1
|
Thoms E, Richert R. A "hump" in the third-order dielectric response of a highly polar liquid: Now you see it, now you don't. J Chem Phys 2025; 162:114501. [PMID: 40094237 DOI: 10.1063/5.0248963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/13/2024] [Indexed: 03/19/2025] Open
Abstract
We have measured the linear and nonlinear dielectric responses of S-methoxypropylene carbonate, a highly polar glass-former, for which it has been reported that the "hump," which is typical of third harmonic susceptibilities, disappears across a 5 K temperature change. To understand this unusual feature, we have measured the responses to high amplitude ac and dc electric fields at the fundamental frequency. The static limits of these results are entered into a model aimed at reproducing nonlinear dielectric susceptibility spectra using the concept of a fictive electric field. This model reproduces the "hump" in the third-harmonic response and its seeming disappearance. It is revealed that the "hump" is predominantly the result of reduced time constants, a consequence of the energy the sample absorbs from the electric field. At elevated temperatures, the "hump" only appears to vanish because its reduced amplitude submerges below the extraordinarily high level of polarization saturation of this liquid.
Collapse
Affiliation(s)
- Erik Thoms
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
2
|
Loidl A, Lunkenheimer P, Samwer K. Prigogine-Defay ratio of glassy freezing scales with liquid fragility. Phys Rev E 2025; 111:035407. [PMID: 40247531 DOI: 10.1103/physreve.111.035407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 03/03/2025] [Indexed: 04/19/2025]
Abstract
A detailed study of published experimental data for a variety of materials on the incremental variation of heat capacity, thermal expansion, and compressibility at glassy freezing reveals a striking dependence of the Prigogine-Defay ratio R on the fragility index m. At high m, R approaches values of ∼1, the Ehrenfest expectation for second-order continuous phase transitions, while R reaches values >20 for low fragilities. We explain this correlation by the degree of separation of the glassy freezing temperature from a hidden phase transition into an ideal low-temperature glass.
Collapse
Affiliation(s)
- A Loidl
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - P Lunkenheimer
- University of Augsburg, Experimental Physics V, 86135 Augsburg, Germany
| | - K Samwer
- University of Göttingen, I. Physikalisches Institut, Göttingen, Germany
| |
Collapse
|
3
|
Pabst F, Baroni S. Glassy dynamics in a glass-forming liquid: A first-principles study of toluene. Phys Rev E 2025; 111:L023401. [PMID: 40103079 DOI: 10.1103/physreve.111.l023401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/24/2024] [Indexed: 03/20/2025]
Abstract
The microscopic understanding of the dramatic increase in viscosity of liquids when cooled toward the glass transition is a major unresolved issue in condensed matter physics. Here, we use machine learning methods to accelerate molecular dynamics simulations with first-principles accuracy for the glass-former toluene. We show that the increase in viscosity is intimately linked to the increasing number of dynamically correlated molecules N^{*}. While certain hallmark features of glassy dynamics, like physical aging, are linked to N^{*} as well, others, like relaxation stretching, are not.
Collapse
Affiliation(s)
- Florian Pabst
- Scuola Internazionale Superiore di Studi Avanzati, SISSA - , Trieste, Italy
| | - Stefano Baroni
- Scuola Internazionale Superiore di Studi Avanzati, SISSA - , Trieste, Italy
- Istituto dell'Officina dei Materiali, CNR-IOM, SISSA Unit, Trieste, Italy
| |
Collapse
|
4
|
Das R, Bhowmik BP, Puthirath AB, Narayanan TN, Karmakar S. Soft pinning: Experimental validation of static correlations in supercooled molecular glass-forming liquids. PNAS NEXUS 2023; 2:pgad277. [PMID: 37680690 PMCID: PMC10482383 DOI: 10.1093/pnasnexus/pgad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/14/2023] [Indexed: 09/09/2023]
Abstract
Enormous enhancement in the viscosity of a liquid near its glass transition is a hallmark of glass transition. Within a class of theoretical frameworks, it is connected to growing many-body static correlations near the transition, often called "amorphous ordering." At the same time, some theories do not invoke the existence of such a static length scale in the problem. Thus, proving the existence and possible estimation of the static length scales of amorphous order in different glass-forming liquids is very important to validate or falsify the predictions of these theories and unravel the true physics of glass formation. Experiments on molecular glass-forming liquids become pivotal in this scenario as the viscosity grows several folds (∼ 10 14 ), and simulations or colloidal glass experiments fail to access these required long-time scales. Here we design an experiment to extract the static length scales in molecular liquids using dilute amounts of another large molecule as a pinning site. Results from dielectric relaxation experiments on supercooled Glycerol with different pinning concentrations of Sorbitol and Glucose, as well as the simulations on a few model glass-forming liquids with pinning sites, indicate the versatility of the proposed method, opening possible new avenues to study the physics of glass transition in other molecular liquids.
Collapse
Affiliation(s)
- Rajsekhar Das
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Bhanu Prasad Bhowmik
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anand B Puthirath
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
- Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Tharangattu N Narayanan
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Smarajit Karmakar
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Hyderabad 500046, India
| |
Collapse
|
5
|
Diezemann G. Nonlinear response theory for Markov processes. IV. The asymmetric double-well potential model revisited. Phys Rev E 2022; 106:064122. [PMID: 36671146 DOI: 10.1103/physreve.106.064122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The dielectric response of noninteracting dipoles is discussed in the framework of the classical model of stochastic reorientations in an asymmetric double-well potential (ADWP). In the nonlinear regime, this model exhibits some pecularities in the static response. We find that the saturation behavior of the symmetric double-well potential model does not follow the Langevin function and only in the linear regime are the standard results recovered. If a finite asymmetry is assumed, then the nonlinear susceptibilities are found to change the sign at a number of characteristic temperatures that depend on the magnitude of the asymmetry, as has been observed earlier for the third-order and fifth-order responses. If the kinetics of the barrier crossing in the ADWP model is described as a two-state model, then we can give analytical expressions for the values of the characteristic temperatures. The results for the response obtained from a (numerical) solution of the Fokker-Planck equation for the Brownian motion in a model ADWP behaves very similarly to the two-state model for high barriers. For small barriers no clear-cut timescale separation between the barrier crossing process and the intrawell relaxation exists and the model exhibits a number of timescales. In this case, the frequency-dependent linear susceptibility at low temperatures is dominated by the fast intrawell transitions and at higher temperatures by the barrier crossing kinetics. We find that for nonlinear susceptibilities the latter process appears to be more important and the intrawell transitions play only a role at the lowest temperatures.
