1
|
Dapolito M, Tsuneto M, Zheng W, Wehmeier L, Xu S, Chen X, Sun J, Du Z, Shao Y, Jing R, Zhang S, Bercher A, Dong Y, Halbertal D, Ravindran V, Zhou Z, Petrovic M, Gozar A, Carr GL, Li Q, Kuzmenko AB, Fogler MM, Basov DN, Du X, Liu M. Infrared nano-imaging of Dirac magnetoexcitons in graphene. NATURE NANOTECHNOLOGY 2023; 18:1409-1415. [PMID: 37605044 DOI: 10.1038/s41565-023-01488-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/17/2023] [Indexed: 08/23/2023]
Abstract
Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.
Collapse
Affiliation(s)
- Michael Dapolito
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Makoto Tsuneto
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Wenjun Zheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Lukas Wehmeier
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Suheng Xu
- Department of Physics, Columbia University, New York, NY, USA
| | - Xinzhong Chen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Jiacheng Sun
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Zengyi Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
| | - Ran Jing
- Department of Physics, Columbia University, New York, NY, USA
| | - Shuai Zhang
- Department of Physics, Columbia University, New York, NY, USA
| | - Adrien Bercher
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Yinan Dong
- Department of Physics, Columbia University, New York, NY, USA
| | - Dorri Halbertal
- Department of Physics, Columbia University, New York, NY, USA
| | - Vibhu Ravindran
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Department of Physics, University of California, Berkeley, CA, USA
| | - Zijian Zhou
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Mila Petrovic
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
| | - Adrian Gozar
- Department of Physics, Yale University, New Haven, CT, USA
- Energy Sciences Institute, Yale University, West Haven, CT, USA
| | - G L Carr
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Qiang Li
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY, USA
| | - Alexey B Kuzmenko
- Département de Physique de la Matière Quantique, Université de Genève, Genève 4, Switzerland
| | - Michael M Fogler
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - D N Basov
- Department of Physics, Columbia University, New York, NY, USA.
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
| | - Mengkun Liu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
2
|
Fan J, Sun M. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties. CHEM REC 2022; 22:e202100313. [PMID: 35452180 DOI: 10.1002/tcr.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
Transition metal dichalcogenides (TMDCs) have good flexibility, light absorption, and carrier mobility, and can be used to fabricate wearable devices and photodetectors. In addition, the band gaps of these materials are adjustable, which are related to the number of stacking layers. The the material properties can be changed by vertically stacking TMDCs to form van der Waals (vdW) heterostructures. Compared with single-layer TMDC, the vdW heterostructure has better light response and more efficient photoelectric conversion. Interlayer excitons formed in vdW heterostructure have a longer exciton lifetime and unique valley selectivity compared with intralayer excitons, which promotes the research on TMDCs materials in photoelectric field, valley electronics, carrier dynamics, etc. In this paper, the methods of synthesizing heterostructures are introduced. Photoelectric properties, valley dynamics, electronic properties and related applications of TMDCs vdW heterostructures are also discussed. Heterostructures stacked with different materials, stacking modes, and twist angles all can affect the properties. Hence, it brings more creativity and research direction to the material field.
Collapse
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
3
|
Onodera M, Kinoshita K, Moriya R, Masubuchi S, Watanabe K, Taniguchi T, Machida T. Cyclotron Resonance Study of Monolayer Graphene under Double Moiré Potentials. NANO LETTERS 2020; 20:4566-4572. [PMID: 32356662 DOI: 10.1021/acs.nanolett.0c01427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the first cyclotron resonance study of monolayer graphene under double-moiré potentials in which the crystal axis of graphene is nearly aligned to those of both the top and bottom hexagonal boron nitride (h-BN) layers. Under mid-infrared light irradiation, we observe cyclotron resonance absorption with the following unique features: (1) cyclotron resonance magnetic field BCR is entirely different from that of nonaligned monolayer graphene, (2) BCR exhibits strong electron-hole asymmetry, and (3) splitting of BCR is observed for |ν| < 1, with the split maximum at |ν| = 1, resulting in eyeglass-shaped trajectories. These features are well explained by considering the large bandgap induced by the double moiré potentials, the electron-hole asymmetry in the Fermi velocity, and the Fermi-level-dependent enhancement of spin gaps, which suggests a large electron-electron correlation contribution in this system.
