1
|
Li MY, Zheng N, Li YW. Migration of an active particle in mixtures of rigid and flexible rings. Phys Rev E 2025; 111:035412. [PMID: 40247538 DOI: 10.1103/physreve.111.035412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025]
Abstract
The migration of active particles in slowly moving, crowded, and heterogeneous media is fundamental to various biological processes and technological applications. In this study, we numerically investigate the dynamics of a single active particle in a multicomponent medium composed of mixtures of rigid and flexible rings. We observe a nonmonotonic dependence of diffusivity on the relative fraction of rigid to flexible rings, leading to the identification of an optimal composition for enhanced diffusion. This long-time nonmonotonic diffusion, resulting from the different responses of the active particle to rigid and flexible rings, is coupled with transient short-time trapping. The probability distribution of trapping durations is well described by the herein-proposed extended entropic-trap model. We further theoretically establish a universal relationship between particle activity and the optimal rigid-to-flexible ring ratio for diffusion, which aligns closely with our numerical results.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Ning Zheng
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| | - Yan-Wei Li
- Beijing Institute of Technology, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing 100081, China
| |
Collapse
|
2
|
Dhar T, Saintillan D. Active transport of a passive colloid in a bath of run-and-tumble particles. Sci Rep 2024; 14:11844. [PMID: 38783044 PMCID: PMC11116446 DOI: 10.1038/s41598-024-62396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
The dispersion of a passive colloid immersed in a bath of non-interacting and non-Brownian run-and-tumble microswimmers in two dimensions is analyzed using stochastic simulations and an asymptotic theory, both based on a minimal model of swimmer-colloid collisions characterized solely by frictionless steric interactions. We estimate the effective long-time diffusivity D of the suspended colloid resulting from its interaction with the active bath, and elucidate its dependence on the level of activity (persistence length of swimmer trajectories), the mobility ratio of the colloid to a swimmer, and the number density of swimmers in the bath. We also propose a semi-analytical model for the colloid diffusivity in terms of the variance and correlation time of the net fluctuating active force on the colloid resulting from swimmer collisions. Quantitative agreement is found between numerical simulations and analytical results in the experimentally-relevant regime of low swimmer density, low mobility ratio, and high activity.
Collapse
Affiliation(s)
- Tanumoy Dhar
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Keogh RR, Kozhukhov T, Thijssen K, Shendruk TN. Active Darcy's Law. PHYSICAL REVIEW LETTERS 2024; 132:188301. [PMID: 38759204 DOI: 10.1103/physrevlett.132.188301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 03/11/2024] [Indexed: 05/19/2024]
Abstract
While bacterial swarms can exhibit active turbulence in vacant spaces, they naturally inhabit crowded environments. We numerically show that driving disorderly active fluids through porous media enhances Darcy's law. While purely active flows average to zero flux, hybrid active/driven flows display greater drift than purely pressure-driven flows. This enhancement is nonmonotonic with activity, leading to an optimal activity to maximize flow rate. We incorporate the active contribution into an active Darcy's law, which may serve to help understand anomalous transport of swarming in porous media.
Collapse
Affiliation(s)
- Ryan R Keogh
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Timofey Kozhukhov
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| | - Kristian Thijssen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, Copenhagen, Denmark
| | - Tyler N Shendruk
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, United Kingdom
| |
Collapse
|
4
|
Jakuszeit T, Croze OA. Role of tumbling in bacterial scattering at convex obstacles. Phys Rev E 2024; 109:044405. [PMID: 38755868 DOI: 10.1103/physreve.109.044405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 05/18/2024]
Abstract
Active propulsion, as performed by bacteria and Janus particles, in combination with hydrodynamic interaction results in the accumulation of bacteria at a flat wall. However, in microfluidic devices with cylindrical pillars of sufficiently small radius, self-propelled particles can slide along and scatter off the surface of a pillar, without becoming trapped over long times. This nonequilibrium scattering process has been predicted to result in large diffusivities, even at high obstacle density, unlike particles that undergo classical specular reflection. Here, we test this prediction by experimentally studying the nonequilibrium scattering of pusherlike swimmers in microfluidic obstacle lattices. To explore the role of tumbles in the scattering process, we microscopically tracked wild-type (run and tumble) and smooth-swimming (run only) mutants of the bacterium Escherichia coli scattering off microfluidic pillars. We quantified key scattering parameters and related them to previously proposed models that included a prediction for the diffusivity, discussing their relevance. Finally, we discuss potential interpretations of the role of tumbles in the scattering process and connect our work to the broader study of swimmers in porous media.
