1
|
Majhi S, Ghosh S, Pal PK, Pal S, Pal TK, Ghosh D, Završnik J, Perc M. Patterns of neuronal synchrony in higher-order networks. Phys Life Rev 2025; 52:144-170. [PMID: 39753012 DOI: 10.1016/j.plrev.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 03/01/2025]
Abstract
Synchrony in neuronal networks is crucial for cognitive functions, motor coordination, and various neurological disorders. While traditional research has focused on pairwise interactions between neurons, recent studies highlight the importance of higher-order interactions involving multiple neurons. Both types of interactions lead to complex synchronous spatiotemporal patterns, including the fascinating phenomenon of chimera states, where synchronized and desynchronized neuronal activity coexist. These patterns are thought to resemble pathological states such as schizophrenia and Parkinson's disease, and their emergence is influenced by neuronal dynamics as well as by synaptic connections and network structure. This review integrates the current understanding of how pairwise and higher-order interactions contribute to different synchrony patterns in neuronal networks, providing a comprehensive overview of their role in shaping network dynamics. We explore a broad range of connectivity mechanisms that drive diverse neuronal synchrony patterns, from pairwise long-range temporal interactions and time-delayed coupling to adaptive communication and higher-order, time-varying connections. We cover key neuronal models, including the Hindmarsh-Rose model, the stochastic Hodgkin-Huxley model, the Sherman model, and the photosensitive FitzHugh-Nagumo model. By investigating the emergence and stability of various synchronous states, this review highlights their significance in neurological systems and indicates directions for future research in this rapidly evolving field.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics Department, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Samali Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Palash Kumar Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Suvam Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Tapas Kumar Pal
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Jernej Završnik
- Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Science and Research Center Koper, Garibaldijeva ulica 1, 6000 Koper, Slovenia
| | - Matjaž Perc
- Community Healthcare Center Dr. Adolf Drolc Maribor, Ulica talcev 9, 2000 Maribor, Slovenia; Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia; Complexity Science Hub, Metternichgasse 8, 1080 Vienna, Austria; Department of Physics, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Dayani Z, Parastesh F, Nazarimehr F, Rajagopal K, Jafari S, Schöll E, Kurths J. Optimal time-varying coupling function can enhance synchronization in complex networks. CHAOS (WOODBURY, N.Y.) 2023; 33:033139. [PMID: 37003805 DOI: 10.1063/5.0142891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/01/2023] [Indexed: 06/19/2023]
Abstract
In this paper, we propose a time-varying coupling function that results in enhanced synchronization in complex networks of oscillators. The stability of synchronization can be analyzed by applying the master stability approach, which considers the largest Lyapunov exponent of the linearized variational equations as a function of the network eigenvalues as the master stability function. Here, it is assumed that the oscillators have diffusive single-variable coupling. All possible single-variable couplings are studied for each time interval, and the one with the smallest local Lyapunov exponent is selected. The obtained coupling function leads to a decrease in the critical coupling parameter, resulting in enhanced synchronization. Moreover, synchronization is achieved faster, and its robustness is increased. For illustration, the optimum coupling function is found for three networks of chaotic Rössler, Chen, and Chua systems, revealing enhanced synchronization.
Collapse
Affiliation(s)
- Zahra Dayani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Fahimeh Nazarimehr
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Karthikeyan Rajagopal
- Centre for Nonlinear Systems, Chennai Institute of Technology, Chennai 600069, India
| | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran 159163-4311, Iran
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, 14473 Potsdam, Germany
| |
Collapse
|
3
|
Parastesh F, Rajagopal K, Jafari S, Perc M, Schöll E. Blinking coupling enhances network synchronization. Phys Rev E 2022; 105:054304. [PMID: 35706266 DOI: 10.1103/physreve.105.054304] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
This paper studies the synchronization of a network with linear diffusive coupling, which blinks between the variables periodically. The synchronization of the blinking network in the case of sufficiently fast blinking is analyzed by showing that the stability of the synchronous solution depends only on the averaged coupling and not on the instantaneous coupling. To illustrate the effect of the blinking period on the network synchronization, the Hindmarsh-Rose model is used as the dynamics of nodes. The synchronization is investigated by considering constant single-variable coupling, averaged coupling, and blinking coupling through a linear stability analysis. It is observed that by decreasing the blinking period, the required coupling strength for synchrony is reduced. It equals that of the averaged coupling model times the number of variables. However, in the averaged coupling, all variables participate in the coupling, while in the blinking model only one variable is coupled at any time. Therefore, the blinking coupling leads to an enhanced synchronization in comparison with the single-variable coupling. Numerical simulations of the average synchronization error of the network confirm the results obtained from the linear stability analysis.