Collapse
Affiliation(s)
- Momoko Onodera
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Kei Kinoshita
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Rai Moriya
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Satoru Masubuchi
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
- National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Onodera M, Arai M, Masubuchi S, Kinoshita K, Moriya R, Watanabe K, Taniguchi T, Machida T. Electrical Control of Cyclotron Resonance in Dual-Gated Trilayer Graphene. NANO LETTERS 2019; 19:8097-8102. [PMID: 31658419 DOI: 10.1021/acs.nanolett.9b03280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Landau levels (LLs) of ABA-stacked trilayer graphene (TLG) are described as the combination of monolayer graphene-like LLs and bilayer graphene-like LLs. They are extremely sensitive to the applied perpendicular electric displacement field D. Here, we demonstrate the electrical control of cyclotron resonance (CR) in a dual-gated ABA-stacked TLG. Under the irradiation of mid-infrared light, we observed the photovoltage induced by the CR absorption through the photothermoelectric effect. The resonant magnetic field in CR is changed by applying D while keeping the carrier density constant. Numerical simulations based on the tight-binding model complement the experimental observations. We believe that the present study provides a boost to graphene-based photodetectors and photoemitters with an electrically tunable wavelength in mid-infrared to terahertz spectral ranges.
Collapse
Affiliation(s)
- Momoko Onodera
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| | - Miho Arai
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| | - Satoru Masubuchi
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| | - Kei Kinoshita
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| | - Rai Moriya
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| | - Kenji Watanabe
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Takashi Taniguchi
- National Institute for Materials Science , 1-1 Namiki , Tsukuba , Ibaraki 305-0044 , Japan
| | - Tomoki Machida
- Institute of Industrial Science , University of Tokyo , 4-6-1 Komaba , Meguro , Tokyo 153-8505 , Japan
| |
Collapse
|
5
|
Jiang Y, Lu Z, Gigliotti J, Rustagi A, Chen L, Berger C, de Heer W, Stanton CJ, Smirnov D, Jiang Z. Valley and Zeeman Splittings in Multilayer Epitaxial Graphene Revealed by Circular Polarization Resolved Magneto-infrared Spectroscopy. NANO LETTERS 2019; 19:7043-7049. [PMID: 31468976 DOI: 10.1021/acs.nanolett.9b02505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circular-polarization-resolved magneto-infrared studies of multilayer epitaxial graphene (MEG) are performed using tunable quantum cascade lasers in high magnetic fields up to 17.5 T. Landau level (LL) transitions in the monolayer and bilayer graphene inclusions of MEG are resolved, and considerable electron-hole asymmetry is observed in the extracted electronic band structure. For monolayer graphene, a four-fold splitting of the n = 0 to n = 1 LL transition is evidenced and attributed to the lifting of the valley and spin degeneracy of the zeroth LL and the broken electron-hole symmetry. The magnetic field dependence of the splitting further reveals its possible mechanisms. The best fit to experimental data yields effective g-factors, gVS* = 6.7 and gZS* = 4.8, for the valley and Zeeman splittings, respectively.
Collapse
Affiliation(s)
- Yuxuan Jiang
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
| | - Zhengguang Lu
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
- Department of Physics , Florida State University , Tallahassee , Florida 32306 , United States
| | - Jamey Gigliotti
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Avinash Rustagi
- Department of Physics , University of Florida , Gainesville , Florida 32611 , United States
| | - Li Chen
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
| | - Claire Berger
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Institut Néel , CNRS-Université Grenoble Alpes , 38042 Grenoble , France
| | - Walt de Heer
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
- Tianjin International Center of Nanoparticles and Nanosystems , Tianjin University , Tianjin 300072 , China
| | - Christopher J Stanton
- Department of Physics , University of Florida , Gainesville , Florida 32611 , United States
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory , Tallahassee , Florida 32310 , United States
| | - Zhigang Jiang
- School of Physics , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
6
|
Russell BJ, Zhou B, Taniguchi T, Watanabe K, Henriksen EA. Many-Particle Effects in the Cyclotron Resonance of Encapsulated Monolayer Graphene. PHYSICAL REVIEW LETTERS 2018; 120:047401. [PMID: 29437433 DOI: 10.1103/physrevlett.120.047401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/12/2017] [Indexed: 06/08/2023]
Abstract
We study the infrared cyclotron resonance of high-mobility monolayer graphene encapsulated in hexagonal boron nitride, and simultaneously observe several narrow resonance lines due to interband Landau-level transitions. By holding the magnetic field strength B constant while tuning the carrier density n, we find the transition energies show a pronounced nonmonotonic dependence on the Landau-level filling factor, ν∝n/B. This constitutes direct evidence that electron-electron interactions contribute to the Landau-level transition energies in graphene, beyond the single-particle picture. Additionally, a splitting occurs in transitions to or from the lowest Landau level, which is interpreted as a Dirac mass arising from coupling of the graphene and boron nitride lattices.
