation(s)
- Anand Sharma
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France
| | - Chen Liu
- Innovation and Research Division, Ge-Room, Inc., 93160 Noisy le Grand, France
| | - Misaki Ozawa
- CNRS, LIPhy, Univ. Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
4
|
Furukawa A. Transverse Viscous Transport in Classical Solid States. PHYSICAL REVIEW LETTERS 2021; 127:245901. [PMID: 34951782 DOI: 10.1103/physrevlett.127.245901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 06/14/2023]
Abstract
The transverse velocity time correlation function C[over ˜]_{T}(k,ω) with k and ω being the wave number and the frequency, respectively, is a fundamental quantity in determining the transverse mechanical and transport properties of materials. In ordinary liquids, a nonzero value of C[over ˜]_{T}(k,0) is inevitably linked to viscous material flows. Even in solids where significant material flows are precluded due to almost frozen positional degrees of freedom, our molecular dynamics simulations reveal that C[over ˜]_{T}(k,0) takes a nonzero value, whereby the time integration of the velocity field shows definite diffusive behavior with diffusivity C[over ˜]_{T}(k,0)/3. This behavior is attributed to viscous transport accompanying a small random convection of the velocity field (the inertia effect), and the resultant viscosity is measurable in the Eulerian description: the constituent particles that substantially carry momenta fluctuate slightly around their reference positions. In the Eulerian description, the velocity field is explicitly associated with such fluctuating instantaneous particle positions, whereas in the Lagrangian description, this is not the case. The present study poses a fundamental problem for continuum mechanics: reconciling liquid and solid descriptions in the limit of the infinite structural relaxation time.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Lemaître A. Stress hyperuniformity and transient oscillatory-exponential correlation decay as signatures of strength vs fragility in glasses. J Chem Phys 2021; 155:194501. [PMID: 34800950 DOI: 10.1063/5.0065613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We examine and compare the local stress autocorrelation in the inherent states of a fragile and a strong glass: the Kob-Andersen (KA) binary mixture and the Beest-Kramer-Santen model of silica. For both systems, local (domain-averaged) stress fluctuations asymptotically reach the normal inverse-volume decay in the large domain limit; accordingly, the real-space stress autocorrelation presents long-range power law tails. However, in the case of silica, local stress fluctuations display a high degree of hyperuniformity, i.e., their asymptotic (normal) decay is disproportionately smaller than their bond level amplitude. This property causes the asymptotic power law tails of the real-space stress autocorrelation to be swamped, up to very large distances (several nanometers), by an intermediate oscillatory-exponential decay regime. Similar contributions exist in the KA stress autocorrelation, but they never can be considered as dominating the power law decay and fully disappear when stress is coarse-grained beyond one interatomic distance. Our observations document that the relevance of power-law stress correlation may constitute a key discriminating feature between strong and fragile glasses. Meanwhile, they highlight that the notion of local stress in atomistic systems involves by necessity a choice of observation (coarse-graining) scale, the relevant value of which depends, in principle, on both the model and the phenomenon studied.
Collapse
Affiliation(s)
- Anaël Lemaître
- Navier, Ecole des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| |
Collapse
|
6
|
Furukawa A. Negative density-dependence of the structural relaxation time of liquid silica: insights from a comparative molecular dynamics study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:025101. [PMID: 33055375 DOI: 10.1088/1361-648x/abb2f4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In many tetrahedral network-forming liquids, structural relaxation is anomalously accelerated by compression over relatively low pressure ranges. Here, for silica, we study this problem through comparative molecular dynamics simulations using two different models. Under compression, the network structures are compacted by slight tuning of the intertetrahedral bond angles while nearly preserving the unit tetrahedral structure. The consequent structural changes are remarkable for length scales larger than the nearest neighbor ion-pair distances. Accompanying with such structural changes, the interactions of the nearest Si-O pairs remain almost unchanged, whereas those of other ion pairs are, on average, strengthened by the degree of compression. In particular, the enhancement of the net Si-O interactions at the next nearest neighbor distance, which assist an ion in escaping from the potential well, reduces the activation energy, leading to a significant acceleration of structural relaxation. The results of our comparative molecular dynamics simulations are compatible with the scenario proposed by Angell, and further indicate that the structural relaxation dynamics cannot be uniquely determined by the configurations but strongly depends on the details of the coupling between the structure and the interaction.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Role of hydrodynamics in liquid-liquid transition of a single-component substance. Proc Natl Acad Sci U S A 2020; 117:4471-4479. [PMID: 32051252 DOI: 10.1073/pnas.1911544117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Liquid-liquid transition (LLT) is an unconventional transition between two liquid states in a single-component system. This phenomenon has recently attracted considerable attention not only because of its counterintuitive nature but also since it is crucial for our fundamental understanding of the liquid state. However, its physical understanding has remained elusive, particularly of the critical dynamics and phase-ordering kinetics. So far, the hydrodynamic degree of freedom, which is the most intrinsic kinetic feature of liquids, has been neglected in its theoretical description. Here we develop a Ginzburg-Landau-type kinetic theory of LLT taking it into account, based on a two-order parameter model. We examine slow critical fluctuations of the nonconserved order parameter coupled to the hydrodynamic degree of freedom in equilibrium. We also study the nonequilibrium process of LLT. We show both analytically and numerically that domain growth becomes faster (slower), depending upon the density decrease (increase) upon the transition, as a consequence of hydrodynamic flow induced by the density change. The coupling between nonconserved order parameter and hydrodynamic interaction results in anomalous domain growth in both nucleation-growth-type and spinodal-decomposition-type LLT. Our study highlights the characteristic features of hydrodynamic fluctuations and phase ordering during LLT under complex interplay among conserved and nonconserved order parameters and the hydrodynamic transport intrinsic to the liquid state.