Collapse
Affiliation(s)
- Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | | | - Sajad Jafari
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
- Health Technology Research Institute, Amirkabir University of Technology (Tehran Polytechnic), Iran
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, 2000 Maribor, Slovenia
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404332, Taiwan
- Complexity Science Hub Vienna, Josefstädterstraße 39, 1080 Vienna, Austria
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, D-10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, D-10115 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A 31, D-14473 Potsdam, Germany
| |
Collapse
|
4
|
Majhi S, Rakshit S, Ghosh D. Oscillation suppression and chimera states in time-varying networks. CHAOS (WOODBURY, N.Y.) 2022; 32:042101. [PMID: 35489845 DOI: 10.1063/5.0087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Complex network theory has offered a powerful platform for the study of several natural dynamic scenarios, based on the synergy between the interaction topology and the dynamics of its constituents. With research in network theory being developed so fast, it has become extremely necessary to move from simple network topologies to more sophisticated and realistic descriptions of the connectivity patterns. In this context, there is a significant amount of recent works that have emerged with enormous evidence establishing the time-varying nature of the connections among the constituents in a large number of physical, biological, and social systems. The recent review article by Ghosh et al. [Phys. Rep. 949, 1-63 (2022)] demonstrates the significance of the analysis of collective dynamics arising in temporal networks. Specifically, the authors put forward a detailed excerpt of results on the origin and stability of synchronization in time-varying networked systems. However, among the complex collective dynamical behaviors, the study of the phenomenon of oscillation suppression and that of other diverse aspects of synchronization are also considered to be central to our perception of the dynamical processes over networks. Through this review, we discuss the principal findings from the research studies dedicated to the exploration of the two collective states, namely, oscillation suppression and chimera on top of time-varying networks of both static and mobile nodes. We delineate how temporality in interactions can suppress oscillation and induce chimeric patterns in networked dynamical systems, from effective analytical approaches to computational aspects, which is described while addressing these two phenomena. We further sketch promising directions for future research on these emerging collective behaviors in time-varying networks.
Collapse
Affiliation(s)
- Soumen Majhi
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
5
|
Anwar MS, Rakshit S, Ghosh D, Bollt EM. Stability analysis of intralayer synchronization in time-varying multilayer networks with generic coupling functions. Phys Rev E 2022; 105:024303. [PMID: 35291066 DOI: 10.1103/physreve.105.024303] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
The stability analysis of synchronization patterns on generalized network structures is of immense importance nowadays. In this article, we scrutinize the stability of intralayer synchronous state in temporal multilayer hypernetworks, where each dynamic units in a layer communicate with others through various independent time-varying connection mechanisms. Here, dynamical units within and between layers may be interconnected through arbitrary generic coupling functions. We show that intralayer synchronous state exists as an invariant solution. Using fast-switching stability criteria, we derive the condition for stable coherent state in terms of associated time-averaged network structure, and in some instances we are able to separate the transverse subspace optimally. Using simultaneous block diagonalization of coupling matrices, we derive the synchronization stability condition without considering time-averaged network structure. Finally, we verify our analytically derived results through a series of numerical simulations on synthetic and real-world neuronal networked systems.
Collapse
Affiliation(s)
- Md Sayeed Anwar
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Erik M Bollt
- Department of Mathematics, Department of Electrical and Computer Engineering, Department of Physics, Clarkson University, Potsdam, New York 13699, USA
| |
Collapse
|
6
|
Wang Z, Ramamoorthy R, Xi X, Namazi H. Synchronization of the neurons coupled with sequential developing electrical and chemical synapses. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:1877-1890. [PMID: 35135233 DOI: 10.3934/mbe.2022088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is some evidence representing the sequential formation and elimination of electrical and chemical synapses in particular brain regions. Relying on this feature, this paper presents a purely mathematical modeling study on the synchronization among neurons connected by transient electrical synapses transformed to chemical synapses over time. This deletion and development of synapses are considered consecutive. The results represent that the transient synapses lead to burst synchronization of the neurons while the neurons are resting when both synapses exist constantly. The period of the transitions and also the time of presence of electrical synapses to chemical ones are effective on the synchronization. The larger synchronization error is obtained by increasing the transition period and the time of chemical synapses' existence.