Collapse
Affiliation(s)
- Gregor Diezemann
- Department Chemie, Johannes Gutenberg Universität Mainz, 55128 Mainz, Germany
| |
Collapse
|
6
|
Laudicina CCL, Luo C, Miyazaki K, Janssen LMC. Dynamical susceptibilities near ideal glass transitions. Phys Rev E 2022; 106:064136. [PMID: 36671198 DOI: 10.1103/physreve.106.064136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Building on the recently derived inhomogeneous mode-coupling theory, we extend the generalized mode-coupling theory of supercooled liquids to inhomogeneous environments. This provides a first-principles-based, systematic, and rigorous way of deriving high-point dynamical susceptibilities from variations of the many-body dynamic structure factors with respect to their conjugate field. This framework allows for a fully microscopic possibility to probe for collective relaxation mechanisms in supercooled liquids near the mode-coupling glass transition. The behavior of these dynamical susceptibilities is then studied in the context of simplified self-consistent relaxation models.
Collapse
Affiliation(s)
- Corentin C L Laudicina
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Chengjie Luo
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | | | - Liesbeth M C Janssen
- Soft Matter & Biological Physics, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Hem J, Crauste-Thibierge C, Merlette TC, Clément F, Long DR, Ciliberto S. Microscopic Dynamics in the Strain Hardening Regime of Glassy Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jérôme Hem
- ENS de Lyon, CNRS, Laboratoire de physique, F-69342 Lyon, France
| | | | - Thomas C. Merlette
- CNRS/Solvay, UMR 5268, Laboratoire Polymères et Matériaux Avancés, 87 avenue des Frères Perret, 69192 Cedex Saint Fons, France
| | - Florence Clément
- CNRS/Solvay, UMR 5268, Laboratoire Polymères et Matériaux Avancés, 87 avenue des Frères Perret, 69192 Cedex Saint Fons, France
| | - Didier R. Long
- CNRS/Solvay, UMR 5268, Laboratoire Polymères et Matériaux Avancés, 87 avenue des Frères Perret, 69192 Cedex Saint Fons, France
- CNRS, INSA Lyon, MATEIS, UMR5510, Univ. Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Sergio Ciliberto
- ENS de Lyon, CNRS, Laboratoire de physique, F-69342 Lyon, France
| |
Collapse
|
8
|
Novikov VN, Sokolov AP. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1101. [PMID: 36010765 PMCID: PMC9407199 DOI: 10.3390/e24081101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Understanding the microscopic mechanism of the transition of glass remains one of the most challenging topics in Condensed Matter Physics. What controls the sharp slowing down of molecular motion upon approaching the glass transition temperature Tg, whether there is an underlying thermodynamic transition at some finite temperature below Tg, what the role of cooperativity and heterogeneity are, and many other questions continue to be topics of active discussions. This review focuses on the mechanisms that control the steepness of the temperature dependence of structural relaxation (fragility) in glass-forming liquids. We present a brief overview of the basic theoretical models and their experimental tests, analyzing their predictions for fragility and emphasizing the successes and failures of the models. Special attention is focused on the connection of fast dynamics on picosecond time scales to the behavior of structural relaxation on much longer time scales. A separate section discusses the specific case of polymeric glass-forming liquids, which usually have extremely high fragility. We emphasize the apparent difference between the glass transitions in polymers and small molecules. We also discuss the possible role of quantum effects in the glass transition of light molecules and highlight the recent discovery of the unusually low fragility of water. At the end, we formulate the major challenges and questions remaining in this field.
Collapse
Affiliation(s)
- Vladimir N. Novikov
- Institute of Automation and Electrometry, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Alexei P. Sokolov
- Department of Chemistry and Joint Institute for Neutron Sciences, University of Tennessee, Knoxville, TN 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
9
|
Böhmer T, Gabriel JP, Zeißler R, Richter T, Blochowicz T. Glassy dynamics in polyalcohols: intermolecular simplicity vs. intramolecular complexity. Phys Chem Chem Phys 2022; 24:18272-18280. [PMID: 35880532 DOI: 10.1039/d2cp01969h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using depolarized light scattering, we have recently shown that structural relaxation in a broad range of supercooled liquids follows, to good approximation, a generic line shape with high-frequency power law ω-1/2. We now continue this study by investigating a systematic series of polyalcohols (PAs), frequently used as model-systems in glass-science, i.a., because the width of their respective dielectric loss spectra varies strongly along the series. Our results reveal that the microscopic origin of the observed relaxation behavior varies significantly between different PAs: while short-chained PAs like glycerol rotate as more or less rigid entities and their light scattering spectra follow the generic shape, long-chained PAs like sorbitol display pronounced intramolecular dynamic contributions on the time scale of structural relaxation, leading to systematic deviations from the generic shape. Based on these findings we discuss an important limitation for observing the generic shape in a supercooled liquid: the dynamics that is probed needs to reflect the intermolecular dynamic heterogeneity, and must not be superimposed by effects of intramolecular dynamic heterogeneity.