Collapse
Affiliation(s)
- Theresa Jakuszeit
- Institut Curie and Institut Pierre Gilles de Gennes, PSL Research University, CNRS UMR 144, 75005 Paris, France
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ottavio A Croze
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
5
|
Bassu G, Laurati M, Fratini E. Transition from active motion to anomalous diffusion for Bacillus subtilis confined in hydrogel matrices. Colloids Surf B Biointerfaces 2024; 236:113797. [PMID: 38431996 DOI: 10.1016/j.colsurfb.2024.113797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/06/2023] [Accepted: 02/11/2024] [Indexed: 03/05/2024]
Abstract
We investigate the motility of B. subtilis under different degrees of confinement induced by transparent porous hydrogels. The dynamical behavior of the bacteria at short times is linked to characteristic parameters describing the hydrogel porosity. Mean squared displacements (MSDs) reveal that the run-and-tumble dynamics of unconfined B. subtilis progressively turns into sub-diffusive motion with increasing confinement. Correspondingly, the median instantaneous velocity of bacteria decreases and becomes more narrowly distributed, while the reorientation rate increases and reaches a plateau value. Analyzing single-trajectories, we show that the average dynamical behavior is the result of complex displacements, in which active, diffusive and sub-diffusive segments coexist. For small and moderate confinements, the number of active segments reduces, while the diffusive and sub-diffusive segments increase. The alternation of sub-diffusion, diffusion and active motion along the same trajectory can be described as a hopping ad trapping motion, in which hopping events correspond to displacements with an instantaneous velocity exceeding the corresponding mean value along a trajectory. Different from previous observations, escape from local trapping occurs for B. subtilis through active runs but also diffusion. Interestingly, the contribution of diffusion is maximum at intermediate confinements. At sufficiently long times transport coefficients estimated from the experimental MSDs under different degrees of confinement can be reproduced using a recently proposed hopping and trapping model. Finally, we propose a quantitative relationship linking the median velocity of confined and unconfined bacteria through the characteristic confinement length of the hydrogel matrix. Our work provides new insights for the bacterial motility in complex media that mimic natural environments and are relevant to important problems like sterilization, water purification, biofilm formation, membrane permeation and bacteria separation.
Collapse
Affiliation(s)
- Gavino Bassu
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Laurati
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy.
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff", Via della Lastruccia 3, Sesto Fiorentino 50019, Italy; Consorzio per lo Sviluppo dei Sistemi a Grande Interfase (CSGI)), Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
6
|
Chan CW, Wu D, Qiao K, Fong KL, Yang Z, Han Y, Zhang R. Chiral active particles are sensitive reporters to environmental geometry. Nat Commun 2024; 15:1406. [PMID: 38365770 PMCID: PMC10873462 DOI: 10.1038/s41467-024-45531-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
Chiral active particles (CAPs) are self-propelling particles that break time-reversal symmetry by orbiting or spinning, leading to intriguing behaviors. Here, we examined the dynamics of CAPs moving in 2D lattices of disk obstacles through active Brownian dynamics simulations and granular experiments with grass seeds. We find that the effective diffusivity of the CAPs is sensitive to the structure of the obstacle lattice, a feature absent in achiral active particles. We further studied the transport of CAPs in obstacle arrays under an external field and found a reentrant directional locking effect, which can be used to sort CAPs with different activities. Finally, we demonstrated that parallelogram lattices of obstacles without mirror symmetry can separate clockwise and counter-clockwise CAPs. The mechanisms of the above three novel phenomena are qualitatively explained. As such, our work provides a basis for designing chirality-based tools for single-cell diagnosis and separation, and active particle-based environmental sensors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Daihui Wu
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kaiyao Qiao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Kin Long Fong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Physik-Department, Technische Universität München, James-Franck-Straße 1, 85748, Garching, Germany
| | - Zhiyu Yang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Yilong Han
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR.