Collapse
Affiliation(s)
- Zhen Wang
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123, China
- Shaanxi International Joint Research Center for Applied Technology of Controllable Neutron Source School of Science, Xijing University, Xi'an 710123, China
| | - Ramesh Ramamoorthy
- Centre for Artificial Intelligence, Chennai Institute of technology, Chennai, India
| | - Xiaojian Xi
- Xi'an Key Laboratory of Advanced Photo-electronics Materials and Energy Conversion Device, School of Science, Xijing University, Xi'an 710123, China
| | - Hamidreza Namazi
- School of Engineering, Monash University, Selangor, Malaysia
- College of Engineering and Science, Victoria University, Melbourne, Australia
| |
Collapse
|
7
|
Abstract
Relay synchronization in multi-layer networks implies inter-layer synchronization between two indirectly connected layers through a relay layer. In this work, we study the relay synchronization in a three-layer multiplex network by introducing degree-based weighting mechanisms. The mechanism of within-layer connectivity may be hubs-repelling or hubs-attracting whenever low-degree or high-degree nodes receive strong influence. We adjust the remote layers to hubs-attracting coupling, whereas the relay layer may be unweighted, hubs-repelling, or hubs-attracting network. We establish that relay synchronization is improved when the relay layer is hubs-repelling compared to the other cases. We determine analytically necessary stability conditions of relay synchronization state using the master stability function approach. Finally, we explore the relation between synchronization and the topological property of the relay layer. We find that a higher clustering coefficient hinders synchronizability, and vice versa. We also look into the intra-layer synchronization in the proposed weighted triplex network and establish that intra-layer synchronization occurs in a wider range when relay layer is hubs-attracting.
Collapse
|
8
|
Ning D, Fan Z, Wu X, Han X. Interlayer synchronization of duplex time-delay network with delayed pinning impulses. Neurocomputing 2021. [DOI: 10.1016/j.neucom.2021.04.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Rakshit S, Majhi S, Kurths J, Ghosh D. Neuronal synchronization in long-range time-varying networks. CHAOS (WOODBURY, N.Y.) 2021; 31:073129. [PMID: 34340354 DOI: 10.1063/5.0057276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
We study synchronization in neuronal ensembles subject to long-range electrical gap junctions which are time-varying. As a representative example, we consider Hindmarsh-Rose neurons interacting based upon temporal long-range connections through electrical couplings. In particular, we adopt the connections associated with the direct 1-path network to form a small-world network and follow-up with the corresponding long-range network. Further, the underlying direct small-world network is allowed to temporally change; hence, all long-range connections are also temporal, which makes the model much more realistic from the neurological perspective. This time-varying long-range network is formed by rewiring each link of the underlying 1-path network stochastically with a characteristic rewiring probability pr, and accordingly all indirect k(>1)-path networks become temporal. The critical interaction strength to reach complete neuronal synchrony is much lower when we take up rapidly switching long-range interactions. We employ the master stability function formalism in order to characterize the local stability of the state of synchronization. The analytically derived stability condition for the complete synchrony state agrees well with the numerical results. Our work strengthens the understanding of time-varying long-range interactions in neuronal ensembles.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research - Telegraphenberg A 31, Potsdam 14473, Germany
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
10
|
Yan H, Zhou J, Li W, Lu JA, Fan R. Superdiffusion criteria on duplex networks. CHAOS (WOODBURY, N.Y.) 2021; 31:073108. [PMID: 34340319 DOI: 10.1063/5.0042155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Diffusion processes widely exist in nature. Some recent papers concerning diffusion processes focus their attention on multiplex networks. Superdiffusion, a phenomenon by which diffusion processes converge to equilibrium faster on multiplex networks than on single networks in isolation, may emerge because diffusion can occur both within and across layers. Some studies have shown that the emergence of superdiffusion depends on the topology of multiplex networks if the interlayer diffusion coefficient is large enough. This paper proposes some superdiffusion criteria relating to the Laplacian matrices of the two layers and provides a construction mechanism for generating a superdiffusible two-layered network. The method we proposed can be used to guide the discovery and construction of superdiffusible multiplex networks without calculating the second smallest Laplacian eigenvalues.
