1
|
Masoudi MH, Naji A. Smart navigation through a rotating barrier: Deep reinforcement learning with application to size-based separation of active microagents. J Chem Phys 2025; 162:144904. [PMID: 40202147 DOI: 10.1063/5.0269792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/10/2025] Open
Abstract
We employ deep reinforcement learning methods to investigate shortest-time navigation strategies for smart active Brownian particles (microagents), which self-propel through a rotating potential barrier in a static, viscous, fluid background. The microagent's motion begins at a specified origin and terminates at a designated destination. The potential barrier is modeled as a localized, repulsive Gaussian potential with finite support, whose peak location rotates at a given angular velocity about a fixed center within the plane of motion. We use the advantage actor-critic approach to train microagents for their origin-to-destination navigation through the barrier. By employing this approach, we demonstrate that the rotating potential (as opposed to a static one) enables size-based sorting and separation of the microagents. In other words, microagents of different radii arrive at the destination at sufficiently well-separated average times, facilitating their sorting. The efficiency of particle sorting is quantified by introducing specific separation measures. We also demonstrate how training the microagents in a noisy background, as opposed to a noise-free one, can improve the precision of their size-based sorting. Our findings suggest promising avenues for future research on smart active particles equipped with deep reinforcement learning to navigate complex environments, particularly in microscale applications.
Collapse
Affiliation(s)
- Mohammad Hossein Masoudi
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- Department of Physics, College of Science, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| |
Collapse
|
2
|
Gallardo-Navarro O, Arbel-Goren R, August E, Olmedo-Alvarez G, Stavans J. Dynamically induced spatial segregation in multispecies bacterial bioconvection. Nat Commun 2025; 16:950. [PMID: 39843893 PMCID: PMC11754595 DOI: 10.1038/s41467-025-56244-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Active matter, from motile bacteria to animals, can exhibit striking collective and coherent behavior. Despite significant advances in understanding the behavior of homogeneous systems, little is known about the self-organization and dynamics of heterogeneous active matter, such as complex and diverse bacterial communities. Under oxygen gradients, many bacterial species swim towards air-liquid interfaces in auto-organized, directional bioconvective flows, whose spatial scales exceed the cell size by orders of magnitude. Here we show that multispecies bacterial suspensions undergoing oxytactic-driven bioconvection exhibit dynamically driven spatial segregation, despite the enhanced mixing of bioconvective flows, and the fact that these species coexist in their natural habitat. Segregation is observed as patterns of spatially interlocked domains, with local dominance of one of the constituent species in the suspension. Our findings suggest that segregation mechanisms are driven by species-specific motile behaviors under conditions of hydrodynamic flow, rather than biochemical repulsion. Thus, species with different motile characteristics in the same ecological context can enhance their access to limiting resources. This work provides novel insights on the role of heterogeneity in active matter, as well as on the dynamics of complex microbial communities, their spatial organization and their collective behavior.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Rinat Arbel-Goren
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Elias August
- Department of Engineering, Reykjavik University, Reykjavik, Iceland
| | | | - Joel Stavans
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Han E, Fei C, Alert R, Copenhagen K, Koch MD, Wingreen NS, Shaevitz JW. Local polar order controls mechanical stress and triggers layer formation in Myxococcus xanthus colonies. Nat Commun 2025; 16:952. [PMID: 39843452 PMCID: PMC11754464 DOI: 10.1038/s41467-024-55806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/30/2024] [Indexed: 01/24/2025] Open
Abstract
Colonies of the social bacterium Myxococcus xanthus go through a morphological transition from a thin colony of cells to three-dimensional droplet-like fruiting bodies as a strategy to survive starvation. The biological pathways that control the decision to form a fruiting body have been studied extensively. However, the mechanical events that trigger the creation of multiple cell layers and give rise to droplet formation remain poorly understood. By measuring cell orientation, velocity, polarity, and force with cell-scale resolution, we reveal a stochastic local polar order in addition to the more obvious nematic order. Average cell velocity and active force at topological defects agree with predictions from active nematic theory, but their fluctuations are substantially larger than the mean due to polar active forces generated by the self-propelled rod-shaped cells. We find that M. xanthus cells adjust their reversal frequency to tune the magnitude of this local polar order, which in turn controls the mechanical stresses and triggers layer formation in the colonies.
Collapse
Affiliation(s)
- Endao Han
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA.
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Chenyi Fei
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ricard Alert
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Katherine Copenhagen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Matthias D Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Joshua W Shaevitz
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA.
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Boltz HH, Kohler B, Ihle T. Kinetic Theory of Self-Propelled Particles with Nematic Alignment. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1054. [PMID: 39766683 PMCID: PMC11675265 DOI: 10.3390/e26121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/30/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
We present the results from kinetic theory for a system of self-propelled particles with alignment interactions of higher-order symmetry, particularly nematic ones. To this end, we use the Landau equation approach, a systematic approximation to the BBGKY hierarchy for small effective couplings. Our calculations are presented in a pedagogical way with the explicit goal of serving as a tutorial from a physicists' perspective into applying kinetic theory ideas beyond mean-field to active matter systems with essentially no prerequisites and yield predictions without free parameters that are in quantitative agreement with direct agent-based simulations.
Collapse
Affiliation(s)
- Horst-Holger Boltz
- Institute for Physics, University of Greifswald, 17489 Greifswald, Germany
| | | | | |
Collapse
|
5
|
Cammann J, Faluweki MK, Dambacher N, Goehring L, Mazza MG. Topological transition in filamentous cyanobacteria: from motion to structure. COMMUNICATIONS PHYSICS 2024; 7:376. [PMID: 39583085 PMCID: PMC11578882 DOI: 10.1038/s42005-024-01866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/08/2024] [Indexed: 11/26/2024]
Abstract
Many active systems are capable of forming intriguing patterns at scales significantly larger than the size of their individual constituents. Cyanobacteria are one of the most ancient and important phyla of organisms that has allowed the evolution of more complex life forms. Despite its importance, the role of motility on the pattern formation of their colonies is not understood. Here, we investigate the large-scale collective effects and rich dynamics of gliding filamentous cyanobacteria colonies, while still retaining information about the individual constituents' dynamics and their interactions. We investigate both the colony's transient and steady-state dynamics and find good agreement with experiments. We furthermore show that the Péclet number and aligning interaction strength govern the system's topological transition from an isotropic distribution to a state of large-scale reticulate patterns. Although the system is topologically non-trivial, the parallel and perpendicular pair correlation functions provide structural information about the colony, and thus can be used to extract information about the early stages of biofilm formation. Finally, we find that the effects of the filaments' length cannot be reduced to a system of interacting points. Our model proves to reproduce both cyanobacteria colonies and systems of biofilaments where curvature is transported by motility.
Collapse
Affiliation(s)
- Jan Cammann
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire UK
| | - Mixon K. Faluweki
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Malawi Institute of Technology, Malawi University of Science and Technology, Thyolo, Malawi
| | - Nayara Dambacher
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, UK
| | - Lucas Goehring
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Marco G. Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire UK
| |
Collapse
|
6
|
Barberis L, Condat CA, Faisal SM, Lowenstein PR. The self-organized structure of glioma oncostreams and the disruptive role of passive cells. Sci Rep 2024; 14:25435. [PMID: 39455622 PMCID: PMC11511870 DOI: 10.1038/s41598-024-74823-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Oncostreams are self-organized structures formed by spindle-like, elongated, self-propelled cells recently described in glioblastomas and especially in gliosarcomas. Cells within these structures either move as large clusters in one main direction, flocks, or as linear, intermingling collections of cells advancing in opposite directions, streams. Round, passive cells are also observed, either inside or segregated from the oncostreams. Here we generalize a recently formulated particle-field approach to investigate the genesis and evolution of these structures, first showing that, in systems consisting only of identical self-propelled cells, both flocks and streams emerge as self-organized dynamic configurations. Flocks are the more stable configurations, while streams are transient and usually originate in collisions between flocks. Stream degradation is easier at low self-propulsion speeds. In systems consisting of both motile and passive cells, the latter block stream formation and accelerate their degradation and flock stabilization. Since the flock appears to be the most effective invasive structure, we thus argue that a phenotype mixture (motile and passive cells) may favor glioblastoma invasion. hlBy relating cellular properties to the observed outcome, our model shows that oncostreams are self-organized structures that result from the interplay between speed, shape, and steric repulsion.