Collapse
Affiliation(s)
- Till Böhmer
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Jan Philipp Gabriel
- Glass and Time, IMFUFA, Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Rolf Zeißler
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Timo Richter
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| | - Thomas Blochowicz
- Institute for Condensed Matter Physics, Technical University Darmstadt, Darmstadt, Germany.
| |
Collapse
|
10
|
Zhang R, Troya D, Madsen LA. Prolonged Association between Water Molecules under Hydrophobic Nanoconfinement. J Phys Chem B 2021; 125:13767-13777. [PMID: 34898212 DOI: 10.1021/acs.jpcb.1c06810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present an investigation of the dynamics of water confined among rigid carbon rods and between parallel graphene sheets with molecular dynamics simulations. Diffusion coefficients, activation energy of diffusion, and residence-time correlation functions as a function of confinement geometry reveal a retardation of water dynamics under hydrophobic confinement compared to bulk water. In fact, water under various confinements possesses longer associations with its neighbors and exhibits diffusion dynamics characteristic of a lower temperature. Analysis of the residence-time correlation functions reveals long and short residence times, which we relate to the diffusion coefficient and activation energy of diffusion, respectively. Additional investigations reveal how the level of confining surface hydrophobicity affects water dynamics, further broadening our understanding of water diffusion inside diverse media. Overall, this study sheds light on the physical origin of retarded water dynamics under hydrophobic confinement and the close relationship between residence times and diffusion behavior.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Diego Troya
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A Madsen
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
11
|
Biroli G, Bouchaud JP, Ladieu F. Amorphous Order and Nonlinear Susceptibilities in Glassy Materials. J Phys Chem B 2021; 125:7578-7586. [PMID: 34251214 DOI: 10.1021/acs.jpcb.1c00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We review 15 years of theoretical and experimental work on the nonlinear response of glassy systems. We argue that an anomalous growth of the peak value of nonlinear susceptibilities is a signature of growing "amorphous order" in the system, with spin-glasses as a case in point. Experimental results on supercooled liquids are fully compatible with the random first-order transition (RFOT) prediction of compact "glassites" of increasing volume as temperature is decreased, or as the system ages. We clarify why such a behavior is hard to explain within purely kinetic theories of glass formation, despite recent claims to the contrary.
Collapse
Affiliation(s)
- Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Jean-Philippe Bouchaud
- CFM, 23 rue de l'Université, F-75007 Paris, France.,Académie des Sciences, Quai de Conti, F-75006 Paris, France
| | - Francois Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, F-91191 Cedex Gif-sur-Yvette, France
| |
Collapse
|
12
|
Richert R, Matyushov DV. Quantifying dielectric permittivities in the nonlinear regime. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:385101. [PMID: 34198283 DOI: 10.1088/1361-648x/ac108f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
In contrast to the static dielectric permittivity,ε, associated with linear response, its high-field counterpart,εE, is not a material specific quantity, but rather depends on the experimental method used to determine the nonlinear dielectric effect (NDE). Here, we defineεEin a manner consistent with how high field permittivities are typically derived from a capacitance measurement using high voltages. Based upon characterizing the materials nonlinear behavior via its third order susceptibility,χ3, the relations between a givenχ3and the observableεEis calculated for six different experimental or theoretical approaches to NDEs in the static limit. It is argued that the quantityχ3is superior overεEor the Piekara factor, (εE-ε)/E2, because it facilitates an unambiguous comparison among different experimental techniques and it provides a more robust connection between experiment and theory.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| | - Dmitry V Matyushov
- Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, United States of America
| |
Collapse
|
13
|
Speck T. Modeling non-linear dielectric susceptibilities of supercooled molecular liquids. J Chem Phys 2021; 155:014506. [PMID: 34241396 DOI: 10.1063/5.0056657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in high-precision dielectric spectroscopy have enabled access to non-linear susceptibilities of polar molecular liquids. The observed non-monotonic behavior has been claimed to provide strong support for theories of dynamic arrest based on the thermodynamic amorphous order. Here, we approach this question from the perspective of dynamic facilitation, an alternative view focusing on emergent kinetic constraints underlying the dynamic arrest of a liquid approaching its glass transition. We derive explicit expressions for the frequency-dependent higher-order dielectric susceptibilities exhibiting a non-monotonic shape, the height of which increases as temperature is lowered. We demonstrate excellent agreement with the experimental data for glycerol, challenging the idea that non-linear response functions reveal correlated relaxation in supercooled liquids.
Collapse
Affiliation(s)
- Thomas Speck
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55128 Mainz, Germany
| |
Collapse
|
14
|
Ghoshal D, Joy A. Connecting relaxation time to a dynamical length scale in athermal active glass formers. Phys Rev E 2021; 102:062605. [PMID: 33465951 DOI: 10.1103/physreve.102.062605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/17/2020] [Indexed: 11/07/2022]
Abstract
Supercooled liquids display dynamics that are inherently heterogeneous in space. This essentially means that at temperatures below the melting point, particle dynamics in certain regions of the liquid can be orders of magnitude faster than other regions. Often dubbed dynamical heterogeneity, this behavior has fascinated researchers involved in the study of glass transition for over two decades. A fundamentally important question in all glass transition studies is whether one can connect the growing relaxation time to a concomitantly growing length scale. In this paper, we go beyond the realm of ordinary glass forming liquids and study the origin of a growing dynamical length scale ξ in a self-propelled "active" glass former. This length scale, which is constructed using structural correlations, agrees well with the average size of the clusters of slow-moving particles that are formed as the liquid becomes spatially heterogeneous. We further report that the concomitantly growing α-relaxation time exhibits a simple scaling law, τ_{α}∼exp(μξ/T_{eff}), with μ as an effective chemical potential, T_{eff} as the effective temperature, and μξ as the growing free energy barrier for cluster rearrangements. The findings of our study are valid over four decades of persistence times, and hence they could be very useful in understanding the slow dynamics of a generic active liquid such as an active colloidal suspension, or a self-propelled granular medium.