Collapse
Affiliation(s)
- Huibiao Yan
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Jin Zhou
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Weiqiang Li
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Jun-An Lu
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
| | - Ruguo Fan
- Economics and Management School, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Pattanayak D, Mishra A, Dana SK, Bairagi N. Bistability in a tri-trophic food chain model: Basin stability perspective. CHAOS (WOODBURY, N.Y.) 2021; 31:073124. [PMID: 34340359 DOI: 10.1063/5.0054347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The most important issue of concern in a food chain is the stability of species and their nature of persistence against system parameter changes. For understanding the stable dynamics and their response against parameter perturbation, the local stability analysis is an insufficient tool. A global stability analysis by the conventional techniques seems to supplement some of the shortcomings, however, it becomes more challenging for multistable ecosystems. Either of the techniques fails to provide a complete description of the complexity in dynamics that may evolve in the system, especially, when there is any transition between the stable states. A tri-trophic resource-consumer-predator food chain model has been revisited here that shows bistability and transition to monostability via a border collision that leads to a state of predator extinction. Although earlier studies have partially revealed the dynamics of such transitions, we would like to present additional and precise information by analyzing the system from the perspective of basin stability. By drawing different bifurcation diagrams against three important parameters, using different initial conditions, we identify the range of parameter values within which the stability of the states persists and changes to various complex dynamics. We emphasize the changes in the geometry of the basins of attraction and get a quantitative estimate of the nature of relative changes in the area of the basins (basin stability) during the transitions. Furthermore, we demonstrate the presence of a down-up control, in addition to the conventional bottom-up and top-down control phenomena in the food chain. The application of basin stability in food networks will go a long way for accurate analysis of their dynamics.
Collapse
Affiliation(s)
- Debarghya Pattanayak
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Arindam Mishra
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| | - Nandadulal Bairagi
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
12
|
Roy M, Poria S, Hens C. Assortativity-induced explosive synchronization in a complex neuronal network. Phys Rev E 2021; 103:062307. [PMID: 34271687 DOI: 10.1103/physreve.103.062307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/25/2021] [Indexed: 11/07/2022]
Abstract
In this study, we consider a scale-free network of nonidentical Chialvo neurons, coupled through electrical synapses. For sufficiently strong coupling, the system undergoes a transition from completely out of phase synchronized to phase synchronized state. The principal focus of this study is to investigate the effect of the degree of assortativity over the synchronization transition process. It is observed that, depending on assortativity, bistability between two asymptotically stable states allows one to develop a hysteresis loop which transforms the phase transition from second order to first order. An expansion in the area of hysteresis loop is noticeable with increasing degree-degree correlation in the network. Our study also reveals that effective frequencies of nodes simultaneously go through a continuous or sudden transition to the synchronized state with the corresponding phases. Further, we examine the robustness of the results under the effect of network size and average degree, as well as diverse frequency setup. Finally, we investigate the dynamical mechanism in the process of generating explosive synchronization. We observe a significant impact of lower degree nodes behind such phenomena: in a positive assortative network the low degree nodes delay the synchronization transition.
Collapse
Affiliation(s)
- Mousumi Roy
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Swarup Poria
- Department of Applied Mathematics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Chittaranjan Hens
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
13
|
Shepelev IA, Muni SS, Schöll E, Strelkova GI. Repulsive inter-layer coupling induces anti-phase synchronization. CHAOS (WOODBURY, N.Y.) 2021; 31:063116. [PMID: 34241296 DOI: 10.1063/5.0054770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 06/13/2023]
Abstract
We present numerical results for the synchronization phenomena in a bilayer network of repulsively coupled 2D lattices of van der Pol oscillators. We consider the cases when the network layers have either different or the same types of intra-layer coupling topology. When the layers are uncoupled, the lattice of van der Pol oscillators with a repulsive interaction typically demonstrates a labyrinth-like pattern, while the lattice with attractively coupled van der Pol oscillators shows a regular spiral wave structure. We reveal for the first time that repulsive inter-layer coupling leads to anti-phase synchronization of spatiotemporal structures for all considered combinations of intra-layer coupling. As a synchronization measure, we use the correlation coefficient between the symmetrical pairs of network nodes, which is always close to -1 in the case of anti-phase synchronization. We also study how the form of synchronous structures depends on the intra-layer coupling strengths when the repulsive inter-layer coupling is varied.