| |
Collapse
|
7
|
Saintillan D. Dispersion of run-and-tumble microswimmers through disordered media. Phys Rev E 2023; 108:064608. [PMID: 38243487 DOI: 10.1103/physreve.108.064608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024]
Abstract
Understanding the transport properties of microorganisms and self-propelled particles in porous media has important implications for human health as well as microbial ecology. In free space, most microswimmers perform diffusive random walks as a result of the interplay of self-propulsion and orientation decorrelation mechanisms such as run-and-tumble dynamics or rotational diffusion. In an unstructured porous medium, collisions with the microstructure result in a decrease in the effective spatial diffusivity of the particles from its free-space value. Here, we analyze this problem for a simple model system consisting of noninteracting point particles performing run-and-tumble dynamics through a two-dimensional disordered medium composed of a random distribution of circular obstacles, in the absence of Brownian diffusion or hydrodynamic interactions. The particles are assumed to collide with the obstacles as hard spheres and subsequently slide on the obstacle surface with no frictional resistance while maintaining their orientation, until they either escape or tumble. We show that the variations in the long-time diffusivity can be described by a universal dimensionless hindrance function f(ϕ,Pe) of the obstacle area fraction ϕ and Péclet number Pe, or ratio of the swimmer run length to the obstacle size. We analytically derive an asymptotic expression for the hindrance function valid for dilute media (Peϕ≪1), and its extension to denser media is obtained using stochastic simulations. As we explain, the model is also easily generalized to describe dispersion in three dimensions.
Collapse
Affiliation(s)
- David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
8
|
Kumar P, Chakrabarti R. Escape dynamics of a self-propelled nanorod from circular confinements with narrow openings. SOFT MATTER 2023; 19:6743-6753. [PMID: 37623699 DOI: 10.1039/d3sm00723e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
We perform computer simulations to explore the escape dynamics of a self-propelled (active) nanorod from circular confinements with narrow opening(s). Our results clearly demonstrate how the persistent and directed motion of the nanorod helps it to escape. Such escape events are absent if the nanorod is passive. To quantify the escape dynamics, we compute the radial probability density function (RPDF) and mean first escape time (MFET) and show how the activity is responsible for the bimodality of RPDF, which is clearly absent if the nanorod is passive. Broadening of displacement distributions with activity has also been observed. The computed mean first escape time decreases with activity. In contrast, the fluctuations of the first escape times vary in a non-monotonic way. This results in high values of the coefficient of variation and indicates the presence of multiple timescales in first escape time distributions and multimodality in uniformity index distributions. We hope our study will help in differentiating activity-driven escape dynamics from purely thermal passive diffusion in confinement.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
9
|
Sadjadi Z, Vesperini D, Laurent AM, Barnefske L, Terriac E, Lautenschläger F, Rieger H. Ameboid cell migration through regular arrays of micropillars under confinement. Biophys J 2022; 121:4615-4623. [PMID: 36303426 PMCID: PMC9748361 DOI: 10.1016/j.bpj.2022.10.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022] Open
Abstract
Migrating cells often encounter a wide variety of topographic features-including the presence of obstacles-when navigating through crowded biological environments. Unraveling the impact of topography and crowding on the dynamics of cells is key to better understand many essential physiological processes such as the immune response. We study the impact of geometrical cues on ameboid migration of HL-60 cells differentiated into neutrophils. A microfluidic device is designed to track the cells in confining geometries between two parallel plates with distance h, in which identical micropillars are arranged in regular pillar forests with pillar spacing e. We observe that the cells are temporarily captured near pillars, with a mean contact time that is independent of h and e. By decreasing the vertical confinement h, we find that the cell velocity is not affected, while the persistence reduces; thus, cells are able to preserve their velocity when highly squeezed but lose the ability to control their direction of motion. At a given h, we show that by decreasing the pillar spacing e in the weak lateral confinement regime, the mean escape time of cells from effective local traps between neighboring pillars grows. This effect, together with the increase of cell-pillar contact frequency, leads to the reduction of diffusion constant D. By disentangling the contributions of these two effects on D in numerical simulations, we verify that the impact of cell-pillar contacts on cell diffusivity is more pronounced at smaller pillar spacing.