Collapse
Affiliation(s)
- Lucas Barberis
- Instituto de Física Enrique Gaviola y Facultad de Matemática, Astronomía, Física y Computación, CONICET, UNC, Córdoba, Argentina.
- Departments of Neurosurgery, Cell and Developmental Biology, and Biomedical Engineering, University of Michigan Medical School and School of Engineering, Ann Arbor, 48109, USA.
| | - Carlos A Condat
- Instituto de Física Enrique Gaviola y Facultad de Matemática, Astronomía, Física y Computación, CONICET, UNC, Córdoba, Argentina
| | - Syed M Faisal
- Laboratory of Theoretical Physics and Modelling, CY Cergy-Paris Université, CNRS, 95032, Cergy-Pontoise, France
| | - Pedro R Lowenstein
- Laboratory of Theoretical Physics and Modelling, CY Cergy-Paris Université, CNRS, 95032, Cergy-Pontoise, France
| |
Collapse
|
7
|
Sinha A, Chaudhuri D. Activity-induced phase transition and coarsening dynamics in dry apolar active nematics. SOFT MATTER 2024; 20:8078-8088. [PMID: 39355944 DOI: 10.1039/d4sm00775a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Using the Lebwohl-Lasher interaction for reciprocal local alignment, we present a comprehensive phase diagram for a dry, apolar, active nematic system using its stochastic off-lattice dynamics. The nematic-isotropic transition in this system is first-order and occurs alongside a fluctuation-dominated phase separation. Our phase diagram identifies three distinct regions based on activity and orientational noise relative to alignment strength: a homogeneous isotropic phase, a nematic phase with giant density fluctuations, and a coexistence region. Using mean-field analysis and hydrodynamic theory, we demonstrate that reciprocal interactions lead to a density fluctuation-induced first-order transition and derive a phase boundary consistent with numerical results. Quenching from the isotropic to nematic phase reveals coarsening dynamics where nematic ordering precedes particle clustering. Both the nematic and density fields exhibit similar scaling behaviors, exhibiting dynamic exponents zS ≈ 2.5 and zρ ≈ 2.34, consistently falling within the range of 2 and 3.
Collapse
Affiliation(s)
- Arpan Sinha
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
8
|
Murphy P, Perepelitsa M, Timofeyev I, Lieber-Kotz M, Islas B, Igoshin OA. Breakdown of Boltzmann-type models for the alignment of self-propelled rods. Math Biosci 2024; 376:109266. [PMID: 39127094 DOI: 10.1016/j.mbs.2024.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/23/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Studies in the collective motility of organisms use a range of analytical approaches to formulate continuous kinetic models of collective dynamics from rules or equations describing agent interactions. However, the derivation of these kinetic models often relies on Boltzmann's "molecular chaos" hypothesis, which assumes that correlations between individuals are short-lived. While this assumption is often the simplest way to derive tractable models, it is often not valid in practice due to the high levels of cooperation and self-organization present in biological systems. In this work, we illustrated this point by considering a general Boltzmann-type kinetic model for the alignment of self-propelled rods where rod reorientation occurs upon binary collisions. We examine the accuracy of the kinetic model by comparing numerical solutions of the continuous equations to an agent-based model that implements the underlying rules governing microscopic alignment. Even for the simplest case considered, our comparison demonstrates that the kinetic model fails to replicate the discrete dynamics due to the formation of rod clusters that violate statistical independence. Additionally, we show that introducing noise to limit cluster formation helps improve the agreement between the analytical model and agent simulations but does not restore the agreement completely. These results highlight the need to both develop and disseminate improved moment-closure methods for modeling biological and active matter systems.
Collapse
Affiliation(s)
- Patrick Murphy
- Department of Mathematics and Statistics, San Jose State University, San Jose, CA 95192, United States of America.
| | - Misha Perepelitsa
- Department of Mathematics, University of Houston, TX 77204, United States of America
| | - Ilya Timofeyev
- Department of Mathematics, University of Houston, TX 77204, United States of America
| | - Matan Lieber-Kotz
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America
| | - Brandon Islas
- Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, United States of America
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77005, United States of America; Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, United States of America; Department of Chemistry, Rice University, Houston, TX 77005, United States of America; Department of Biosciences, Rice University, Houston, TX 77005, United States of America
| |
Collapse
|
9
|
Mondal K, Bera P, Ghosh P. Diverse morphology and motility induced emergent order in bacterial collectives. J Chem Phys 2024; 161:094908. [PMID: 39230379 DOI: 10.1063/5.0220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Microbial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display a superdiffusive behavior, particularly at larger size ratios in the ballistic regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. In addition, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
10
|
Riedel S, Hoffmann LA, Giomi L, Kraft DJ. Designing highly efficient interlocking interactions in anisotropic active particles. Nat Commun 2024; 15:5692. [PMID: 38971812 PMCID: PMC11227507 DOI: 10.1038/s41467-024-49955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Cluster formation of microscopic swimmers is key to the formation of biofilms and colonies, efficient motion and nutrient uptake, but, in the absence of other interactions, requires high swimmer concentrations to occur. Here we experimentally and numerically show that cluster formation can be dramatically enhanced by an anisotropic swimmer shape. We analyze a class of model microswimmers with a shape that can be continuously tuned from spherical to bent and straight rods. In all cases, clustering can be described by Michaelis-Menten kinetics governed by a single scaling parameter that depends on particle density and shape only. We rationalize these shape-dependent dynamics from the interplay between interlocking probability and cluster stability. The bent rod shape promotes assembly in an interlocking fashion even at vanishingly low particle densities and we identify the most efficient shape to be a semicircle. Our work provides key insights into how shape can be used to rationally design out-of-equilibrium self-organization, key to creating active functional materials and processes that require two-component assembly with high fidelity.
Collapse
Affiliation(s)
- Solenn Riedel
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300, RA, Leiden, The Netherlands
| | - Ludwig A Hoffmann
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300, RA, Leiden, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Leiden University, P.O. Box 9506, 2300, RA, Leiden, The Netherlands
| | - Daniela J Kraft
- Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, PO Box 9504, 2300, RA, Leiden, The Netherlands.
| |
Collapse
|
11
|
Siebers F, Bebon R, Jayaram A, Speck T. Collective Hall current in chiral active fluids: Coupling of phase and mass transport through traveling bands. Proc Natl Acad Sci U S A 2024; 121:e2320256121. [PMID: 38941276 PMCID: PMC11228510 DOI: 10.1073/pnas.2320256121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/23/2024] [Indexed: 06/30/2024] Open
Abstract
Active fluids composed of constituents that are constantly driven away from thermal equilibrium can support spontaneous currents and can be engineered to have unconventional transport properties. Here, we report the emergence of (meta)stable traveling bands in computer simulations of aligning circle swimmers. These bands are different from polar flocks and, through coupling phase with mass transport, induce a bulk particle current with a component perpendicular to the propagation direction, thus giving rise to a collective Hall (or Magnus) effect. Traveling bands require sufficiently small orbits and undergo a discontinuous transition into a synchronized state with transient polar clusters for large orbital radii. Within a minimal hydrodynamic theory, we show that the bands can be understood as nondispersive soliton solutions fully accounting for the numerically observed properties.
Collapse
Affiliation(s)
- Frank Siebers
- Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128Mainz, Germany
| | - Robin Bebon
- Institute for Theoretical Physics IV, University of Stuttgart, 70569Stuttgart, Germany
| | - Ashreya Jayaram
- Institute for Theoretical Physics IV, University of Stuttgart, 70569Stuttgart, Germany
| | - Thomas Speck
- Institute for Theoretical Physics IV, University of Stuttgart, 70569Stuttgart, Germany
| |
Collapse
|
12
|
Caporusso CB, Cugliandolo LF, Digregorio P, Gonnella G, Suma A. Phase separation kinetics and cluster dynamics in two-dimensional active dumbbell systems. SOFT MATTER 2024; 20:4208-4225. [PMID: 38741521 DOI: 10.1039/d4sm00200h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Molecular dynamics simulations were employed to investigate the phase separation process of a two-dimensional active Brownian dumbbell model. We evaluated the time dependence of the typical size of the dense component using the scaling properties of the structure factor, along with the averaged number of clusters and their radii of gyration. The growth observed is faster than in active disk models, and this effect is further enhanced under stronger activity. Next, we focused on studying the hexatic order of the clusters. The length associated with the orientational order increases algebraically with time and faster than for spherical active Brownian particles. Under weak active forces, most clusters exhibit a uniform internal orientational order. However, under strong forces, large clusters consist of domains with different orientational orders. We demonstrated that the latter configurations are not stable, and given sufficient time to evolve, they eventually achieve homogeneous configurations as well. No gas bubbles are formed within the clusters, even when there are patches of different hexatic order. Finally, attention was directed towards the geometry and motion of the clusters themselves. By employing a tracking algorithm, we showed that clusters smaller than the typical size at the observation time exhibit regular shapes, while larger ones display fractal characteristics. In between collisions or break-ups, the clusters behave as solid bodies. Their centers of mass undergo circular motion, with radii increasing with the cluster size. The angular velocity of the center of mass equals that of the constituents with respect to their center of mass. These observations were rationalised with a simple mechanical model.