Collapse
Affiliation(s)
- Igor A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Sishu S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Galina I Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
14
|
Bahramian A, Parastesh F, Pham VT, Kapitaniak T, Jafari S, Perc M. Collective behavior in a two-layer neuronal network with time-varying chemical connections that are controlled by a Petri net. CHAOS (WOODBURY, N.Y.) 2021; 31:033138. [PMID: 33810759 DOI: 10.1063/5.0045840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we propose and study a two-layer network composed of a Petri net in the first layer and a ring of coupled Hindmarsh-Rose neurons in the second layer. Petri nets are appropriate platforms not only for describing sequential processes but also for modeling information circulation in complex systems. Networks of neurons, on the other hand, are commonly used to study synchronization and other forms of collective behavior. Thus, merging both frameworks into a single model promises fascinating new insights into neuronal collective behavior that is subject to changes in network connectivity. In our case, the Petri net in the first layer manages the existence of excitatory and inhibitory links among the neurons in the second layer, thereby making the chemical connections time-varying. We focus on the emergence of different types of collective behavior in the model, such as synchronization, chimeras, and solitary states, by considering different inhibitory and excitatory tokens in the Petri net. We find that the existence of only inhibitory or excitatory tokens disturbs the synchronization of electrically coupled neurons and leads toward chimera and solitary states.
Collapse
Affiliation(s)
- Alireza Bahramian
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
| | - Fatemeh Parastesh
- Department of Biomedical Engineering, Amirkabir University of Technology, No. 350, Hafez Ave., Valiasr Square, Tehran 159163-4311, Iran
| | - Viet-Thanh Pham
- Nonlinear Systems and Applications, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City 758307, Vietnam
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Sajad Jafari
- Center for Computational Biology, Chennai Institute of Technology, Chennai, Tamil Nadu 600069, India
| | - Matjaž Perc
- Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška cesta 160, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Shepelev IA, Muni SS, Vadivasova TE. Synchronization of wave structures in a heterogeneous multiplex network of 2D lattices with attractive and repulsive intra-layer coupling. CHAOS (WOODBURY, N.Y.) 2021; 31:021104. [PMID: 33653058 DOI: 10.1063/5.0044327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
We explore numerically the synchronization effects in a heterogeneous two-layer network of two-dimensional (2D) lattices of van der Pol oscillators. The inter-layer coupling of the multiplex network has an attractive character. One layer of 2D lattices is characterized by attractive coupling of oscillators and demonstrates a spiral wave regime for both local and nonlocal interactions. The oscillators in the second layer are coupled through active elements and the interaction between them has repulsive character. We show that the lattice with the repulsive type of coupling demonstrates complex spatiotemporal cluster structures, which can be called labyrinth-like structures. We show for the first time that this multiplex network with fundamentally various types of intra-layer coupling demonstrates mutual synchronization and a competition between two types of structures. Our numerical study indicates that the synchronization threshold and the type of spatiotemporal patterns in both layers strongly depend on the ratio of the intra-layer coupling strength of the two lattices. We also analyze the impact of intra-layer coupling ranges on the synchronization effects.
Collapse
Affiliation(s)
- I A Shepelev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S S Muni
- School of Fundamental Sciences, Massey University, Palmerston North 4442, New Zealand
| | - T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
16
|
Singla T, Rivera M. Explosive synchronization in temporal networks: A comparative study. CHAOS (WOODBURY, N.Y.) 2020; 30:113135. [PMID: 33261337 DOI: 10.1063/5.0023329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 06/12/2023]
Abstract
We present a comparative study on Explosive Synchronization (ES) in temporal networks consisting of phase oscillators. The temporal nature of the networks is modeled with two configurations: (1) oscillators are allowed to move in a closed two-dimensional box such that they couple with their neighbors and (2) oscillators are static and they randomly switch their coupling partners. Configuration (1) is further studied under two possible scenarios: in the first case, oscillators couple to fixed numbers of neighbors, while, in the other case, they couple to all oscillators lying in their circle of vision. Under these circumstances, we monitor the degrees of temporal networks, velocities, and radius of circle of vision of the oscillators and the probability of forming connections in order to study and compare the critical values of the coupling required to induce ES in the population of phase oscillators.