Collapse
Affiliation(s)
- Zeinab Sadjadi
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany.
| | - Doriane Vesperini
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Annalena M Laurent
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Lena Barnefske
- Leibniz-Institute for New Materials, Saarbrücken, Germany
| | - Emmanuel Terriac
- Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Franziska Lautenschläger
- Centre for Biophysics, Saarland University, Saarbrücken, Germany; Department of Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Heiko Rieger
- Department of Theoretical Physics, Saarland University, Saarbrücken, Germany; Centre for Biophysics, Saarland University, Saarbrücken, Germany; Leibniz-Institute for New Materials, Saarbrücken, Germany
| |
Collapse
|
10
|
Rizkallah P, Sarracino A, Bénichou O, Illien P. Microscopic Theory for the Diffusion of an Active Particle in a Crowded Environment. PHYSICAL REVIEW LETTERS 2022; 128:038001. [PMID: 35119883 DOI: 10.1103/physrevlett.128.038001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We calculate the diffusion coefficient of an active tracer in a schematic crowded environment, represented as a lattice gas of passive particles with hardcore interactions. Starting from the master equation of the problem, we put forward a closure approximation that goes beyond trivial mean field and provides the diffusion coefficient for an arbitrary density of crowders in the system. We show that our approximation is accurate for a very wide range of parameters, and that it correctly captures numerous nonequilibrium effects, which are the signature of the activity in the system. In addition to the determination of the diffusion coefficient of the tracer, our approach allows us to characterize the perturbation of the environment induced by the displacement of the active tracer. Finally, we consider the asymptotic regimes of low and high densities, in which the expression of the diffusion coefficient of the tracer becomes explicit, and which we argue to be exact.
Collapse
Affiliation(s)
- Pierre Rizkallah
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| | - Alessandro Sarracino
- Dipartimento di Ingegneria, Università della Campania "Luigi Vanvitelli", 81031 Aversa (CE), Italy
| | - Olivier Bénichou
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France
| | - Pierre Illien
- Sorbonne Université, CNRS, Laboratoire de Physico-Chimie des Électrolytes et Nanosystèmes Interfaciaux (PHENIX), 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
11
|
Interactions of E. coli with cylindrical micro-pillars of different geometric modifications. Colloids Surf B Biointerfaces 2021; 209:112190. [PMID: 34749195 DOI: 10.1016/j.colsurfb.2021.112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Understanding the behavior of bacteria at the proximity of different surfaces is of great importance and interest. Despite recent exciting progress in geometric control of bacterial behavior around surfaces, a detailed comparison on the interaction of bacteria with cylindrical surfaces of different geometric modifications is still missing. Here, we investigated how bacteria interacted with cylindrical micro-pillars and modified cylindrical micro-pillars with sprocket, gear, and flower-like wall surface features. Using phase-contrast microscopy, we examined the motion of bacteria around the micro-pillars, and observed different responses of bacteria to each geometric modification. In addition, we extracted the trajectories of the bacteria and characterized several parameters (instantaneous velocity v, change of direction δ, approaching angle ϕ) to quantitatively compare the effects of the geometric modifications on the micro-pillars. We found that sharp spikes showed the largest effect, compared to smooth surface, convex and concave ripples. Lastly, we carried out numerical simulations, which explained the experimental observations and showed that the observed effects were due to the geometric modifications.
Collapse
|
12
|
Théry A, Wang Y, Dvoriashyna M, Eloy C, Elias F, Lauga E. Rebound and scattering of motile Chlamydomonas algae in confined chambers. SOFT MATTER 2021; 17:4857-4873. [PMID: 33890590 PMCID: PMC8115209 DOI: 10.1039/d0sm02207a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Motivated by recent experiments demonstrating that motile algae get trapped in draining foams, we study the trajectories of microorganisms confined in model foam channels (section of a Plateau border). We track single Chlamydomonas reinhardtii cells confined in a thin three-circle microfluidic chamber and show that their spatial distribution exhibits strong corner accumulation. Using empirical scattering laws observed in previous experiments (scattering with a constant scattering angle), we next develop a two-dimension geometrical model and compute the phase space of trapped and periodic trajectories of swimmers inside a three-circles billiard. We find that the majority of cell trajectories end up in a corner, providing a geometrical mechanism for corner accumulation. Incorporating the distribution of scattering angles observed in our experiments and including hydrodynamic interactions between the cells and the surfaces into the geometrical model enables us to reproduce the experimental probability density function of micro-swimmers in microfluidic chambers. Both our experiments and models demonstrate therefore that motility leads generically to trapping in complex geometries.