Collapse
Affiliation(s)
- Dipanwita Ghoshal
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Ashwin Joy
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| |
Collapse
|
15
|
Cheng S, Sokolov AP. Correlation between the temperature evolution of the interfacial region and the growing dynamic cooperativity length scale. J Chem Phys 2020; 152:094904. [PMID: 33480747 DOI: 10.1063/1.5143360] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
16
|
Araujo S, Delpouve N, Domenek S, Guinault A, Golovchak R, Szatanik R, Ingram A, Fauchard C, Delbreilh L, Dargent E. Cooperativity Scaling and Free Volume in Plasticized Polylactide. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven Araujo
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
- CEREMA, Direction territoriale Normandie Centre, 76120 Grand-Quevilly, France
| | - Nicolas Delpouve
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Sandra Domenek
- UMR Ingénierie Procédés Aliments, AgroParisTech, INRA, Université de Saclay, 1 Avenue des Olympiades, F-91744 Massy Cedex, France
| | - Alain Guinault
- Laboratoire PIMM, Ensam, CNRS, Cnam, 151 Boulevard de l’Hôpital, 75013 Paris, France
| | - Roman Golovchak
- Department of Physics and Astronomy, Austin Peay State University, Clarksville, Tennessee 37044 United States
| | - Roman Szatanik
- Institute of Physics, Opole University, Opole PL-45052, Poland
| | - Adam Ingram
- Faculty of Physics, Opole University of Technology, Opole PL-45370, Poland
| | - Cyrille Fauchard
- CEREMA, Direction territoriale Normandie Centre, 76120 Grand-Quevilly, France
| | - Laurent Delbreilh
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| | - Eric Dargent
- Normandie Univ, UNIROUEN Normandie, INSA Rouen, CNRS, Groupe de Physique des Matériaux, 76000 Rouen, France
| |
Collapse
|
17
|
Sarracino A, Vulpiani A. On the fluctuation-dissipation relation in non-equilibrium and non-Hamiltonian systems. CHAOS (WOODBURY, N.Y.) 2019; 29:083132. [PMID: 31472486 DOI: 10.1063/1.5110262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
We review generalized fluctuation-dissipation relations, which are valid under general conditions even in "nonstandard systems," e.g., out of equilibrium and/or without a Hamiltonian structure. The response functions can be expressed in terms of suitable correlation functions computed in the unperturbed dynamics. In these relations, typically, one has nontrivial contributions due to the form of the stationary probability distribution; such terms take into account the interaction among the relevant degrees of freedom in the system. We illustrate the general formalism with some examples in nonstandard cases, including driven granular media, systems with a multiscale structure, active matter, and systems showing anomalous diffusion.
Collapse
Affiliation(s)
- A Sarracino
- Dipartimento di Ingegneria, Università della Campania "L. Vanvitelli," via Roma 29, 81031 Aversa (CE), Italy
| | - A Vulpiani
- Dipartimento di Fisica, Università Sapienza-p.le A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
18
|
Yang X, Tong H, Wang WH, Chen K. Emergence and percolation of rigid domains during the colloidal glass transition. Phys Rev E 2019; 99:062610. [PMID: 31330594 DOI: 10.1103/physreve.99.062610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 06/10/2023]
Abstract
Using video microscopy, we measure local spatial constraints in disordered binary colloidal samples, ranging from dilute fluids to jammed glasses, and probe their spatial and temporal correlations to local dynamics during the glass transition. We observe the emergence of significant correlations between constraints and local dynamics within the Lindemann criterion, which coincides with the onset of glassy dynamics in supercooled liquids. Rigid domains in fluids are identified based on local constraints and demonstrate a percolation transition near the glass transition, accompanied by the emergence of dynamical heterogeneities. Our results show that spatial constraint instead of the geometry of amorphous structures is the key that connects the complex spatial-temporal correlations in disordered materials.
Collapse
Affiliation(s)
- Xiunan Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hua Tong
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Wei-Hua Wang
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
19
|
Berthier L, Biroli G, Bouchaud JP, Tarjus G. Can the glass transition be explained without a growing static length scale? J Chem Phys 2019; 150:094501. [DOI: 10.1063/1.5086509] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Giulio Biroli
- Institut de physique théorique, Université Paris Saclay, CEA, CNRS, F-91191 Gif-sur-Yvette, France
- Laboratoire de Physique Statistique, École Normale Supérieure, CNRS, PSL Research University, Sorbonne Université, 75005 Paris, France
| | | | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, 75005 Paris, France
| |
Collapse
|
20
|
Uhl M, Fischer JKH, Sippel P, Bunzen H, Lunkenheimer P, Volkmer D, Loidl A. Glycerol confined in zeolitic imidazolate frameworks: The temperature-dependent cooperativity length scale of glassy freezing. J Chem Phys 2019; 150:024504. [DOI: 10.1063/1.5080334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- M. Uhl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - J. K. H. Fischer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P. Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - H. Bunzen
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - D. Volkmer
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
21
|
Reuter D, Binder C, Lunkenheimer P, Loidl A. Ionic conductivity of deep eutectic solvents: the role of orientational dynamics and glassy freezing. Phys Chem Chem Phys 2019; 21:6801-6809. [DOI: 10.1039/c9cp00742c] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dielectric spectroscopy reveals that the ionic conductivity of deep eutectic solvents is closely coupled to their reorientational dipolar relaxation dynamics.
Collapse
Affiliation(s)
- Daniel Reuter
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Catharina Binder
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Peter Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| | - Alois Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
- 86135 Augsburg
- Germany
| |
Collapse
|
22
|
Richert R. Perspective: Nonlinear approaches to structure and dynamics of soft materials. J Chem Phys 2018; 149:240901. [DOI: 10.1063/1.5065412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA and I. Physikalisches Institut, Universität Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
23
|
Wieland F, Sokolov AP, Böhmer R, Gainaru C. Transient Nonlinear Response of Dynamically Decoupled Ionic Conductors. PHYSICAL REVIEW LETTERS 2018; 121:064503. [PMID: 30141682 DOI: 10.1103/physrevlett.121.064503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The present study demonstrates that large electric fields progressively enhance the conductivity of ionic systems up to timescales corresponding to those on which their structural rearrangements take place. Yet, in many ionic materials, some regarded as candidates for electrical energy storage applications, the structural relaxation process can be tremendously slower than (or highly decoupled from) the charge fluctuations. Consequently, nonlinear dielectric spectroscopy may be employed to access rheological information in dynamically decoupled ionic conductors, whereas the combination of large electric power density and good mechanical stability, both technologically highly desired, imposes specific experimental constraints to reliably determine the steady-state conductivity of such materials.