Collapse
Affiliation(s)
- C B Caporusso
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - L F Cugliandolo
- CNRS, Laboratoire de Physique Théorique et Hautes Energies, LPTHE, Sorbonne Université, F-75005 Paris, France
- Institut Universitaire de France, 1 rue Descartes, 75231 Paris Cedex 05, France
| | - P Digregorio
- Departement de Fisica de la Materia Condensada, Facultat de Fisica, Universitat de Barcelona, Martí i Franquès 1, E08028 Barcelona, Spain.
- UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - G Gonnella
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| | - A Suma
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari, via Amendola 173, Bari, I-70126, Italy
- INFN, Sezione di Bari, via Amendola 173, Bari, I-70126, Italy
| |
Collapse
|
13
|
Gao J, Gu C, Long Y, Zhang X, Shen C, Yang H. Collective behaviors of animal groups may stem from visual lateralization-Tending to obtain information through one eye. CHAOS (WOODBURY, N.Y.) 2024; 34:043147. [PMID: 38648384 DOI: 10.1063/5.0199200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Animal groups exhibit various captivating movement patterns, which manifest as intricate interactions among group members. Several models have been proposed to elucidate collective behaviors in animal groups. These models achieve a certain degree of efficacy; however, inconsistent experimental findings suggest insufficient accuracy. Experiments have shown that some organisms employ a single information channel and visual lateralization to glean knowledge from other individuals in collective movements. In this study, we consider individuals' visual lateralization and a single information channel and develop a self-propelled particle model to describe the collective behavior of large groups. The results suggest that homogeneous visual lateralization gives the group a strong sense of cohesiveness, thereby enabling diverse collective behaviors. As the overlapping field grows, the cohesiveness gradually dissipates. Inconsistent visual lateralization among group members can reduce the cohesiveness of the group, and when there is a high degree of heterogeneity in visual lateralization, the group loses their cohesiveness. This study also examines the influence of visual lateralization heterogeneity on specific formations, and the results indicate that the directional migration formation is responsive to such heterogeneity. We propose an information network to portray the transmission of information within groups, which explains the cohesiveness of groups and the sensitivity of the directional migration formation.
Collapse
Affiliation(s)
- Jian Gao
- School of Mathematics and Physics, Anqing Normal University, Anqing 246011, People's Republic of China
| | - Changgui Gu
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Yongshang Long
- School of Mathematics and Physics, Anqing Normal University, Anqing 246011, People's Republic of China
| | - Xiyun Zhang
- Department of Physics, Jinan University, Guangzhou 510632, People's Republic of China
| | - Chuansheng Shen
- School of Mathematics and Physics, Anqing Normal University, Anqing 246011, People's Republic of China
| | - Huijie Yang
- Business School, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| |
Collapse
|
14
|
Spera G, Duclut C, Durand M, Tailleur J. Nematic Torques in Scalar Active Matter: When Fluctuations Favor Polar Order and Persistence. PHYSICAL REVIEW LETTERS 2024; 132:078301. [PMID: 38427854 DOI: 10.1103/physrevlett.132.078301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/12/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
We study the impact of nematic alignment on scalar active matter in the disordered phase. We show that nematic torques control the emergent physics of particles interacting via pairwise forces and can either induce or prevent phase separation. The underlying mechanism is a fluctuation-induced renormalization of the mass of the polar field that generically arises from nematic torques. The correlations between the fluctuations of the polar and nematic fields indeed conspire to increase the particle persistence length, contrary to what phenomenological computations predict. This effect is generic and our theory also quantitatively accounts for how nematic torques enhance particle accumulation along confining boundaries and opposes demixing in mixtures of active and passive particles.
Collapse
Affiliation(s)
- Gianmarco Spera
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Charlie Duclut
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Laboratoire Physique des Cellules et Cancer (PCC), CNRS UMR 168, Institut Curie, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Marc Durand
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Julien Tailleur
- Université Paris Cité, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
15
|
Escaff D. Anti-aligning interaction between active particles induces a finite wavelength instability: The dancing hexagons. Phys Rev E 2024; 109:024602. [PMID: 38491588 DOI: 10.1103/physreve.109.024602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024]
Abstract
By considering a simple model for self-propelled particle interaction, we show that anti-aligning forces induce a finite wavelength instability. Consequently, the system exhibits pattern formation. The formed pattern involves, let us say, a choreographic movement of the active entities. At the level of particle density, the system oscillates between a stripe pattern and a hexagonal one. The underlying dynamics of these density oscillations consists of two counterpropagating and purely hexagonal traveling waves. They are assembling and disassembling a global hexagonal structure and a striped lineup of particles. This self-assembling process becomes quite erratic for long-time simulations, seeming aperiodic.
Collapse
Affiliation(s)
- Daniel Escaff
- Universidad de los Andes, Chile, Avenida Monseñor Álvaro del Portillo N° 12.455, Las Condes, Santiago 7620060, Chile
| |
Collapse
|
16
|
Sinha A, Chaudhuri D. How reciprocity impacts ordering and phase separation in active nematics? SOFT MATTER 2024; 20:788-795. [PMID: 38165880 DOI: 10.1039/d3sm00795b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Active nematics undergo spontaneous symmetry breaking and show phase separation instability. Within the prevailing notion that macroscopic properties depend only on symmetries and conservation laws, different microscopic models are used out of convenience. Here, we test this notion carefully by analyzing three different microscopic models of apolar active nematics. They share the same symmetry but differ in implementing reciprocal or non-reciprocal interactions, including a Vicsek-like implementation. We show how such subtle differences in microscopic realization determine if the ordering transition is continuous or first order. Despite the difference in the type of phase transition, all three models exhibit fluctuation-dominated phase separation and quasi-long-range order in the nematic phase.
Collapse
Affiliation(s)
- Arpan Sinha
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Debasish Chaudhuri
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India.
- Homi Bhaba National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
17
|
Krüger T, Maryshev I, Frey E. Hierarchical defect-induced condensation in active nematics. SOFT MATTER 2023; 19:8954-8964. [PMID: 37971530 DOI: 10.1039/d3sm00895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Topological defects play a central role in the formation and organization of various biological systems. Historically, such nonequilibrium defects have been mainly studied in the context of homogeneous active nematics. Phase-separated systems, in turn, are known to form dense and dynamic nematic bands, but typically lack topological defects. In this paper, we use agent-based simulations of weakly aligning, self-propelled polymers and demonstrate that contrary to the existing paradigm phase-separated active nematics form -1/2 defects. Moreover, these defects, emerging due to interactions among dense nematic bands, constitute a novel second-order collective state. We investigate the morphology of defects in detail and find that their cores correspond to a strong increase in density, associated with a condensation of nematic fluxes. Unlike their analogs in homogeneous systems, such condensed defects form and decay in a different way and do not involve positively charged partners. We additionally observe and characterize lateral arc-like structures that separate from a band's bulk and move in transverse direction. We show that the key control parameters defining the route from stable bands to the coexistence of dynamic lanes and defects are the total density of particles and their path persistence length. We introduce a hydrodynamic theory that qualitatively recapitulates all the main features of the agent-based model, and use it to show that the emergence of both defects and arcs can be attributed to the same anisotropic active fluxes. Finally, we present a way to artificially engineer and position defects, and speculate about experimental verification of the provided model.