Collapse
Affiliation(s)
- B Jordan Russell
- Department of Physics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | - Boyi Zhou
- Department of Physics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| | - T Taniguchi
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan
| | - K Watanabe
- National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0044, Japan
| | - Erik A Henriksen
- Department of Physics, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, Washington University in St. Louis, 1 Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
7
|
Chung HC, Chang CP, Lin CY, Lin MF. Electronic and optical properties of graphene nanoribbons in external fields. Phys Chem Chem Phys 2016; 18:7573-616. [PMID: 26744847 DOI: 10.1039/c5cp06533j] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A review work is done for the electronic and optical properties of graphene nanoribbons in magnetic, electric, composite, and modulated fields. Effects due to the lateral confinement, curvature, stacking, non-uniform subsystems and hybrid structures are taken into account. The special electronic properties, induced by complex competitions between external fields and geometric structures, include many one-dimensional parabolic subbands, standing waves, peculiar edge-localized states, width- and field-dependent energy gaps, magnetic-quantized quasi-Landau levels, curvature-induced oscillating Landau subbands, crossings and anti-crossings of quasi-Landau levels, coexistence and combination of energy spectra in layered structures, and various peak structures in the density of states. There exist diverse absorption spectra and different selection rules, covering edge-dependent selection rules, magneto-optical selection rule, splitting of the Landau absorption peaks, intragroup and intergroup Landau transitions, as well as coexistence of monolayer-like and bilayer-like Landau absorption spectra. Detailed comparisons are made between the theoretical calculations and experimental measurements. The predicted results, the parabolic subbands, edge-localized states, gap opening and modulation, and spatial distribution of Landau subbands, have been identified by various experimental measurements.
Collapse
Affiliation(s)
- Hsien-Ching Chung
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan. and Center for Micro/Nano Science and Technology (CMNST), National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Peng Chang
- Center for General Education, Tainan University of Technology, Tainan 701, Taiwan
| | - Chiun-Yan Lin
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
8
|
Temperature-driven massless Kane fermions in HgCdTe crystals. Nat Commun 2016; 7:12576. [PMID: 27573209 PMCID: PMC5013552 DOI: 10.1038/ncomms12576] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/14/2016] [Indexed: 12/03/2022] Open
Abstract
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07±0.05) × 106 m s−1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe. Kane fermions are predicted to be tunable with external parameters such as temperature. Here, Teppe et al. show a band structure evolution of bulk HgCdTe as temperature is tuned across topological phase transition, demonstrating that Kane fermions change sign in rest-mass and remain constant in velocity.
Collapse
|
9
|
Do TN, Shih PH, Chang CP, Lin CY, Lin MF. Rich magneto-absorption spectra of AAB-stacked trilayer graphene. Phys Chem Chem Phys 2016; 18:17597-605. [PMID: 27305856 DOI: 10.1039/c6cp02275h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A generalized tight-binding model is developed to investigate the feature-rich magneto-optical properties of AAB-stacked trilayer graphene. Three intragroup and six intergroup inter-Landau-level (inter-LL) optical excitations largely enrich magneto-absorption peaks. In general, the former are much higher than the latter, depending on the phases and amplitudes of LL wavefunctions. The absorption spectra exhibit single- or twin-peak structures which are determined by quantum modes, LL energy spectra and Fermion distribution. The splitting LLs, with different localization centers (2/6 and 4/6 positions in a unit cell), can generate very distinct absorption spectra. There exist extra single peaks because of LL anti-crossings. AAB, AAA, ABA, and ABC stackings considerably differ from one another in terms of the inter-LL category, frequency, intensity, and structure of absorption peaks. The main characteristics of LL wavefunctions and energy spectra and the Fermi-Dirac function are responsible for the configuration-enriched magneto-optical spectra.