Collapse
Affiliation(s)
- Albane Théry
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Yuxuan Wang
- Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France
| | - Mariia Dvoriashyna
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| | - Christophe Eloy
- Aix Marseille Univ., CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
| | - Florence Elias
- Université de Paris, CNRS UMR 7057, Laboratoire Matière et Systèmes Complexes MSC, F-75006 Paris, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.
| |
Collapse
|
13
|
Narinder N, Zhu WJ, Bechinger C. Active colloids under geometrical constraints in viscoelastic media. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:28. [PMID: 33704591 PMCID: PMC7952293 DOI: 10.1140/epje/s10189-021-00033-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/29/2021] [Indexed: 05/26/2023]
Abstract
We study the behavior of active particles (APs) moving in a viscoelastic fluid in the presence of geometrical confinements. Upon approaching a flat wall, we find that APs slow down due to compression of the enclosed viscoelastic fluid. In addition, they receive a viscoelastic torque leading to sudden orientational changes and departure from walls. Based on these observations, we develop a numerical model which can also be applied to other geometries and yields good agreement with experimental data. Our results demonstrate, that APs are able to move through complex geometrical structures more effectively when suspended in a viscoelastic compared to a Newtonian fluid.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany
| | - Wei-Jing Zhu
- Fachbereich Physik, Universität Konstanz, Konstanz, Germany
- School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China
- School of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou, 510665, China
| | | |
Collapse
|
14
|
Breoni D, Schmiedeberg M, Löwen H. Active Brownian and inertial particles in disordered environments: Short-time expansion of the mean-square displacement. Phys Rev E 2020; 102:062604. [PMID: 33465967 DOI: 10.1103/physreve.102.062604] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape. The averaged mean-square displacement (MSD) of the particle is calculated analytically within a systematic short-time expansion. As a result, for overdamped particles, both an external random force field and disorder in the self-propulsion speed induce ballistic behavior adding to the ballistic regime of an active particle with sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic and higher-order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found where the scaling exponent of the MSD with time is α=3 and α=4. We confirm our theoretical predictions by computer simulations. Moreover, they are verifiable in experiments on self-propelled colloids in random environments.
Collapse
Affiliation(s)
- Davide Breoni
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Schmiedeberg
- Institut für Theoretische Physik 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
Prakash P, Abdulla AZ, Singh V, Varma M. Swimming statistics of cargo-loaded single bacteria. SOFT MATTER 2020; 16:9499-9505. [PMID: 32966524 DOI: 10.1039/d0sm01066a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Burgeoning interest in the area of bacteria-powered micro robotic systems prompted us to study the dynamics of cargo transport by single bacteria. In this paper, we have studied the swimming behaviour of oil-droplets attached as cargo to the cell bodies of single bacteria. The oil-droplet loaded bacteria exhibit super-diffusive motion which is characterised by a high degree of directional persistence. Interestingly, bacteria could navigate with cargo size as large as 8 μm resulting in an increased rotational drag of more than 2 orders when compared to the free bacteria. The directional change of cargo loaded bacterial trajectories seems to be enhanced by steric hindrance from other oil-droplets present in the environment.
Collapse
Affiliation(s)
- P Prakash
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012, India.
| | - A Z Abdulla
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - V Singh
- Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | - M Varma
- Centre for Nanoscience and Engineering, Indian Institute of Science, Bangalore, 560012, India. and Robert Bosch Centre for Cyber Physical Systems, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
16
|
Reichhardt C, Reichhardt CJO. Directional locking effects for active matter particles coupled to a periodic substrate. Phys Rev E 2020; 102:042616. [PMID: 33212736 DOI: 10.1103/physreve.102.042616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Directional locking occurs when a particle moving over a periodic substrate becomes constrained to travel along certain substrate symmetry directions. Such locking effects arise for colloids and superconducting vortices moving over ordered substrates when the direction of the external drive is varied. Here we study the directional locking of run-and-tumble active matter particles interacting with a periodic array of obstacles. In the absence of an external biasing force, we find that the active particle motion locks to various symmetry directions of the substrate when the run time between tumbles is large. The number of possible locking directions depends on the array density and on the relative sizes of the particles and the obstacles. For a square array of large obstacles, the active particle only locks to the x, y, and 45^{∘} directions, while for smaller obstacles, the number of locking angles increases. Each locking angle satisfies θ=arctan(p/q), where p and q are integers, and the angle of motion can be measured using the ratio of the velocities or the velocity distributions in the x and y directions. When a biasing driving force is applied, the directional locking behavior is affected by the ratio of the self-propulsion force to the biasing force. For large biasing, the behavior resembles that found for directional locking in passive systems. For large obstacles under biased driving, a trapping behavior occurs that is nonmonotonic as a function of increasing run length or increasing self-propulsion force, and the trapping diminishes when the run length is sufficiently large.