Collapse
Affiliation(s)
- Timo Krüger
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Ivan Maryshev
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539 Munich, Germany
| |
Collapse
|
18
|
Lou Y. Appetizer on soft matter physics concepts in mechanobiology. Dev Growth Differ 2023; 65:234-244. [PMID: 37126437 PMCID: PMC11520965 DOI: 10.1111/dgd.12853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Mechanosensing, the active responses of cells to the mechanics on multiple scales, plays an indispensable role in regulating cell behaviors and determining the fate of biological entities such as tissues and organs. Here, I aim to give a pedagogical illustration of the fundamental concepts of soft matter physics that aid in understanding biomechanical phenomena from the scale of tissues to proteins. Examples of up-to-date research are introduced to elaborate these concepts. Challenges in applying physics models to biology have also been discussed for biologists and physicists to meet in the field of mechanobiology.
Collapse
Affiliation(s)
- Yuting Lou
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| |
Collapse
|
19
|
Yang C, Zeng Y, Xu S, Zhou X. The coherent motions of thermal active Brownian particles. Phys Chem Chem Phys 2023; 25:13027-13032. [PMID: 37114336 DOI: 10.1039/d2cp05984c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Active matter exhibits many intriguing non-equilibrium characteristics, for instance, without any attractive and aligned interactions, the active Brownian particle (ABP) system undergoing motility-induced phase separation forms a high-density phase with both structural ordering and dynamical coherence. Recently, the velocity correlation among the particles in this high-density phase was found in non-thermal overdamped ABP systems. However, it seemed to disappear if thermal noises were included, bringing some confusion about the generality of the consistency between structures and dynamics in ABPs. Here, we demonstrate that the thermal noises imposing a large random term on the instantaneous velocity of ABPs hinder the observation of the inherent correlation in the motions of ABPs. By averaging the instantaneous velocity (or equivalently, calculating the displacement), we show that the inherent motions of thermal-fluctuated ABPs are highly coherent. Whether there is thermal noise or not, the inherent collective motions of ABPs do exist, and the collective motion domains are consistent spatially with the ordered clusters of ABPs in the high-density phase. At the boundary of these ordered clusters, the active forces of the particles tend to point inward and compress to sustain these clusters, thus the particles in the clusters move coherently to form some vortex-like or aligned velocity domains.
Collapse
Affiliation(s)
- Cheng Yang
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, China
| | - Ying Zeng
- School of Mathematics and Physics, Mianyang Teachers' College, Mianyang 621000, China
| | - Shun Xu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100083, China.
| | - Xin Zhou
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Zhejiang, China
| |
Collapse
|
20
|
Chatterjee S, Mangeat M, Woo CU, Rieger H, Noh JD. Flocking of two unfriendly species: The two-species Vicsek model. Phys Rev E 2023; 107:024607. [PMID: 36932579 DOI: 10.1103/physreve.107.024607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
We consider the two-species Vicsek model (TSVM) consisting of two kinds of self-propelled particles, A and B, that tend to align with particles from the same species and to antialign with the other. The model shows a flocking transition that is reminiscent of the original Vicsek model: it has a liquid-gas phase transition and displays micro-phase-separation in the coexistence region where multiple dense liquid bands propagate in a gaseous background. The interesting features of the TSVM are the existence of two kinds of bands, one composed of mainly A particles and one mainly of B particles, the appearance of two dynamical states in the coexistence region: the PF (parallel flocking) state in which all bands of the two species propagate in the same direction, and the APF (antiparallel flocking) state in which the bands of species A and species B move in opposite directions. When PF and APF states exist in the low-density part of the coexistence region they perform stochastic transitions from one to the other. The system size dependence of the transition frequency and dwell times show a pronounced crossover that is determined by the ratio of the band width and the longitudinal system size. Our work paves the way for studying multispecies flocking models with heterogeneous alignment interactions.
Collapse
Affiliation(s)
- Swarnajit Chatterjee
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Matthieu Mangeat
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
| | - Chul-Ung Woo
- Department of Physics, University of Seoul, Seoul 02504, Korea
| | - Heiko Rieger
- Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany
- Leibniz-Institute for New Materials INM, 66123 Saarbrücken, Germany
| | - Jae Dong Noh
- Department of Physics, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
21
|
Sang Y, Wen X, He Y. Single‐cell/nanoparticle trajectories reveal two‐tier Lévy‐like interactions across bacterial swarms. VIEW 2022. [DOI: 10.1002/viw.20220047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yuqian Sang
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| | - Xiaodong Wen
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| | - Yan He
- Department of Chemistry Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) Tsinghua University Beijing China
| |
Collapse
|
22
|
Zhou H, Jung W, Farhana TI, Fujimoto K, Kim T, Yokokawa R. Durability of Aligned Microtubules Dependent on Persistence Length Determines Phase Transition and Pattern Formation in Collective Motion. ACS NANO 2022; 16:14765-14778. [PMID: 36098647 DOI: 10.1021/acsnano.2c05593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collective motion is a ubiquitous phenomenon in nature. The collective motion of cytoskeleton filaments results mainly from dynamic collisions and alignments; however, the detailed mechanism of pattern formation still needs to be clarified. In particular, the influence of persistence length, which is a measure of filament flexibility, on collective motion is still unclear and lacks experimental verifications although it is likely to directly affect the orientational flexibility of filaments. Here, we investigated the collective motion of microtubules with different persistence lengths using a microtubule-kinesin motility system. We showed that local interactions between microtubules significantly vary depending on their persistence length. We demonstrated that the bundling of microtubules is enhanced by more durable alignment, rather than by greater likelihood of alignment. An agent-based computational model confirmed that the rigidity-dependent durability of microtubule alignment dominates their collective behavior.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tamanna Ishrat Farhana
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ryuji Yokokawa
- Department of Micro Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
23
|
Perepelitsa M, Timofeyev I, Murphy P, Igoshin OA. Mean-field model for nematic alignment of self-propelled rods. Phys Rev E 2022; 106:034613. [PMID: 36266908 DOI: 10.1103/physreve.106.034613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
Self-propelled rods are a facet of the field of active matter relevant to many physical systems ranging in scale from shaken granular media and bacterial alignment to the flocking dynamics of animals. In this paper we develop a model for nematic alignment of self-propelled rods interacting through binary collisions. We avoid phenomenological descriptions of rod interaction in favor of rigorously using a set of microscopic-level rules. Under the assumption that each collision results in a small change to a rod's orientation, we derive the Fokker-Planck equation for the evolution of the kinetic density function. Using analytical and numerical methods, we study the emergence of the nematic order from a homogeneous, uniform steady state of the mean-field equation. We compare the level of orientational noise needed to destabilize this nematic order and compare our results to an existing phenomenological model that does not explicitly account for the physical collisions of rods. We show the presence of an additional geometric factor in our equations reflecting a reduced collision rate between nearly aligned rods that reduces the level of noise at which nematic order is destroyed, suggesting that alignment that depends on purely physical collisions is less robust.
Collapse
Affiliation(s)
| | - Ilya Timofeyev
- Department of Mathematics, University of Houston, Texas 77204, USA
| | - Patrick Murphy
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, Texas 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
- Department of Chemistry, Rice University, Houston, Texas 77005, USA
- Department of Biosciences, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
24
|
Kozhukhov T, Shendruk TN. Mesoscopic simulations of active nematics. SCIENCE ADVANCES 2022; 8:eabo5788. [PMID: 36001669 PMCID: PMC9401632 DOI: 10.1126/sciadv.abo5788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Coarse-grained, mesoscale simulations are invaluable for studying soft condensed matter because of their ability to model systems in which a background solvent plays a substantial role but is not the primary interest. Such methods generally model passive solvents; however, far-from-equilibrium systems may also be composed of complex solutes suspended in an active fluid. Yet, few coarse-grained simulation methods exist to model an active medium. We introduce an algorithm to simulate active nematics, which builds on multiparticle collision dynamics (MPCD) for passive fluctuating nematohydrodynamics by introducing dipolar activity in the local collision operator. Active nematic MPCD (AN-MPCD) simulations not only exhibit the key characteristics of active nematic turbulence but, as a particle-based algorithm, also reproduce crucial attributes of active particle models. Thus, mesoscopic AN-MPCD is an approach that bridges microscopic and continuum descriptions, allowing simulations of composite active-passive systems.