Collapse
Affiliation(s)
- Thi-Nga Do
- Department of Physics, National Cheng Kung University, Tainan, Taiwan.
| | - Po-Hsin Shih
- Department of Physics, National Cheng Kung University, Tainan, Taiwan.
| | - Cheng-Peng Chang
- Center for General Education, Tainan University of Technology, Tainan, Taiwan
| | - Chiun-Yan Lin
- Department of Physics, National Cheng Kung University, Tainan, Taiwan.
| | - Ming-Fa Lin
- Department of Physics, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
10
|
Abstract
Plasmons, the collective oscillations of interacting electrons, possess emergent properties that dramatically alter the optical response of metals. We predict the existence of a new class of plasmons-chiral Berry plasmons (CBPs)-for a wide range of 2D metallic systems including gapped Dirac materials. As we show, in these materials the interplay between Berry curvature and electron-electron interactions yields chiral plasmonic modes at zero magnetic field. The CBP modes are confined to system boundaries, even in the absence of topological edge states, with chirality manifested in split energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP phenomenology and propose setups for realizing them, including in anomalous Hall metals and optically pumped 2D Dirac materials. Realization of CBPs will offer a powerful paradigm for magnetic field-free, subwavelength optical nonreciprocity, in the mid-IR to terahertz range, with tunable splittings as large as tens of THz, as well as sensitive all-optical diagnostics of topological bands.
Collapse
Affiliation(s)
- Justin C W Song
- Walter Burke Institute of Theoretical Physics, California Institute of Technology, Pasadena, CA 91125; Institute of Quantum Information and Matter, California Institute of Technology, Pasadena, CA 91125; Department of Physics, California Institute of Technology, Pasadena, CA 91125;
| | - Mark S Rudner
- Center for Quantum Devices and Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
11
|
Riccardi E, Méasson MA, Cazayous M, Sacuto A, Gallais Y. Gate-Dependent Electronic Raman Scattering in Graphene. PHYSICAL REVIEW LETTERS 2016; 116:066805. [PMID: 26919008 DOI: 10.1103/physrevlett.116.066805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 06/05/2023]
Abstract
We report the direct observation of polarization resolved electronic Raman scattering in a gated monolayer graphene device. The evolution of the electronic Raman scattering spectra with gate voltage and its polarization dependence are in full agreement with theoretical expectations for nonresonant Raman processes involving interband electron-hole excitations across the Dirac cone. We further show that the spectral dependence of the electronic Raman scattering signal can be simply described by the dynamical polarizability of graphene in the long wavelength limit. The possibility to directly observe Dirac fermion excitations in graphene opens the way to promising Raman investigations of electronic properties of graphene and other 2D crystals.
Collapse
Affiliation(s)
- E Riccardi
- Laboratoire Matériaux et Phénoménes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M-A Méasson
- Laboratoire Matériaux et Phénoménes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - M Cazayous
- Laboratoire Matériaux et Phénoménes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - A Sacuto
- Laboratoire Matériaux et Phénoménes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| | - Y Gallais
- Laboratoire Matériaux et Phénoménes Quantiques (UMR 7162 CNRS), Université Paris Diderot-Paris 7, Bâtiment Condorcet, 75205 Paris Cedex 13, France
| |
Collapse
|
12
|
Gao X, Wang X, Chen F, Qi H, Wang X, Ming D, Zhou P. Research on brain induced effect by extremely low frequency pulsed magnetic stimulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:2613-6. [PMID: 25570526 DOI: 10.1109/embc.2014.6944158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In order to evaluate the influence of extremely low frequency pulsed magnetic fields (ELF PMF) on human brain, we conducted the magnetic stimulation experiments (1 Hz, 10 mT, 20 min), and analyzed the changes of spontaneous EEG activity from 10 subjects. Compared with sham exposure group, the EEG power of theta band (3.5-7.5 Hz) and lower-alpha band (7.5-10 Hz) from the stimulation group increased significantly after magnetic stimulation. By analyzing the latency period and amplitude of P300 in auditory oddball task, we found that the latency period extended and the amplitude decreased. We suggested that these results might be explained via event-related synchronization induced by magnetic stimulation.
Collapse
|
13
|
Lin YP, Lin CY, Ho YH, Do TN, Lin MF. Magneto-optical properties of ABC-stacked trilayer graphene. Phys Chem Chem Phys 2015; 17:15921-7. [PMID: 26020611 DOI: 10.1039/c5cp02496j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The generalized tight-binding model is developed to investigate the magneto-optical absorption spectra of ABC-stacked trilayer graphene.