Collapse
Affiliation(s)
- Tanu Singla
- Tecnológico de Monterrey, Calle del Puente 222, Colonia Ejidos de Huipulco, Tlalpan, Ciudad de México 14380, México
| | - M Rivera
- Centro de Investigación en Ciencias (IICBA), UAEM, Avenida Universidad 1001, Colonia Chamilpa, Cuernavaca, Morelos 62209, México
| |
Collapse
|
17
|
Vadivasova TE, Slepnev AV, Zakharova A. Control of inter-layer synchronization by multiplexing noise. CHAOS (WOODBURY, N.Y.) 2020; 30:091101. [PMID: 33003909 DOI: 10.1063/5.0023071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We study the synchronization of spatio-temporal patterns in a two-layer network of coupled chaotic maps, where each layer is represented by a nonlocally coupled ring. In particular, we focus on noisy inter-layer communication that we call multiplexing noise. We show that noisy modulation of inter-layer coupling strength has a significant impact on the dynamics of the network and specifically on the degree of synchronization of spatio-temporal patterns of interacting layers initially (in the absence of interaction) exhibiting chimera states. Our goal is to develop control strategies based on multiplexing noise for both identical and non-identical layers. We find that for the appropriate choice of intensity and frequency characteristics of parametric noise, complete or partial synchronization of the layers can be observed. Interestingly, for achieving inter-layer synchronization through multiplexing noise, it is crucial to have colored noise with intermediate spectral width. In the limit of white noise, the synchronization is destroyed. These results are the first step toward understanding the role of noisy inter-layer communication for the dynamics of multilayer networks.
Collapse
Affiliation(s)
- T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A V Slepnev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
18
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera-like states induced by additional dynamic nonlocal wirings. CHAOS (WOODBURY, N.Y.) 2020; 30:063106. [PMID: 32611102 DOI: 10.1063/1.5144929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the existence of chimera-like states in a small-world network of chaotically oscillating identical Rössler systems with an addition of randomly switching nonlocal links. By varying the small-world coupling strength, we observe no chimera-like state either in the absence of nonlocal wirings or with static nonlocal wirings. When we give an additional nonlocal wiring to randomly selected nodes and if we allow the random selection of nodes to change with time, we observe the onset of chimera-like states. Upon increasing the number of randomly selected nodes gradually, we find that the incoherent window keeps on shrinking, whereas the chimera-like window widens up. Moreover, the system attains a completely synchronized state comparatively sooner for a lower coupling strength. Also, we show that one can induce chimera-like states by a suitable choice of switching times, coupling strengths, and a number of nonlocal links. We extend the above-mentioned randomized injection of nonlocal wirings for the cases of globally coupled Rössler oscillators and a small-world network of coupled FitzHugh-Nagumo oscillators and obtain similar results.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
19
|
Cooperation on Interdependent Networks by Means of Migration and Stochastic Imitation. ENTROPY 2020; 22:e22040485. [PMID: 33286258 PMCID: PMC7516967 DOI: 10.3390/e22040485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022]
Abstract
Evolutionary game theory in the realm of network science appeals to a lot of research communities, as it constitutes a popular theoretical framework for studying the evolution of cooperation in social dilemmas. Recent research has shown that cooperation is markedly more resistant in interdependent networks, where traditional network reciprocity can be further enhanced due to various forms of interdependence between different network layers. However, the role of mobility in interdependent networks is yet to gain its well-deserved attention. Here we consider an interdependent network model, where individuals in each layer follow different evolutionary games, and where each player is considered as a mobile agent that can move locally inside its own layer to improve its fitness. Probabilistically, we also consider an imitation possibility from a neighbor on the other layer. We show that, by considering migration and stochastic imitation, further fascinating gateways to cooperation on interdependent networks can be observed. Notably, cooperation can be promoted on both layers, even if cooperation without interdependence would be improbable on one of the layers due to adverse conditions. Our results provide a rationale for engineering better social systems at the interface of networks and human decision making under testing dilemmas.