Collapse
|
25
|
Negi RS, Winkler RG, Gompper G. Emergent collective behavior of active Brownian particles with visual perception. SOFT MATTER 2022; 18:6167-6178. [PMID: 35916064 DOI: 10.1039/d2sm00736c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Systems comprised of self-steering active Brownian particles are studied via simulations for a minimal cognitive flocking model. The dynamics of the active Brownian particles is extended by an orientational response with limited maneuverability to an instantaneous visual input of the positions of neighbors within a vision cone and a cut-off radius. The system exhibits large-scale self-organized structures, which depend on selected parameter values, and, in particular, the presence of excluded-volume interactions. The emergent structures in two dimensions, such as worms, worm-aggregate coexistence, and hexagonally close-packed structures, are analysed and phase diagrams are constructed. The analysis of the particle's mean-square displacement shows ABP-like dynamics for dilute systems and the worm phase. In the limit of densely packed structures, the active diffusion coefficient is significantly smaller and depends on the number of particles in the cluster. Our analysis of the cluster-growth dynamics shows distinct differences to processes in systems of short-range attractive colloids in equilibrium. Specifically, the characteristic time for the growth and decay of clusters of a particular size is longer than that of isotropically attractive colloids, which we attribute to the non-reciprocal nature of the directed visual perception. Our simulations reveal a strong interplay between ABP-characteristic interactions, such as volume exclusion and rotational diffusion, and cognitive-based interactions and navigation.
Collapse
Affiliation(s)
- Rajendra Singh Negi
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Roland G Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52428 Jülich, Germany.
| |
Collapse
|
26
|
Rebocho TC, Tasinkevych M, Dias CS. Effect of anisotropy on the formation of active particle films. Phys Rev E 2022; 106:024609. [PMID: 36109963 DOI: 10.1103/physreve.106.024609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Active colloids belong to a class of nonequilibrium systems where energy uptake, conversion, and dissipation occur at the level of individual colloidal particles, which can lead to particles' self-propelled motion and surprising collective behavior. Examples include coexistence of vapor- and liquid-like steady states for active particles with repulsive interactions only, phenomena known as motility-induced phase transitions. Similarly to motile unicellular organisms, active colloids tend to accumulate at confining surfaces forming dense adsorbed films. In this work, we study the structure and dynamics of aggregates of self-propelled particles near confining solid surfaces, focusing on the effects of the particle anisotropic interactions. We performed Langevin dynamics simulations of two complementary models for active particles: ellipsoidal particles interacting through the Gay-Berne potential and rodlike particles composed of several repulsive Lennard-Jones beads. We observe a nonmonotonic behavior of the structure of clusters formed along the confining surface as a function of the particle aspect ratio, with a film spreading when particles are near-spherical, compact clusters with hedgehog-like particle orientation for more elongated active particles, and a complex dynamical behavior for an intermediate aspect ratio. The stabilization time of cluster formation along the confining surface also displays a nonmonotonic dependence on the aspect ratio, with a local minimum at intermediate values. Additionally, we demonstrate that the hedgehog-like aggregates formed by Gay-Berne ellipsoids exhibit higher structural stability as compared to the ones formed by purely repulsive active rods, which are stable due to the particle activity only.
Collapse
Affiliation(s)
- T C Rebocho
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - M Tasinkevych
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- SOFT Group, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, United Kingdom
| | - C S Dias
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| |
Collapse
|
27
|
Zhou W, Peralta JD, Hao Z, Gravish N. Lateral contact yields longitudinal cohesion in active undulatory systems. Phys Rev E 2022; 105:054604. [PMID: 35706245 DOI: 10.1103/physreve.105.054604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
Many animals and robots move using undulatory motion of their bodies. When the bodies are in close proximity undulatory motion can lead to novel collective behavior such as gait synchronization, spatial reconfiguration, and clustering. Here we study the role of contact interactions between model undulatory swimmers: three-link robots in experiment and multilink swimmers in simulation. The undulatory gait of each swimmer is generated through a time-dependent sinusoidal-like waveform which has a fixed phase offset, ϕ. By varying the phase relationship between neighboring swimmers we seek to study how contact forces and planar configurations are governed by the phase difference between neighboring swimmers. We find that undulatory actuation in close proximity drives neighboring swimmers into planar equilibrium configurations that depend on the actuation phase difference. We propose a model for stable planar configurations of nearest-neighbor undulatory swimmers which we call the gait compatibility condition, which is the set of planar and phase configurations in which no collisions occur. Robotic experiments with two, three, and four swimmers exhibit good agreement with the compatibility model. To study the contact forces and the time-averaged equilibrium between undulatory systems we perform simulations. To probe the interaction potential between undulatory swimmers we apply a small force to each swimmer longitudinally to separate them from the compatible configuration and we measure their steady-state displacement. These studies reveal that undulatory swimmers in close proximity exhibit attractive longitudinal interaction forces that drive the swimmers from incompatible to compatible configurations. This system of undulatory swimmers provides new insight into active-matter systems which move through body undulation. In addition to the importance of velocity and orientation coherence in active-matter swarms, we demonstrate that undulatory phase coherence is also important for generating stable, cohesive group configurations.
Collapse
Affiliation(s)
- Wei Zhou
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Jaquelin Dezha Peralta
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Zhuonan Hao
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| | - Nick Gravish
- Mechanical and Aerospace Engineering, University of California, San Diego, California 92093, USA
| |
Collapse
|
28
|
Wen H, Zhu Y, Peng C, Kumar PBS, Laradji M. Collective motion of cells modeled as ring polymers. SOFT MATTER 2022; 18:1228-1238. [PMID: 35043821 DOI: 10.1039/d1sm01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this article, we use a coarse-grained model of disjoint semi-flexible ring polymers to investigate computationally the spatiotemporal collective behavior of cell colonies. A ring polymer in this model is self-propelled by a motility force along the cell's polarity, which depends on its historical kinetics. Despite the repulsive interaction between the cells, a collective behavior sets in as a result of cells pushing against each other. This cooperative motion emerges as the amplitude of the motility force is increased and/or their areal density is increased. The degree of collectivity, characterized by the average cluster size, the velocity field order parameter, and the polarity field nematic order parameter, is found to increase with increasing the amplitude of the motility force and area coverage of the cells. Furthermore, the degree of alignment exhibited by the cell velocity field within a cluster is found to be stronger than that exhibited by the cell polarity. Comparison between the collective behavior of elongated cells and that of circular cells, at the same area coverage and motility force, shows that elongated cells exhibit a stronger collective behavior than circular cells, in agreement with earlier studies of self-propelled anisotropic particles. An investigation of two-cell collisions shows that while two clustered cells move in tandem, their polarities are misaligned. As such the cells push against each other while moving coherently.
Collapse
Affiliation(s)
- Haosheng Wen
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Yu Zhu
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - Chenhui Peng
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| | - P B Sunil Kumar
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad-668557, Kerala, India
| | - Mohamed Laradji
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
29
|
Wu JC, Lin FJ, Ai BQ. Absolute negative mobility of active polymer chains in steady laminar flows. SOFT MATTER 2022; 18:1194-1200. [PMID: 35037681 DOI: 10.1039/d1sm01664d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We investigate the transport of active polymer chains in steady laminar flows in the presence of thermal noise and an external constant force. In the model, the polymer chain is worm-like and is propelled by active forces along its tangent vectors. Compared with inertial Brownian particles, active polymer chains in steady laminar flows exhibit richer movement patterns due to their specific spatial structures. The simulation results show that the velocity-force relation is strongly dependent on the system parameters such as the chain length, bending rigidity, active force and so on. The polymer chain may move in some preferential movement directions and exhibits absolute negative mobility within appropriate parameter regimes, i.e., the polymer chain can move in a direction opposite to the external constant force. In particular, we can observe giant negative mobility in a broad range of parameter regimes.