Collapse
Affiliation(s)
- Felix Wieland
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Alexei P Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Roland Böhmer
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Catalin Gainaru
- Fakultät Physik, Technische Universität Dortmund, 44221 Dortmund, Germany
| |
Collapse
|
24
|
Abstract
A statistical mechanical model previously adopted for the analysis of the α-relaxation in structural glass formers is rederived within a general theoretical framework originally developed for systems approaching the ideal glassy state. The interplay between nonexponentiality and cooperativity is reconsidered in the light of energy landscape concepts. The method is used to estimate the cooperativity in orientationally disordered crystals, either from the analysis of literature data on linear dielectric response or from the enthalpy relaxation function obtained by temperature-modulated calorimetry. Knowledge of the specific heat step due to the freezing of the configurational or conformational modes at the glass transition is needed in order to properly account for the extent to which the relaxing system deviates from equilibrium during the rearrangement processes. A number of plastic crystals have been analyzed, and relatively higher cooperativities are found in the presence of hydrogen bonding interaction.
Collapse
Affiliation(s)
| | - Elpidio Tombari
- CNR, Istituto per i Processi Chimico-Fisici, v. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
25
|
Abou B, Colin R, Lecomte V, Pitard E, van Wijland F. Activity statistics in a colloidal glass former: Experimental evidence for a dynamical transition. J Chem Phys 2018; 148:164502. [DOI: 10.1063/1.5006924] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Bérengère Abou
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS-P7, Université Paris Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Rémy Colin
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS-P7, Université Paris Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
| | - Vivien Lecomte
- LIPhy, Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| | - Estelle Pitard
- Laboratoire Charles Coulomb, UMR 5221 CNRS-UM2, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes, UMR 7057 CNRS-P7, Université Paris Diderot, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
26
|
Gadige P, Albert S, Michl M, Bauer T, Lunkenheimer P, Loidl A, Tourbot R, Wiertel-Gasquet C, Biroli G, Bouchaud JP, Ladieu F. Unifying different interpretations of the nonlinear response in glass-forming liquids. Phys Rev E 2018; 96:032611. [PMID: 29346923 DOI: 10.1103/physreve.96.032611] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 11/07/2022]
Abstract
This work aims at reconsidering several interpretations coexisting in the recent literature concerning nonlinear susceptibilities in supercooled liquids. We present experimental results on glycerol and propylene carbonate, showing that the three independent cubic susceptibilities have very similar frequency and temperature dependences, for both their amplitudes and phases. This strongly suggests a unique physical mechanism responsible for the growth of these nonlinear susceptibilities. We show that the framework proposed by two of us [J.-P. Bouchaud and G. Biroli, Phys. Rev. B 72, 064204 (2005)PRBMDO1098-012110.1103/PhysRevB.72.064204], where the growth of nonlinear susceptibilities is intimately related to the growth of glassy domains, accounts for all the salient experimental features. We then review several complementary and/or alternative models and show that the notion of cooperatively rearranging glassy domains is a key (implicit or explicit) ingredient to all of them. This paves the way for future experiments, which should deepen our understanding of glasses.
Collapse
Affiliation(s)
- P Gadige
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - S Albert
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - M Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Th Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - A Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R Tourbot
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - C Wiertel-Gasquet
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| | - G Biroli
- IPhT, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 774, 91191 Gif-sur-Yvette Cedex, France.,LPS, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
| | - J-P Bouchaud
- Capital Fund Management, 23 Rue de l'Université, 75007 Paris, France
| | - F Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay, Bâtiment 772, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
27
|
Young-Gonzales AR, Adrjanowicz K, Paluch M, Richert R. Nonlinear dielectric features of highly polar glass formers: Derivatives of propylene carbonate. J Chem Phys 2017; 147:224501. [DOI: 10.1063/1.5003813] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- A. R. Young-Gonzales
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| | - K. Adrjanowicz
- Institute of Physics, University of Silesia, Ulica Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI, Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, Ulica Uniwersytecka 4, 40-007 Katowice, Poland
- SMCEBI, Ulica 75 Pulku Piechoty 1a, 41-500 Chorzow, Poland
| | - R. Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
28
|
Das R, Chakrabarty S, Karmakar S. Pinning susceptibility: a novel method to study growth of amorphous order in glass-forming liquids. SOFT MATTER 2017; 13:6929-6937. [PMID: 28837203 DOI: 10.1039/c7sm01202k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The existence and growth of amorphous order in supercooled liquids approaching glass transition is a subject of intense research. Even after decades of work, there is still no clear consensus on the molecular mechanisms that lead to a rapid slowing down of liquid dynamics approaching this putative transition. The existence of a correlation length associated with amorphous order has recently been postulated and has also been estimated using multi-point correlation functions which cannot be calculated easily in experiments. Thus the study of growing amorphous order remains mostly restricted to systems like colloidal glasses and simulations of model glass-forming liquids. In this work, we propose an experimentally realizable yet simple susceptibility to study the growth of amorphous order. We then demonstrate the validity of this approach for a few well-studied model supercooled liquids and obtain results which are consistent with other conventional methods.
Collapse
Affiliation(s)
- Rajsekhar Das
- TIFR Center for Interdisciplinary Science, Tata Institute of Fundamental Research, Narsingi, Hyderabad 500075, India.
| | | | | |
Collapse
|
29
|
Richert R. Nonlinear dielectric effects in liquids: a guided tour. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:363001. [PMID: 28665294 DOI: 10.1088/1361-648x/aa7cc4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Dielectric relaxation measurements probe how the polarization of a material responds to the application of an external electric field, providing information on structure and dynamics of the sample. In the limit of small fields and thus linear response, such experiments reveal the properties of the material in the same thermodynamic state it would have in the absence of the external field. At sufficiently high fields, reversible changes in enthalpy and entropy of the system occur even at constant temperature, and these will in turn alter the polarization responses. The resulting nonlinear dielectric effects feature field induced suppressions (saturation) and enhancements (chemical effect) of the amplitudes, as well as time constant shifts towards faster (energy absorption) and slower (entropy reduction) dynamics. This review focuses on the effects of high electric fields that are reversible and observed at constant temperature for single component glass-forming liquids. The experimental challenges involved in nonlinear dielectric experiments, the approaches to separating and identifying the different sources of nonlinear behavior, and the current understanding of how high electric fields affect dielectric materials will be discussed. Covering studies from Debye's initial approach to the present state-of-the-art, it will be emphasized what insight can be gained from the nonlinear responses that are not available from dielectric relaxation results obtained in the linear regime.