Collapse
Affiliation(s)
- Yi-Ping Lin
- Department of Physics
- National Cheng Kung University
- 701 Tainan
- Taiwan
| | - Chiun-Yan Lin
- Department of Physics
- National Cheng Kung University
- 701 Tainan
- Taiwan
| | - Yen-Hung Ho
- National Tsing Hua University
- 300 Hsinchu
- Taiwan
| | - Thi-Nga Do
- Department of Physics
- National Cheng Kung University
- 701 Tainan
- Taiwan
| | - Ming-Fa Lin
- Department of Physics
- National Cheng Kung University
- 701 Tainan
- Taiwan
| |
Collapse
|
14
|
Chen SC, Chiu CW, Wu CL, Lin MF. Shift-enriched optical properties in bilayer graphene. RSC Adv 2014. [DOI: 10.1039/c4ra13384f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Hartmann RR, Kono J, Portnoi ME. Terahertz science and technology of carbon nanomaterials. NANOTECHNOLOGY 2014; 25:322001. [PMID: 25051014 DOI: 10.1088/0957-4484/25/32/322001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The diverse applications of terahertz (THz) radiation and its importance to fundamental science makes finding ways to generate, manipulate and detect THz radiation one of the key areas of modern applied physics. One approach is to utilize carbon nanomaterials, in particular, single-wall carbon nanotubes and graphene. Their novel optical and electronic properties offer much promise to the field of THz science and technology. This article describes the past, current, and future of THz science and technology of carbon nanotubes and graphene. We will review fundamental studies such as THz dynamic conductivity, THz nonlinearities and ultrafast carrier dynamics as well as THz applications such as THz sources, detectors, modulators, antennas and polarizers.
Collapse
Affiliation(s)
- R R Hartmann
- Physics Department, De La Salle University, 2401 Taft Avenue, Manila, Philippines
| | | | | |
Collapse
|
16
|
Tabert CJ, Nicol EJ. Valley-spin polarization in the magneto-optical response of silicene and other similar 2D crystals. PHYSICAL REVIEW LETTERS 2013; 110:197402. [PMID: 23705739 DOI: 10.1103/physrevlett.110.197402] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Indexed: 06/02/2023]
Abstract
We calculate the magneto-optical conductivity and electronic density of states for silicene, the silicon equivalent of graphene, and similar crystals such as germanene. In the presence of a perpendicular magnetic field and electric field gating, we note that four spin- and valley-polarized levels can be seen in the density of states, and transitions between these levels lead to similarly polarized absorption lines in the longitudinal, transverse Hall, and circularly polarized dynamic conductivity. While previous spin and valley polarization predicted for the conductivity is only present in the response to circularly polarized light, we show that distinct spin and valley polarization can also be seen in the longitudinal magneto-optical conductivity at experimentally attainable energies. The frequency of the absorption lines may be tuned by the electric and magnetic field to onset in a range varying from THz to the infrared. This potential to isolate charge carriers of definite spin and valley label may make silicene a promising candidate for spin- and valleytronic devices.
Collapse
Affiliation(s)
- C J Tabert
- Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | |
Collapse
|
17
|
Yan H, Li Z, Li X, Zhu W, Avouris P, Xia F. Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene. NANO LETTERS 2012; 12:3766-71. [PMID: 22690695 DOI: 10.1021/nl3016335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We present infrared spectroscopy study of plasmon excitations in graphene in high magnetic fields. The plasmon resonance in patterned graphene disks splits into edge and bulk plasmon modes in magnetic fields. Remarkably, the edge plasmons develop increasingly longer lifetimes in high fields due to the suppression of backscattering. Moreover, due to the linear band structure of graphene, the splitting of the edge and bulk plasmon modes develops a strong doping dependence, which differs from the behavior of conventional semiconductor two-dimensional electron gas (2DEG) systems. We also observe the appearance of a higher order mode indicating an anharmonic confinement potential even in these well-defined circular disks. Our work not only opens an avenue for the investigation of the properties of Dirac magnetoplasmons but also supports the great potential of graphene for tunable terahertz magneto-optical devices.