Collapse
Affiliation(s)
- Jian-Chun Wu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
- School of Physics and Electronic Information, Shangrao Normal University, Shangrao 334001, China
| | - Fu-Jun Lin
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
| | - Bao-Quan Ai
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
30
|
Active nematic order and dynamic lane formation of microtubules driven by membrane-bound diffusing motors. Proc Natl Acad Sci U S A 2021; 118:2117107118. [PMID: 34934005 PMCID: PMC8719883 DOI: 10.1073/pnas.2117107118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Active nematics are ordered liquid crystalline fluids that exhibit spontaneous persistent flows and collective dynamics. The development of motile biopolymer systems inspired by nature has recently attracted considerable attention to out-of-equilibrium soft materials. We report the formation of an active nematic in which microtubules are propelled by kinesin motors coupled to a lipid membrane substrate. The system exhibits apolar order in a globally aligned nematic phase and locally ordered dynamic lanes. Use of a fluid substrate represents a significant advance for active matter as it allows for spatial re-organization of motors, which generate force, in response to the dynamics of the aligning microtubules. This self-organized feedback mechanism may have implications in vivo and for engineering efficient dynamic and reconfigurable materials. Dynamic lane formation and long-range active nematic alignment are reported using a geometry in which kinesin motors are directly coupled to a lipid bilayer, allowing for in-plane motor diffusion during microtubule gliding. We use fluorescence microscopy to image protein distributions in and below the dense two-dimensional microtubule layer, revealing evidence of diffusion-enabled kinesin restructuring within the fluid membrane substrate as microtubules collectively glide above. We find that the lipid membrane acts to promote filament–filament alignment within the gliding layer, enhancing the formation of a globally aligned active nematic state. We also report the emergence of an intermediate, locally ordered state in which apolar dynamic lanes of nematically aligned microtubules migrate across the substrate. To understand this emergent behavior, we implement a continuum model obtained from coarse graining a collection of self-propelled rods, with propulsion set by the local motor kinetics. Tuning the microtubule and kinesin concentrations as well as active propulsion in these simulations reveals that increasing motor activity promotes dynamic nematic lane formation. Simulations and experiments show that, following fluid bilayer substrate mediated spatial motor restructuring, the total motor concentration becomes enriched below the microtubule lanes that they drive, with the feedback leading to more dynamic lanes. Our results have implications for membrane-coupled active nematics in vivo as well as for engineering dynamic and reconfigurable materials where the structural elements and power sources can dynamically colocalize, enabling efficient mechanical work.
Collapse
|
31
|
Sesé-Sansa E, Levis D, Pagonabarraga I. Phase separation of self-propelled disks with ferromagnetic and nematic alignment. Phys Rev E 2021; 104:054611. [PMID: 34942723 DOI: 10.1103/physreve.104.054611] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022]
Abstract
We present a comprehensive study of a model system of repulsive self-propelled disks in two dimensions with ferromagnetic and nematic velocity alignment interactions. We characterize the phase behavior of the system as a function of the alignment and self-propulsion strength, featuring orientational order for strong alignment and motility-induced phase separation (MIPS) at moderate alignment but high enough self-propulsion. We derive a microscopic theory for these systems yielding a closed set of hydrodynamic equations from which we perform a linear stability analysis of the homogenous disordered state. This analysis predicts MIPS in the presence of aligning torques. The nature of the continuum theory allows for an explicit quantitative comparison with particle-based simulations, which consistently shows that ferromagnetic alignment fosters phase separation, while nematic alignment does not alter either the nature or the location of the instability responsible for it. In the ferromagnetic case, such behavior is due to an increase of the imbalance of the number of particle collisions along different orientations, giving rise to the self-trapping of particles along their self-propulsion direction. On the contrary, the anisotropy of the pair correlation function, which encodes this self-trapping effect, is not significantly affected by nematic torques. Our work shows the predictive power of such microscopic theories to describe complex active matter systems with different interaction symmetries and sheds light on the impact of velocity-alignment interactions in motility-induced phase separation.
Collapse
Affiliation(s)
- Elena Sesé-Sansa
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Demian Levis
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- CECAM, Centre Européen de Calcul Atomique et Moléculaire, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland.,Departament de Física de la Matèria Condensada, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain.,UBICS University of Barcelona Institute of Complex Systems, Martí i Franquès 1, E08028 Barcelona, Spain
| |
Collapse
|
32
|
Chattopadhyay J, Pannir-Sivajothi S, Varma K, Ramaswamy S, Dasgupta C, Maiti PK. Heating leads to liquid-crystal and crystalline order in a two-temperature active fluid of rods. Phys Rev E 2021; 104:054610. [PMID: 34942740 DOI: 10.1103/physreve.104.054610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022]
Abstract
We report phase separation and liquid-crystal ordering induced by scalar activity in a system of soft repulsive spherocylinders (SRSs) of shape anisotropy L/D=5 using molecular dynamics (MD) simulations. Activity is introduced by increasing the temperature of half of the SRSs (labeled hot) while maintaining the temperature of the other half constant at a lower value (labeled cold). The difference between the two temperatures scaled by the lower temperature provides a measure of the activity. Starting from different equilibrium initial phases, we find that activity leads to segregation of the hot and cold particles. Activity also drives the cold particles through a phase transition to a more ordered state and the hot particles to a state of less order compared to the initial equilibrium state. The cold components of a homogeneous isotropic structure acquire nematic and, at higher activity, crystalline order. Similarly, the cold zone of a nematic initial state undergoes smectic and crystal ordering above a critical value of activity while the hot component turns isotropic. We find that the hot particles occupy a larger volume and exert an extra kinetic pressure, confining, compressing, and provoking an ordering transition of the cold-particle domains.
Collapse
Affiliation(s)
- Jayeeta Chattopadhyay
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sindhana Pannir-Sivajothi
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Kaarthik Varma
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Sriram Ramaswamy
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Chandan Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
33
|
Araki S, Beppu K, Kabir AMR, Kakugo A, Maeda YT. Controlling Collective Motion of Kinesin-Driven Microtubules via Patterning of Topographic Landscapes. NANO LETTERS 2021; 21:10478-10485. [PMID: 34874725 DOI: 10.1021/acs.nanolett.1c03952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomolecular motor proteins that generate forces by consuming chemical energy obtained from ATP hydrolysis play pivotal roles in organizing cytoskeletal structures in living cells. An ability to control cytoskeletal structures would benefit programmable protein patterning; however, our current knowledge is limited because of the underdevelopment of engineering approaches for controlling pattern formation. Here, we demonstrate the controlling of self-assembled patterns of microtubules (MTs) driven by kinesin motors by designing the boundary shape in fabricated microwells. By manipulating the collision angle of gliding MTs defined by the boundary shape, the self-assembly of MTs can be controlled to form protruding bundle and bridge patterns. Corroborated by the theory of self-propelled rods, we further show that the alignment of MTs determines the transition between the assembled patterns, providing a blueprint to reconstruct bridge structures in microchannels. Our findings introduce the tailoring of the self-organization of cytoskeletons and motor proteins for nanotechnological applications.
Collapse
Affiliation(s)
- Shunya Araki
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Kazusa Beppu
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Arif Md Rashedul Kabir
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Hokkaido Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Kita 10, Nishi 8, Kita-ku, Sapporo 060-0810, Hokkaido Japan
| | - Yusuke T Maeda
- Department of Physics, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
34
|
Peterson MSE, Baskaran A, Hagan MF. Vesicle shape transformations driven by confined active filaments. Nat Commun 2021; 12:7247. [PMID: 34903731 PMCID: PMC8668962 DOI: 10.1038/s41467-021-27310-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 11/12/2021] [Indexed: 12/02/2022] Open
Abstract
In active matter systems, deformable boundaries provide a mechanism to organize internal active stresses. To study a minimal model of such a system, we perform particle-based simulations of an elastic vesicle containing a collection of polar active filaments. The interplay between the active stress organization due to interparticle interactions and that due to the deformability of the confinement leads to a variety of filament spatiotemporal organizations that have not been observed in bulk systems or under rigid confinement, including highly-aligned rings and caps. In turn, these filament assemblies drive dramatic and tunable transformations of the vesicle shape and its dynamics. We present simple scaling models that reveal the mechanisms underlying these emergent behaviors and yield design principles for engineering active materials with targeted shape dynamics.
Collapse
Affiliation(s)
- Matthew S E Peterson
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States
| | - Aparna Baskaran
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| | - Michael F Hagan
- Martin A. Fisher School of Physics, Brandeis University, Waltham, MA, 02453, United States.
| |
Collapse
|
35
|
Surveying a Swarm: Experimental Techniques to Establish and Examine Bacterial Collective Motion. Appl Environ Microbiol 2021; 88:e0185321. [PMID: 34878816 DOI: 10.1128/aem.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This mini-review highlights; 1) aspects of swarming motility that differentiates it from other methods of bacterial locomotion. 2) Facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges. 3) The (often difficult) approaches required to cultivate genuine swarmers. 4) The methods available to observe and assess the various facets of this collective motion, as well as the features exhibited by the population as a whole.
Collapse
|
36
|
Huang C, Chen L, Xing X. Alignment destabilizes crystal order in active systems. Phys Rev E 2021; 104:064605. [PMID: 35030843 DOI: 10.1103/physreve.104.064605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
We combine numerical and analytical methods to study two-dimensional active crystals formed by permanently linked swimmers and with two distinct alignment interactions. The system admits a stationary phase with quasi-long-range translational order, as well as a moving phase with quasi-long-range active force director and velocity order. The translational order in the moving phase is significantly influenced by alignment interaction. For Vicsek-like alignment, the translational order is short ranged, whereas the bond-orientational order is quasi-long ranged, implying a moving hexatic phase. For elasticity-based alignment, the translational order is quasi-long ranged parallel to the motion and short ranged in the perpendicular direction, whereas the bond orientational order is long ranged. We also generalize these results to higher dimensions.