Collapse
|
20
|
Rakshit S, Bera BK, Ghosh D. Invariance and stability conditions of interlayer synchronization manifold. Phys Rev E 2020; 101:012308. [PMID: 32069525 DOI: 10.1103/physreve.101.012308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 11/07/2022]
Abstract
We investigate interlayer synchronization in a stochastic multiplex hypernetwork which is defined by the two types of connections, one is the intralayer connection in each layer with hypernetwork structure and the other is the interlayer connection between the layers. Here all types of interactions within and between the layers are allowed to vary with a certain rewiring probability. We address the question about the invariance and stability of the interlayer synchronization state in this stochastic multiplex hypernetwork. For the invariance of interlayer synchronization manifold, the adjacency matrices corresponding to each tier in each layer should be equal and the interlayer connection should be either bidirectional or the interlayer coupling function should vanish after achieving the interlayer synchronization state. We analytically derive a necessary-sufficient condition for local stability of the interlayer synchronization state using master stability function approach and a sufficient condition for global stability by constructing a suitable Lyapunov function. Moreover, we analytically derive that intralayer synchronization is unattainable for this network architecture due to stochastic interlayer connections. Remarkably, our derived invariance and stability conditions (both local and global) are valid for any rewiring probabilities, whereas most of the previous stability conditions are only based on a fast switching approximation.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| | - Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India.,Department of Solar Energy and Environmental Physics, BIDR, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, 8499000, Israel
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
21
|
Rakshit S, Bera BK, Kurths J, Ghosh D. Enhancing synchrony in multiplex network due to rewiring frequency. Proc Math Phys Eng Sci 2019. [DOI: 10.1098/rspa.2019.0460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Most of the previous studies on synchrony in multiplex networks have been investigated using different types of intralayer network architectures which are either static or temporal. Effect of a temporal layer on intralayer synchrony in a multilayered network still remains elusive. In this paper, we discuss intralayer synchrony in a multiplex network consisting of static and temporal layers and how a temporal layer influences other static layers to enhance synchrony simultaneously. We analytically derive local stability conditions for intralayer synchrony based on the master stability function approach. The analytically derived results are illustrated by numerical simulations on up to five-layers multiplex networks with the paradigmatic Lorenz system as the node dynamics in each individual layer.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Bidesh K. Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
22
|
Dudkowski D, Czołczyński K, Kapitaniak T. Multistability and basin stability in coupled pendulum clocks. CHAOS (WOODBURY, N.Y.) 2019; 29:103140. [PMID: 31675809 DOI: 10.1063/1.5118726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
In this paper, we investigate the phenomenon of multistability and the concept of basin stability in two coupled pendula with escapement mechanisms, suspended on horizontally oscillating beam. The dynamics of a single pendulum clock is studied and described, showing possible responses of the unit. The basin stability maps are discussed in two-parameters plane, where we vary both the system's stiffness as well as the damping. The possible attractors for the investigated clocks are discussed, showing that different patterns of synchronization and desynchronization can occur. The oscillators may completely synchronize in one of the three possible combinations (including inphase and antiphase ones), practically synchronize with some fluctuations or stay in the irregular pattern, which includes chaotic motion. The transitions between solutions are studied, uncovering that the road from one type of dynamics into another may become very complex. Moreover, we examine the multistability property of our model using the bifurcation diagrams and the basins of attraction maps, discussing possible scenarios in which the states co-exist. The analysis of attractors' basins uncovers complicated structure of the latter ones, exhibiting that the final behavior of investigated model may be hard to determine and trace. Our results are discussed for the cases of identical and nonidentical pendula, as well as light and heavy beam, showing that depending on considered scenario, various patterns of behaviors and transitions may be observed. The research described in this paper proves that the mechanical properties of the system's suspension may play a crucial role in the possibility of the appearance of different types of attractors and that the basin stabilities of states strictly depend on the values of considered parameters.
Collapse
Affiliation(s)
- Dawid Dudkowski
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Krzysztof Czołczyński
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| |
Collapse
|
23
|
Bera BK, Rakshit S, Ghosh D, Kurths J. Spike chimera states and firing regularities in neuronal hypernetworks. CHAOS (WOODBURY, N.Y.) 2019; 29:053115. [PMID: 31154769 DOI: 10.1063/1.5088833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
A complex spatiotemporal pattern with coexisting coherent and incoherent domains in a network of identically coupled oscillators is known as a chimera state. Here, we report the emergence and existence of a novel type of nonstationary chimera pattern in a network of identically coupled Hindmarsh-Rose neuronal oscillators in the presence of synaptic couplings. The development of brain function is mainly dependent on the interneuronal communications via bidirectional electrical gap junctions and unidirectional chemical synapses. In our study, we first consider a network of nonlocally coupled neurons where the interactions occur through chemical synapses. We uncover a new type of spatiotemporal pattern, which we call "spike chimera" induced by the desynchronized spikes of the coupled neurons with the coherent quiescent state. Thereafter, imperfect traveling chimera states emerge in a neuronal hypernetwork (which is characterized by the simultaneous presence of electrical and chemical synapses). Using suitable characterizations, such as local order parameter, strength of incoherence, and velocity profile, the existence of several dynamical states together with chimera states is identified in a wide range of parameter space. We also investigate the robustness of these nonstationary chimera states together with incoherent, coherent, and resting states with respect to initial conditions by using the basin stability measurement. Finally, we extend our study for the effect of firing regularity in the observed states. Interestingly, we find that the coherent motion of the neuronal network promotes the entire system to regular firing.