Collapse
Affiliation(s)
- C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
17
|
Wu Z, Chen Y, Mukasa D, Pak OS, Gao W. Medical micro/nanorobots in complex media. Chem Soc Rev 2020; 49:8088-8112. [PMID: 32596700 DOI: 10.1039/d0cs00309c] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Medical micro/nanorobots have received tremendous attention over the past decades owing to their potential to be navigated into hard-to-reach tissues for a number of biomedical applications ranging from targeted drug/gene delivery, bio-isolation, detoxification, to nanosurgery. Despite the great promise, the majority of the past demonstrations are primarily under benchtop or in vitro conditions. Many developed micro/nanoscale propulsion mechanisms are based on the assumption of a homogeneous, Newtonian environment, while realistic biological environments are substantially more complex. Moving toward practical medical use, the field of micro/nanorobotics must overcome several major challenges including propulsion through complex media (such as blood, mucus, and vitreous) as well as deep tissue imaging and control in vivo. In this review article, we summarize the recent research efforts on investigating how various complexities in biological environments impact the propulsion of micro/nanoswimmers. We also highlight the emerging technological approaches to enhance the locomotion of micro/nanorobots in complex environments. The recent demonstrations of in vivo imaging, control and therapeutic medical applications of such micro/nanorobots are introduced. We envision that continuing materials and technological innovations through interdisciplinary collaborative efforts can bring us steps closer to the fantasy of "swallowing a surgeon".
Collapse
Affiliation(s)
- Zhiguang Wu
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | | | | | | | | |
Collapse
|
18
|
Caprini L, Cecconi F, Puglisi A, Sarracino A. Diffusion properties of self-propelled particles in cellular flows. SOFT MATTER 2020; 16:5431-5438. [PMID: 32469036 DOI: 10.1039/d0sm00450b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the dynamics of a self-propelled particle advected by a steady laminar flow. The persistent motion of the self-propelled particle is described by an active Ornstein-Uhlenbeck process. We focus on the diffusivity properties of the particle as a function of persistence time and free-diffusion coefficient, revealing non-monotonic behaviors, with the occurrence of a minimum and a steep growth in the regime of large persistence time. In the latter limit, we obtain an analytical prediction for the scaling of the diffusion coefficient with the parameters of the active force. Our study sheds light on the effect of a flow-field on the diffusion of active particles, such as living microorganisms and motile phytoplankton in fluids.
Collapse
Affiliation(s)
- Lorenzo Caprini
- Gran Sasso Science Institute (GSSI), Via. F. Crispi 7, 67100 L'Aquila, Italy.
| | | | | | | |
Collapse
|
19
|
Schakenraad K, Ravazzano L, Sarkar N, Wondergem JAJ, Merks RMH, Giomi L. Topotaxis of active Brownian particles. Phys Rev E 2020; 101:032602. [PMID: 32289917 DOI: 10.1103/physreve.101.032602] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/26/2020] [Indexed: 06/11/2023]
Abstract
Recent experimental studies have demonstrated that cellular motion can be directed by topographical gradients, such as those resulting from spatial variations in the features of a micropatterned substrate. This phenomenon, known as topotaxis, has been extensively studied for topographical gradients at the subcellular scale, but can also occur in the presence of a spatially varying density of cell-sized features. Such a large-scale topotaxis has recently been observed in highly motile cells that persistently crawl within an array of obstacles with smoothly varying lattice spacing. We introduce a toy model of large-scale topotaxis, based on active Brownian particles. Using numerical simulations and analytical arguments, we demonstrate that topographical gradients introduce a spatial modulation of the particles' persistence, leading to directed motion toward regions of higher persistence. Our results demonstrate that persistent motion alone is sufficient to drive large-scale topotaxis and could serve as a starting point for more detailed studies on self-propelled particles and cells.
Collapse
Affiliation(s)
- Koen Schakenraad
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
| | - Linda Ravazzano
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Via Celoria 16, 20133 Milano, Italy
| | - Niladri Sarkar
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| | - Joeri A J Wondergem
- Kamerlingh Onnes-Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands
| | - Roeland M H Merks
- Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, The Netherlands
- Institute of Biology, Leiden University, P.O. Box 9505, 2300 RA Leiden, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands
| |
Collapse
|
20
|
Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat Commun 2019; 10:4110. [PMID: 31511558 PMCID: PMC6739365 DOI: 10.1038/s41467-019-12010-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vasco C Braz
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|