Collapse
Affiliation(s)
- Chen Huang
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 China
| | - Leiming Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116 China
| | - Xiangjun Xing
- Wilczek Quantum Center, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 China
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240 China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315 China
| |
Collapse
|
37
|
Bera P, Wasim A, Mondal J, Ghosh P. Mechanistic underpinning of cell aspect ratio-dependent emergent collective motions in swarming bacteria. SOFT MATTER 2021; 17:7322-7331. [PMID: 34286783 DOI: 10.1039/d1sm00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals group into dynamical clusters and move in synchronized flows and vortices. While precedent investigations into rod-like particles confirm that an increased aspect-ratio promotes alignment and order, recent experimental studies in bacteria Bacillus subtilis show a non-monotonic dependence of the cell-aspect ratio on their swarming motion. Here, by computer simulations of an agent-based model of self-propelled, mechanically interacting, rod-shaped bacteria under overdamped conditions, we explore the collective dynamics of a bacterial swarm subjected to a variety of cell-aspect ratios. When modeled with an identical self-propulsion speed across a diverse range of cell aspect ratios, simulations demonstrate that both shorter and longer bacteria exhibit slow dynamics whereas the fastest speed is obtained at an intermediate aspect ratio. Our investigation highlights that the origin of this observed non-monotonic trend of bacterial speed and vorticity with the cell-aspect ratio is rooted in the cell-size dependence of motility force. The swarming features remain robust for a wide range of surface density of the cells, whereas asymmetry in friction attributes a distinct effect. Our analysis identifies that at an intermediate aspect ratio, an optimum cell size and motility force promote alignment, which reinforces the mechanical interactions among neighboring cells leading to the overall fastest motion. Mechanistic underpinning of the collective motions reveals that it is a joint venture of the short-range repulsive and the size-dependent motility forces, which determines the characteristics of swarming.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India.
| | | | | | | |
Collapse
|
38
|
Mahault B, Chaté H. Long-Range Nematic Order in Two-Dimensional Active Matter. PHYSICAL REVIEW LETTERS 2021; 127:048003. [PMID: 34355959 DOI: 10.1103/physrevlett.127.048003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Working in two space dimensions, we show that the orientational order emerging from self-propelled polar particles aligning nematically is quasi-long-ranged beyond ℓ_{r}, the scale associated to induced velocity reversals, which is typically extremely large and often cannot even be measured. Below ℓ_{r}, nematic order is long-range. We construct and study a hydrodynamic theory for this de facto phase and show that its structure and symmetries differ from conventional descriptions of active nematics. We check numerically our theoretical predictions, in particular the presence of π-symmetric propagative sound modes, and provide estimates of all scaling exponents governing long-range space-time correlations.
Collapse
Affiliation(s)
- Benoît Mahault
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
| |
Collapse
|
39
|
Moore JM, Glaser MA, Betterton MD. Chiral self-sorting of active semiflexible filaments with intrinsic curvature. SOFT MATTER 2021; 17:4559-4565. [PMID: 33949407 DOI: 10.1039/d0sm01163k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Many-body interactions in systems of active matter can cause particles to move collectively and self-organize into dynamic structures with long-range order. In cells, the self-assembly of cytoskeletal filaments is critical for cellular motility, structure, intracellular transport, and division. Semiflexible cytoskeletal filaments driven by polymerization or motor-protein interactions on a two-dimensional substrate, such as the cell cortex, can induce filament bending and curvature leading to interesting collective behavior. For example, the bacterial cell-division filament FtsZ is known to have intrinsic curvature that causes it to self-organize into rings and vortices, and recent experiments reconstituting the collective motion of microtubules driven by motor proteins on a surface have observed chiral symmetry breaking of the collective behavior due to motor-induced curvature of the filaments. Previous work on the self-organization of driven filament systems have not studied the effects of curvature and filament structure on collective behavior. In this work, we present Brownian dynamics simulation results of driven semiflexible filaments with intrinsic curvature and investigate how the interplay between filament rigidity and radius of curvature can tune the self-organization behavior in homochiral systems and heterochiral mixtures. We find a curvature-induced reorganization from polar flocks to self-sorted chiral clusters, which is modified by filament flexibility. This transition changes filament transport from ballistic to diffusive at long timescales.
Collapse
Affiliation(s)
- Jeffrey M Moore
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA. and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
40
|
Martin D, Chaté H, Nardini C, Solon A, Tailleur J, Van Wijland F. Fluctuation-Induced Phase Separation in Metric and Topological Models of Collective Motion. PHYSICAL REVIEW LETTERS 2021; 126:148001. [PMID: 33891435 DOI: 10.1103/physrevlett.126.148001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
We study the role of noise on the nature of the transition to collective motion in dry active matter. Starting from field theories that predict a continuous transition at the deterministic level, we show that fluctuations induce a density-dependent shift of the onset of order, which in turn changes the nature of the transition into a phase-separation scenario. Our results apply to a range of systems, including models in which particles interact with their "topological" neighbors that have been believed so far to exhibit a continuous onset of order. Our analytical predictions are confirmed by numerical simulations of fluctuating hydrodynamics and microscopic models.
Collapse
Affiliation(s)
- David Martin
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Hugues Chaté
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
- Computational Science Research Center, Beijing 100193, China
| | - Cesare Nardini
- Service de Physique de l'Etat Condensé, CEA, CNRS Université Paris-Saclay, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | - Alexandre Solon
- Sorbonne Université, CNRS, Laboratoire Physique Théorique de la Matière Condensée, 75005 Paris, France
| | - Julien Tailleur
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| | - Frédéric Van Wijland
- Université de Paris, Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
41
|
Xie H, Sun M, Fan X, Lin Z, Chen W, Wang L, Dong L, He Q. Reconfigurable magnetic microrobot swarm: Multimode transformation, locomotion, and manipulation. Sci Robot 2021; 4:4/28/eaav8006. [PMID: 33137748 DOI: 10.1126/scirobotics.aav8006] [Citation(s) in RCA: 337] [Impact Index Per Article: 84.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Swimming microrobots that are energized by external magnetic fields exhibit a variety of intriguing collective behaviors, ranging from dynamic self-organization to coherent motion; however, achieving multiple, desired collective modes within one colloidal system to emulate high environmental adaptability and enhanced tasking capabilities of natural swarms is challenging. Here, we present a strategy that uses alternating magnetic fields to program hematite colloidal particles into liquid, chain, vortex, and ribbon-like microrobotic swarms and enables fast and reversible transformations between them. The chain is characterized by passing through confined narrow channels, and the herring school-like ribbon procession is capable of large-area synchronized manipulation, whereas the colony-like vortex can aggregate at a high density toward coordinated handling of heavy loads. Using the developed discrete particle simulation methods, we investigated generation mechanisms of these four swarms, as well as the "tank-treading" motion of the chain and vortex merging. In addition, the swarms can be programmed to steer in any direction with excellent maneuverability, and the vortex's chirality can be rapidly switched with high pattern stability. This reconfigurable microrobot swarm can provide versatile collective modes to address environmental variations or multitasking requirements; it has potential to investigate fundamentals in living systems and to serve as a functional bio-microrobot system for biomedicine.
Collapse
Affiliation(s)
- Hui Xie
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China.
| | - Mengmeng Sun
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China
| | - Xinjian Fan
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China
| | - Zhihua Lin
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China
| | - Weinan Chen
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China
| | - Lei Wang
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China
| | - Lixin Dong
- Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA. .,Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
| | - Qiang He
- State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, 2 Yikuang, Harbin 150001, China.
| |
Collapse
|
42
|
Abstract
The emergence of macroscopic order and patterns is a central paradigm in systems of (self-)propelled agents and a key component in the structuring of many biological systems. The relationships between the ordering process and the underlying microscopic interactions have been extensively explored both experimentally and theoretically. While emerging patterns often show one specific symmetry (e.g., nematic lane patterns or polarized traveling flocks), depending on the symmetry of the alignment interactions patterns with different symmetries can apparently coexist. Indeed, recent experiments with an actomysin motility assay suggest that polar and nematic patterns of actin filaments can interact and dynamically transform into each other. However, theoretical understanding of the mechanism responsible remains elusive. Here, we present a kinetic approach complemented by a hydrodynamic theory for agents with mixed alignment symmetries, which captures the experimentally observed phenomenology and provides a theoretical explanation for the coexistence and interaction of patterns with different symmetries. We show that local, pattern-induced symmetry breaking can account for dynamically coexisting patterns with different symmetries. Specifically, in a regime with moderate densities and a weak polar bias in the alignment interaction, nematic bands show a local symmetry-breaking instability within their high-density core region, which induces the formation of polar waves along the bands. These instabilities eventually result in a self-organized system of nematic bands and polar waves that dynamically transform into each other. Our study reveals a mutual feedback mechanism between pattern formation and local symmetry breaking in active matter that has interesting consequences for structure formation in biological systems.