Collapse
Affiliation(s)
- Bidesh K Bera
- Department of Mathematics, Indian Institute of Technology Ropar, Punjab 140001, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany
| |
Collapse
|
24
|
Majhi S, Ghosh D, Kurths J. Emergence of synchronization in multiplex networks of mobile Rössler oscillators. Phys Rev E 2019; 99:012308. [PMID: 30780214 DOI: 10.1103/physreve.99.012308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 12/11/2022]
Abstract
Different aspects of synchronization emerging in networks of coupled oscillators have been examined prominently in the last decades. Nevertheless, little attention has been paid on the emergence of this imperative collective phenomenon in networks displaying temporal changes in the connectivity patterns. However, there are numerous practical examples where interactions are present only at certain points of time owing to physical proximity. In this work, we concentrate on exploring the emergence of interlayer and intralayer synchronization states in a multiplex dynamical network comprising of layers having mobile nodes performing two-dimensional lattice random walk. We thoroughly illustrate the impacts of the network parameters, in particular, the vision range ϕ and the step size u together with the inter- and intralayer coupling strengths ε and k on these synchronous states arising in coupled Rössler systems. The presented numerical results are very well validated by analytically derived necessary conditions for the emergence and stability of the synchronous states. Furthermore, the robustness of the states of synchrony is studied under both structural and dynamical perturbations. We find interesting results on interlayer synchronization for a continuous removal of the interlayer links as well as for progressively created static nodes. We demonstrate that the mobility parameters responsible for intralayer movement of the nodes can retrieve interlayer synchrony under such structural perturbations. For further analysis of survivability of interlayer synchrony against dynamical perturbations, we proceed through the investigation of single-node basin stability, where again the intralayer mobility properties have noticeable impacts. We also discuss the scenarios related mainly to effects of the mobility parameters in cases of varying lattice size and percolation of the whole network.
Collapse
Affiliation(s)
- Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Potsdam 14473, Germany.,Saratov State University, Saratov, Russia
| |
Collapse
|
25
|
Chowdhury SN, Ghosh D. Synchronization in dynamic network using threshold control approach. ACTA ACUST UNITED AC 2019. [DOI: 10.1209/0295-5075/125/10011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Rakshit S, Bera BK, Ghosh D, Sinha S. Emergence of synchronization and regularity in firing patterns in time-varying neural hypernetworks. Phys Rev E 2018; 97:052304. [PMID: 29906979 DOI: 10.1103/physreve.97.052304] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Indexed: 06/08/2023]
Abstract
We study synchronization of dynamical systems coupled in time-varying network architectures, composed of two or more network topologies, corresponding to different interaction schemes. As a representative example of this class of time-varying hypernetworks, we consider coupled Hindmarsh-Rose neurons, involving two distinct types of networks, mimicking interactions that occur through the electrical gap junctions and the chemical synapses. Specifically, we consider the connections corresponding to the electrical gap junctions to form a small-world network, while the chemical synaptic interactions form a unidirectional random network. Further, all the connections in the hypernetwork are allowed to change in time, modeling a more realistic neurobiological scenario. We model this time variation by rewiring the links stochastically with a characteristic rewiring frequency f. We find that the coupling strength necessary to achieve complete neuronal synchrony is lower when the links are switched rapidly. Further, the average time required to reach the synchronized state decreases as synaptic coupling strength and/or rewiring frequency increases. To quantify the local stability of complete synchronous state we use the Master Stability Function approach, and for global stability we employ the concept of basin stability. The analytically derived necessary condition for synchrony is in excellent agreement with numerical results. Further we investigate the resilience of the synchronous states with respect to increasing network size, and we find that synchrony can be maintained up to larger network sizes by increasing either synaptic strength or rewiring frequency. Last, we find that time-varying links not only promote complete synchronization, but also have the capacity to change the local dynamics of each single neuron. Specifically, in a window of rewiring frequency and synaptic coupling strength, we observe that the spiking behavior becomes more regular.
Collapse
Affiliation(s)
- Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Bidesh K Bera
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sudeshna Sinha
- Indian Institute of Science Education and Research Mohali, Manauli P.O. 140 306, Punjab, India
| |
Collapse
|