Collapse
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287-1604, United States of America
| |
Collapse
|
30
|
Gadige P, Saha D, Behera SK, Bandyopadhyay R. Study of dynamical heterogeneities in colloidal nanoclay suspensions approaching dynamical arrest. Sci Rep 2017; 7:8017. [PMID: 28808265 PMCID: PMC5556041 DOI: 10.1038/s41598-017-08495-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
The dynamics of aqueous Laponite clay suspensions slow down with increasing sample waiting time (t w ). This behavior, and the material fragility that results, closely resemble the dynamical slowdown in fragile supercooled liquids with decreasing temperature, and are typically ascribed to the increasing sizes of distinct dynamical heterogeneities in the sample. In this article, we characterize the dynamical heterogeneities in Laponite suspensions by invoking the three-point dynamic susceptibility formalism. The average time-dependent two-point intensity autocorrelation and its sensitivity to t w are probed in dynamic light scattering experiments. Distributions of relaxation time scales, deduced from the Kohlrausch-Williams-Watts equation, are seen to widen with increasing t w . The calculated three-point dynamic susceptibility of Laponite suspensions exhibits a peak, with the peak height increasing with evolving t w at fixed volume fraction or with increasing volume fraction at fixed t w , thereby signifying the slowdown of the sample dynamics. The number of dynamically correlated particles, calculated from the peak-height, is seen to initially increase rapidly with increasing t w , before eventually slowing down close to the non-ergodic transition point. This observation is in agreement with published reports on supercooled liquids and hard sphere colloidal suspensions and offers a unique insight into the colloidal glass transition of Laponite suspensions.
Collapse
Affiliation(s)
- Paramesh Gadige
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Debasish Saha
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Sanjay Kumar Behera
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India
| | - Ranjini Bandyopadhyay
- Soft Condensed Matter Group, Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, 560 080, India.
| |
Collapse
|
31
|
Diezemann G. Nonlinear response theory for Markov processes. II. Fifth-order response functions. Phys Rev E 2017; 96:022150. [PMID: 28950644 DOI: 10.1103/physreve.96.022150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Indexed: 06/07/2023]
Abstract
The nonlinear response of stochastic models obeying a master equation is calculated up to fifth order in the external field, thus extending the third-order results obtained earlier [G. Diezemann, Phys. Rev. E 85, 051502 (2012)PLEEE81539-375510.1103/PhysRevE.85.051502]. For sinusoidal fields the 5ω component of the susceptibility is computed for the model of dipole reorientations in an asymmetric double well potential and for a trap model with a Gaussian density of states. For most realizations of the models a hump is found in the higher-order susceptibilities. In particular, for the asymmetric double well potential model there are two characteristic temperature regimes showing the occurrence of such a hump as compared to a single characteristic regime in the case of the third-order response. In the case of the trap model the results strongly depend on the variable coupled to the field. As for the third-order response, the low-frequency limit of the susceptibility plays a crucial role with respect to the occurrence of a hump. The findings are discussed in light of recent experimental results obtained for supercooled liquids. The differences found for the third-order and the fifth-order response indicate that nonlinear response functions might serve as a powerful tool to discriminate among the large number of existing models for glassy relaxation.
Collapse
Affiliation(s)
- Gregor Diezemann
- Institut für Physikalische Chemie, Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
32
|
Buchenau U. Modeling the nonlinear dielectric response of glass formers. J Chem Phys 2017; 146:214503. [DOI: 10.1063/1.4984929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- U. Buchenau
- Jülich Center for Neutron Science, Forschungszentrum Jülich, Postfach 1913, D–52425 Jülich, Germany
| |
Collapse
|
33
|
Richert R. Relaxation time and excess entropy in viscous liquids: Electric field versus temperature as control parameter. J Chem Phys 2017; 146:064501. [DOI: 10.1063/1.4975389] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287-1604, USA
| |
Collapse
|
34
|
Seyboldt R, Merger D, Coupette F, Siebenbürger M, Ballauff M, Wilhelm M, Fuchs M. Divergence of the third harmonic stress response to oscillatory strain approaching the glass transition. SOFT MATTER 2016; 12:8825-8832. [PMID: 27752694 DOI: 10.1039/c6sm01616b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The leading nonlinear stress response in a periodically strained concentrated colloidal dispersion is studied experimentally and by theory. A thermosensitive microgel dispersion serves as well-characterized glass-forming model, where the stress response at the first higher harmonic frequency (3ω for strain at frequency ω) is investigated in the limit of small amplitude. The intrinsic nonlinearity at the third harmonic exhibits a scaling behavior which has a maximum in an intermediate frequency window and diverges when approaching the glass transition. It captures the (in-) stability of the transient elastic structure. Elastic stresses in-phase with the third power of the strain dominate the scaling. Our results qualitatively differ from previously derived scaling behavior in dielectric spectroscopy of supercooled molecular liquids. This might indicate a dependence of the nonlinear response on the symmetry of the external driving under time reversal.
Collapse
Affiliation(s)
- Rabea Seyboldt
- Department of Physics, Universität Konstanz, 78464 Konstanz, Germany. and Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Dimitri Merger
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Fabian Coupette
- Department of Physics, Universität Konstanz, 78464 Konstanz, Germany.
| | - Miriam Siebenbürger
- Institute Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
| | - Matthias Ballauff
- Institute Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin, 14109 Berlin, Germany
| | - Manfred Wilhelm
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany
| | - Matthias Fuchs
- Department of Physics, Universität Konstanz, 78464 Konstanz, Germany.