Collapse
Affiliation(s)
- Hugen Yan
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, United States.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The light-hole g value in Al x Ga 1-x As is found to show scaling behavior as a function of quantum well width, g ≃( well width )-β with β ≃ 0.3. When x is varied to change the Ga concentration there is a critical value of the concentration of 1 - x0 = 0.88, at which the g value vanishes, g⊥ = 0. There is a scaling behavior, g⊥ = 2[1 - (1 - x)/(1 - xo)]y. The g⊥ data varies from about -0.42 for x = 0 to 0.60 for x = 0.374. Hence, the large variations in the g values are due to a phase transition. Similar results for InAs are also discussed. The contribution to the g value arising from the Calogero-type potential is deduced, which gives rise to wave functions in the form of Jack polynomials.
Collapse
Affiliation(s)
- KESHAV N. SHRIVASTAVA
- School of Physics, University of Hyderabad, Hyderabad 500046, India
- Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Li WP, Wang ZW, Yin JW, Yu YF. The effects of the magnetopolaron on the energy gap opening in graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:135301. [PMID: 22392819 DOI: 10.1088/0953-8984/24/13/135301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The magnetopolaron is formed via electron-acoustic deformation phonon coupling in the presence of a magnetic field in monolayer graphene. We find that an energy gap (EG) is opened due to the electron-phonon coupling. Both linear and square-root forms for the dependence of the EG on the magnetic field are obtained, which are in agreement with experimental measurements. Furthermore, we suggest that the EG can be estimated through observing the variation of Fermi velocity in cyclotron resonance experiments. The relation of the EG with the Debye cut-off wavenumber is also discussed.
Collapse
Affiliation(s)
- Wei-Ping Li
- Department of Physics and Electronic Informational Engineering, Chifeng University, Inner Mongolia 024000, People's Republic of China.
| | | | | | | |
Collapse
|
20
|
Lozovik YE, Sokolik AA. Influence of Landau level mixing on the properties of elementary excitations in graphene in strong magnetic field. NANOSCALE RESEARCH LETTERS 2012; 7:134. [PMID: 22340359 PMCID: PMC3386025 DOI: 10.1186/1556-276x-7-134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/16/2012] [Indexed: 05/31/2023]
Abstract
Massless Dirac electrons in graphene fill Landau levels with energies scaled as square roots of their numbers. Coulomb interaction between electrons leads to mixing of different Landau levels. The relative strength of this interaction depends only on dielectric susceptibility of surrounding medium and can be large in suspended graphene. We consider influence of Landau level mixing on the properties of magnetoexcitons and magnetoplasmons-elementary electron-hole excitations in graphene in quantizing magnetic field. We show that, at small enough background dielectric screening, the mixing leads to very essential change of magnetoexciton and magnetoplasmon dispersion laws in comparison with the lowest Landau level approximation.PACS: 73.22.Pr; 71.35.Ji; 73.43.Mp; 71.70.Gm.
Collapse
Affiliation(s)
- Yurii E Lozovik
- Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190, Troitsk, Moscow Region, Russia
- Moscow Institute of Physics and Technology, Institutskii Per. 9, 141700, Dolgoprudny, Moscow Region, Russia
| | - Alexey A Sokolik
- Institute for Spectroscopy, Russian Academy of Sciences, Fizicheskaya 5, 142190, Troitsk, Moscow Region, Russia
| |
Collapse
|
21
|
Orlita M, Faugeras C, Grill R, Wysmolek A, Strupinski W, Berger C, de Heer WA, Martinez G, Potemski M. Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene. PHYSICAL REVIEW LETTERS 2011; 107:216603. [PMID: 22181904 DOI: 10.1103/physrevlett.107.216603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Indexed: 05/31/2023]
Abstract
The energy dependence of the electronic scattering time is probed by Landau level spectroscopy in quasineutral multilayer epitaxial graphene. From the broadening of overlapping Landau levels we find that the scattering rate 1/τ increases linearly with energy ϵ. This implies a surprising property of the Landau level spectrum in graphene-the number of resolved Landau levels remains constant with the applied magnetic field. Insights are given about possible scattering mechanisms and carrier mobilities in the graphene system investigated.
Collapse
Affiliation(s)
- M Orlita
- Laboratoire National des Champs Magnétiques Intenses, CNRS-UJF-UPS-INSA, Grenoble, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu W, Shi QW, Hou JG, Wang XR. Comment on "Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy". PHYSICAL REVIEW LETTERS 2010; 105:159703-159704. [PMID: 21230948 DOI: 10.1103/physrevlett.105.159703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Indexed: 05/30/2023]
|