Collapse
|
8
|
Furukawa A. Growing length scale accompanying vitrification: A perspective based on nonsingular density fluctuations. Phys Rev E 2018; 97:022615. [PMID: 29548253 DOI: 10.1103/physreve.97.022615] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 11/07/2022]
Abstract
A model for describing growing length scale accompanying the vitrification is introduced, in which we assume that in a subsystem whose density is above a certain threshold value, ρ_{c}, due to steric constraints, particle rearrangements are highly suppressed for a sufficiently long time period (∼structural relaxation time). We regard such a subsystem as a glassy cluster. With this assumption and without introducing any complicated thermodynamic arguments, we predict that with compression (increasing average density ρ) at a fixed temperature T in supercooled states, the characteristic length of the clusters, ξ, diverges as ξ∼(ρ_{c}-ρ)^{-2/d}, where d is the spatial dimensionality. This ξ measures the average persistence length of the steric constraints in blocking the rearrangement motions and is determined by the subsystem density. Additionally, with decreasing T at a fixed ρ, the length scale diverges in the same manner as ξ∼(T-T_{c})^{-2/d}, for which ρ is identical to ρ_{c} at T=T_{c}. The exponent describing the diverging length scale is the same as the one predicted by some theoretical models and indeed has been observed in some simulations and experiments. However, the basic mechanism for this divergence is different; that is, we do not invoke thermodynamic anomalies associated with the thermodynamic phase transition as the origin of the growing length scale. We further present arguements for the cooperative properties of the structural relaxation based on the clusters.
Collapse
Affiliation(s)
- Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
9
|
Nishizawa K, Fujiwara K, Ikenaga M, Nakajo N, Yanagisawa M, Mizuno D. Universal glass-forming behavior of in vitro and living cytoplasm. Sci Rep 2017; 7:15143. [PMID: 29123156 PMCID: PMC5680342 DOI: 10.1038/s41598-017-14883-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/18/2017] [Indexed: 11/30/2022] Open
Abstract
Physiological processes in cells are performed efficiently without getting jammed although cytoplasm is highly crowded with various macromolecules. Elucidating the physical machinery is challenging because the interior of a cell is so complex and driven far from equilibrium by metabolic activities. Here, we studied the mechanics of in vitro and living cytoplasm using the particle-tracking and manipulation technique. The molecular crowding effect on cytoplasmic mechanics was selectively studied by preparing simple in vitro models of cytoplasm from which both the metabolism and cytoskeletons were removed. We obtained direct evidence of the cytoplasmic glass transition; a dramatic increase in viscosity upon crowding quantitatively conformed to the super-Arrhenius formula, which is typical for fragile colloidal suspensions close to jamming. Furthermore, the glass-forming behaviors were found to be universally conserved in all the cytoplasm samples that originated from different species and developmental stages; they showed the same tendency for diverging at the macromolecule concentrations relevant for living cells. Notably, such fragile behavior disappeared in metabolically active living cells whose viscosity showed a genuine Arrhenius increase as in typical strong glass formers. Being actively driven by metabolism, the living cytoplasm forms glass that is fundamentally different from that of its non-living counterpart.
Collapse
Affiliation(s)
- Kenji Nishizawa
- Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, Yokohama, 223-8522, Japan
| | - Masahiro Ikenaga
- Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Nobushige Nakajo
- Department of Biology, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miho Yanagisawa
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan
| | - Daisuke Mizuno
- Department of Physics, Graduate School of Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|