| |
Collapse
|
35
|
Kim P, Young-Gonzales AR, Richert R. Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J Chem Phys 2016. [DOI: 10.1063/1.4960620] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
36
|
Samanta S, Richert R. Electrorheological Source of Nonlinear Dielectric Effects in Molecular Glass-Forming Liquids. J Phys Chem B 2016; 120:7737-44. [DOI: 10.1021/acs.jpcb.6b04903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Subarna Samanta
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| | - Ranko Richert
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
37
|
Albert S, Bauer T, Michl M, Biroli G, Bouchaud JP, Loidl A, Lunkenheimer P, Tourbot R, Wiertel-Gasquet C, Ladieu F. Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 2016; 352:1308-11. [DOI: 10.1126/science.aaf3182] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/09/2016] [Indexed: 11/02/2022]
Affiliation(s)
- S. Albert
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France
| | - Th. Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - M. Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - G. Biroli
- IPhT, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 774, 91191 Gif-sur-Yvette Cedex, France
- LPS, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris Cedex 05, France
| | - J.-P. Bouchaud
- Capital Fund Management, 23 rue de l’Université, 75007 Paris, France
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - R. Tourbot
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France
| | - C. Wiertel-Gasquet
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France
| | - F. Ladieu
- SPEC, CEA, CNRS, Université Paris-Saclay, CEA Saclay Bat 772, 91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
38
|
Pérez-Aparicio R, Cottinet D, Crauste-Thibierge C, Vanel L, Sotta P, Delannoy JY, Long DR, Ciliberto S. Dielectric Spectroscopy of a Stretched Polymer Glass: Heterogeneous Dynamics and Plasticity. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02635] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roberto Pérez-Aparicio
- Laboratoire
de Physique de l’École Normale Supérieure, CNRS/Université de Lyon, UMR 5672, 46 allée d’Italie, 69007 Lyon, France
| | - Denis Cottinet
- Laboratoire
de Physique de l’École Normale Supérieure, CNRS/Université de Lyon, UMR 5672, 46 allée d’Italie, 69007 Lyon, France
| | - Caroline Crauste-Thibierge
- Laboratoire
de Physique de l’École Normale Supérieure, CNRS/Université de Lyon, UMR 5672, 46 allée d’Italie, 69007 Lyon, France
| | - Loïc Vanel
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR 5268, 85 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
- Institut
Lumière Matière, CNRS/Université Lyon 1, UMR 5306, 69622 Villeurbanne, France
| | - Paul Sotta
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR 5268, 85 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Jean-Yves Delannoy
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR 5268, 85 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Didier R. Long
- Laboratoire
Polymères et Matériaux Avancés, CNRS/Rhodia-Solvay, UMR 5268, 85 avenue des Frères Perret, 69192 Saint Fons, Cedex, France
| | - Sergio Ciliberto
- Laboratoire
de Physique de l’École Normale Supérieure, CNRS/Université de Lyon, UMR 5672, 46 allée d’Italie, 69007 Lyon, France
| |
Collapse
|
39
|
Wei N, Déjardin PM, Kalmykov YP, Coffey WT. External dc bias-field effects in the nonlinear ac stationary response of dipolar particles in a mean-field potential. Phys Rev E 2016; 93:042208. [PMID: 27176294 DOI: 10.1103/physreve.93.042208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Indexed: 06/05/2023]
Abstract
External dc bias-field effects on the nonlinear dielectric relaxation and dynamic Kerr effect of a system of permanent dipoles in a uniaxial mean-field potential are studied via the rotational Brownian motion model postulated in terms of the infinite hierarchy of differential-recurrence equations for the statistical moments f_{n}(t)=〈P_{n}〉(t) (the expectation value of the Legendre polynomials P_{n}). By solving these equations, the nonlinear dielectric and Kerr-effect ac stationary responses are evaluated for arbitrary dc field strength via perturbation theory in the ac field. Simple analytic equations based on the large separation of the time scales of the fast intrawell and slow overbarrier (interwell) relaxation processes are also derived.
Collapse
Affiliation(s)
- Nijun Wei
- Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland
| | - Pierre-Michel Déjardin
- Laboratoire de Mathématiques et de Physique (LAMPS, EA4217), Université de Perpignan Via Domitia, F-66860, Perpignan, France
| | - Yuri P Kalmykov
- Laboratoire de Mathématiques et de Physique (LAMPS, EA4217), Université de Perpignan Via Domitia, F-66860, Perpignan, France
| | - William T Coffey
- Department of Electronic and Electrical Engineering, Trinity College, Dublin 2, Ireland
| |
Collapse
|
40
|
Michl M, Bauer T, Lunkenheimer P, Loidl A. Nonlinear dielectric spectroscopy in a fragile plastic crystal. J Chem Phys 2016; 144:114506. [DOI: 10.1063/1.4944394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- M. Michl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - Th. Bauer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
41
|
Richert R. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields. J Chem Phys 2016; 144:114501. [DOI: 10.1063/1.4943885] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
42
|
Karmakar S, Dasgupta C, Sastry S. Length scales in glass-forming liquids and related systems: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:016601. [PMID: 26684508 DOI: 10.1088/0034-4885/79/1/016601] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The central problem in the study of glass-forming liquids and other glassy systems is the understanding of the complex structural relaxation and rapid growth of relaxation times seen on approaching the glass transition. A central conceptual question is whether one can identify one or more growing length scale(s) associated with this behavior. Given the diversity of molecular glass-formers and a vast body of experimental, computational and theoretical work addressing glassy behavior, a number of ideas and observations pertaining to growing length scales have been presented over the past few decades, but there is as yet no consensus view on this question. In this review, we will summarize the salient results and the state of our understanding of length scales associated with dynamical slow down. After a review of slow dynamics and the glass transition, pertinent theories of the glass transition will be summarized and a survey of ideas relating to length scales in glassy systems will be presented. A number of studies have focused on the emergence of preferred packing arrangements and discussed their role in glassy dynamics. More recently, a central object of attention has been the study of spatially correlated, heterogeneous dynamics and the associated length scale, studied in computer simulations and theoretical analysis such as inhomogeneous mode coupling theory. A number of static length scales have been proposed and studied recently, such as the mosaic length scale discussed in the random first-order transition theory and the related point-to-set correlation length. We will discuss these, elaborating on key results, along with a critical appraisal of the state of the art. Finally we will discuss length scales in driven soft matter, granular fluids and amorphous solids, and give a brief description of length scales in aging systems. Possible relations of these length scales with those in glass-forming liquids will be discussed.
Collapse
Affiliation(s)
- Smarajit Karmakar
- TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India
| | | | | |
Collapse
|
43
|
Colin R, Alsayed AM, Gay C, Abou B. Questioning the relationship between the χ4 susceptibility and the dynamical correlation length in a glass former. SOFT MATTER 2015; 11:9020-9025. [PMID: 26412312 DOI: 10.1039/c5sm01480h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Clusters of fast and slow correlated particles, identified as dynamical heterogeneities (DHs), constitute a central aspect of glassy dynamics. A key factor of the glass transition scenario is a significant increase of the cluster size ξ4 as the transition is approached. In need of easy-to-compute tools to measure ξ4, the dynamical susceptibility χ4 was introduced recently, and used in various experimental studies to probe DHs. Here, we investigate DHs in dense microgel suspensions using image correlation analysis, and compute both χ4 and the four-point correlation function G4. The spatial decrease of G4 provides a direct access to ξ4, which is found to grow significantly with increasing volume fraction. However, this increase is not captured by χ4. We show that the assumptions that validate the connection between χ4 and ξ4 are not fulfilled in our experiments.
Collapse
Affiliation(s)
- Rémy Colin
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| | - Ahmed M Alsayed
- Complex Assemblies of Soft Matter Laboratory, UMI CNRS 3254, Rhodia INC., 350 G. Patterson Blvd, Bristol, PA 19007, USA
| | - Cyprien Gay
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| | - Bérengère Abou
- Laboratoire Matière et Systèmes Complexes, UMR CNRS 7057 & Université Paris Diderot, 10 rue A. Domon et L. Duquet, 75205 Paris Cedex 13, France.
| |
Collapse
|
44
|
Cheng S, Mirigian S, Carrillo JMY, Bocharova V, Sumpter BG, Schweizer KS, Sokolov AP. Revealing spatially heterogeneous relaxation in a model nanocomposite. J Chem Phys 2015; 143:194704. [DOI: 10.1063/1.4935595] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Shiwang Cheng
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephen Mirigian
- Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Jan-Michael Y. Carrillo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Vera Bocharova
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G. Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kenneth S. Schweizer
- Department of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Alexei P. Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemistry, Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
45
|
Fischer JKH, Sippel P, Denysenko D, Lunkenheimer P, Volkmer D, Loidl A. Metal-organic frameworks as host materials of confined supercooled liquids. J Chem Phys 2015; 143:154505. [DOI: 10.1063/1.4933308] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- J. K. H. Fischer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - P. Sippel
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - D. Denysenko
- Chair of Solid State and Material Science, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - P. Lunkenheimer
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| | - D. Volkmer
- Chair of Solid State and Material Science, Institute of Physics, University of Augsburg, 86135 Augsburg, Germany
| | - A. Loidl
- Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg, 86135 Augsburg, Germany
| |
Collapse
|
46
|
Wandersman E, Chushkin Y, Dubois E, Dupuis V, Robert A, Perzynski R. Field induced anisotropic cooperativity in a magnetic colloidal glass. SOFT MATTER 2015; 11:7165-7170. [PMID: 26255958 DOI: 10.1039/c5sm01315a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The translational dynamics of a repulsive colloidal glass-former is probed by time-resolved X-ray Photon Correlation Spectroscopy. In this dense dispersion of charge-stabilized and magnetic nanoparticles, the interaction potential can be tuned, from quasi-isotropic to anisotropic by applying an external magnetic field. This powerful control parameter finely tunes the anisotropy of the intricate energy landscape in the colloidal glass-former, which is seen here as a new tunable model-system to probe the dynamical heterogeneities at the approach of the glass transition. Both structural and dynamical anisotropies are reported on interparticle lengthscales associated with highly anisotropic cooperativity, almost two orders of magnitude larger in the field direction than in the perpendicular direction and in zero field.
Collapse
Affiliation(s)
- E Wandersman
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8234, Laboratoire PHENIX - CNRS - UPMC - ESPCI, Boîte 51, 4 place Jussieu, F-75005, Paris, France.
| | | | | | | | | | | |
Collapse
|
47
|
Yu HB, Richert R, Maaß R, Samwer K. Unified Criterion for Temperature-Induced and Strain-Driven Glass Transitions in Metallic Glass. PHYSICAL REVIEW LETTERS 2015; 115:135701. [PMID: 26451567 DOI: 10.1103/physrevlett.115.135701] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Indexed: 06/05/2023]
Abstract
In a model metallic glass, we study the relaxation dynamics in both the linear and the nonlinear response regimes by numerical simulations of dynamical mechanical spectroscopy and analyze the atomic displacement statistics. We find that the primary (α) relaxation always takes place when the most probable atomic displacement reaches a critical fraction (~20%) of the average interatomic distance, irrespective of whether the relaxation is induced by temperature (linear response) or by mechanical strain (nonlinear response). Such a unified scenario, analogous to the well-known Lindemann criterion for crystal melting, provides insight into the structural origin of the strain-induced glass-liquid transition.
Collapse
Affiliation(s)
- H B Yu
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - R Richert
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287, USA
| | - R Maaß
- Department of Materials Science and Engineering at the University of Illinois at Urbana-Champaign, Urbana, Illinois 6180, USA
| | - K Samwer
- I. Physikalisches Institut, Universität Göttingen, D-37077 Göttingen, Germany
| |
Collapse
|
48
|
Young-Gonzales AR, Samanta S, Richert R. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J Chem Phys 2015; 143:104504. [DOI: 10.1063/1.4929988] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
49
|
Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Paluch M. Effects of dynamic heterogeneity and density scaling of molecular dynamics on the relationship among thermodynamic coefficients at the glass transition. J Chem Phys 2015; 143:024502. [DOI: 10.1063/1.4923005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- K. Koperwas
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - A. Grzybowski
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - K. Grzybowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - Z. Wojnarowska
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| | - M. Paluch
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
- Silesian Center for Education and Interdisciplinary Research, 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland
| |
Collapse
|
50
|
Affiliation(s)
- Dmitry V. Matyushov
- Department of Physics and Department of Chemistry and Biochemistry, Arizona State University, P.O. Box 871504, Tempe, Arizona 85287, USA
| |
Collapse
|