Collapse
|
43
|
Moore JM, Thompson TN, Glaser MA, Betterton MD. Collective motion of driven semiflexible filaments tuned by soft repulsion and stiffness. SOFT MATTER 2020; 16:9436-9442. [PMID: 32959862 DOI: 10.1039/d0sm01036g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In active matter systems, self-propelled particles can self-organize to undergo collective motion, leading to persistent dynamical behavior out of equilibrium. In cells, cytoskeletal filaments and motor proteins form complex structures important for cell mechanics, motility, and division. Collective dynamics of cytoskeletal systems can be reconstituted using filament gliding experiments, in which cytoskeletal filaments are propelled by surface-bound motor proteins. These experiments have observed diverse dynamical states, including flocks, polar streams, swirling vortices, and single-filament spirals. Recent experiments with microtubules and kinesin motor proteins found that the collective behavior of gliding filaments can be tuned by altering the concentration of the crowding macromolecule methylcellulose in solution. Increasing the methylcellulose concentration reduced filament crossing, promoted alignment, and led to a transition from active, isotropically oriented filaments to locally aligned polar streams. This emergence of collective motion is typically explained as an increase in alignment interactions by Vicsek-type models of active polar particles. However, it is not yet understood how steric interactions and bending stiffness modify the collective behavior of active semiflexible filaments. Here we use simulations of driven filaments with tunable soft repulsion and rigidity in order to better understand how the interplay between filament flexibility and steric effects can lead to different active dynamic states. We find that increasing filament stiffness decreases the probability of filament alignment, yet increases collective motion and long-range order, in contrast to the assumptions of a Vicsek-type model. We identify swirling flocks, polar streams, buckling bands, and spirals, and describe the physics that govern transitions between these states. In addition to repulsion and driving, tuning filament stiffness can promote collective behavior, and controls the transition between active isotropic filaments, locally aligned flocks, and polar streams.
Collapse
Affiliation(s)
- Jeffrey M Moore
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Tyler N Thompson
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Matthew A Glaser
- Department of Physics, University of Colorado, Boulder, CO 80309, USA.
| | - Meredith D Betterton
- Department of Physics, University of Colorado, Boulder, CO 80309, USA. and Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
44
|
A particle-field approach bridges phase separation and collective motion in active matter. Nat Commun 2020; 11:5365. [PMID: 33097711 PMCID: PMC7584633 DOI: 10.1038/s41467-020-18978-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Whereas self-propelled hard discs undergo motility-induced phase separation, self-propelled rods exhibit a variety of nonequilibrium phenomena, including clustering, collective motion, and spatio-temporal chaos. In this work, we present a theoretical framework representing active particles by continuum fields. This concept combines the simplicity of alignment-based models, enabling analytical studies, and realistic models that incorporate the shape of self-propelled objects explicitly. By varying particle shape from circular to ellipsoidal, we show how nonequilibrium stresses acting among self-propelled rods destabilize motility-induced phase separation and facilitate orientational ordering, thereby connecting the realms of scalar and vectorial active matter. Though the interaction potential is strictly apolar, both, polar and nematic order may emerge and even coexist. Accordingly, the symmetry of ordered states is a dynamical property in active matter. The presented framework may represent various systems including bacterial colonies, cytoskeletal extracts, or shaken granular media. Interacting self-propelled particles exhibit phase separation or collective motion depending on particle shape. A unified theory connecting these paradigms represents a major challenge in active matter, which the authors address here by modeling active particles as continuum fields.
Collapse
|
45
|
Mangeat M, Chatterjee S, Paul R, Rieger H. Flocking with a q-fold discrete symmetry: Band-to-lane transition in the active Potts model. Phys Rev E 2020; 102:042601. [PMID: 33212593 DOI: 10.1103/physreve.102.042601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/11/2020] [Indexed: 11/06/2022]
Abstract
We study the q-state active Potts model (APM) on a two-dimensional lattice in which self-propelled particles have q internal states corresponding to the q directions of motion. A local alignment rule inspired by the ferromagnetic q-state Potts model and self-propulsion via biased diffusion according to the internal particle states elicits collective motion at high densities and low noise. We formulate a coarse-grained hydrodynamic theory with which we compute the phase diagrams of the APM for q=4 and q=6 and analyze the flocking dynamics in the coexistence region, where the high-density (polar liquid) phase forms a fluctuating stripe of coherently moving particles on the background of the low-density (gas) phase. A reorientation transition of the phase-separated profiles from transversal band motion to longitudinal lane formation is found, which is absent in the Vicsek model and the active Ising model. The origin of this reorientation transition is revealed by a stability analysis: for large velocities the transverse diffusivity approaches zero and stabilizes lanes. Computer simulations corroborate the analytical predictions of the flocking and reorientation transitions and validate the phase diagrams of the APM.
Collapse
Affiliation(s)
- Matthieu Mangeat
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| | - Swarnajit Chatterjee
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Raja Paul
- School of Mathematical & Computational Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Heiko Rieger
- Center for Biophysics & Department for Theoretical Physics, Saarland University, D-66123 Saarbrücken, Germany
| |
Collapse
|
46
|
Escaff D, Delpiano R. Flocking transition within the framework of Kuramoto paradigm for synchronization: Clustering and the role of the range of interaction. CHAOS (WOODBURY, N.Y.) 2020; 30:083137. [PMID: 32872818 DOI: 10.1063/5.0006218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
A Kuramoto-type approach to address flocking phenomena is presented. First, we analyze a simple generalization of the Kuramoto model for interacting active particles, which is able to show the flocking transition (the emergence of coordinated movements in a group of interacting self-propelled agents). In the case of all-to-all interaction, the proposed model reduces to the Kuramoto model for phase synchronization of identical motionless noisy oscillators. In general, the nature of this non-equilibrium phase transition depends on the range of interaction between the particles. Namely, for a small range of interaction, the transition is first order, while for a larger range of interaction, it is a second order transition. Moreover, for larger interaction ranges, the system exhibits the same features as in the case of all-to-all interaction, showing a spatially homogeneous flux when flocking phenomenon has emerged, while for lower interaction ranges, the flocking transition is characterized by cluster formation. We compute the phase diagram of the model, where we distinguish three phases as a function of the range of interaction and the effective coupling strength: a disordered phase, a spatially homogeneous flocking phase, and a cluster-flocking phase. Then, we present a general discussion about the applicability of this way of modeling to more realistic and general situations, ending with a brief presentation of a second example (a second model with a conservative interaction) where the flocking transition may be studied within the framework that we are proposing.
Collapse
Affiliation(s)
- Daniel Escaff
- Complex Systems Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monse nor Alvaro del Portillo 12455, Las Condes, Santiago, Chile
| | - Rafael Delpiano
- Transportation Studies Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Monse nor Alvaro del Portillo 12455, Las Condes, Santiago, Chile
| |
Collapse
|
47
|
Affiliation(s)
- Roland G. Winkler
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
48
|
Shellard A, Mayor R. Rules of collective migration: from the wildebeest to the neural crest. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190387. [PMID: 32713298 PMCID: PMC7423382 DOI: 10.1098/rstb.2019.0387] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Collective migration, the movement of groups in which individuals affect the behaviour of one another, occurs at practically every scale, from bacteria up to whole species' populations. Universal principles of collective movement can be applied at all levels. In this review, we will describe the rules governing collective motility, with a specific focus on the neural crest, an embryonic stem cell population that undergoes extensive collective migration during development. We will discuss how the underlying principles of individual cell behaviour, and those that emerge from a supracellular scale, can explain collective migration. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
49
|
Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms. Sci Rep 2020; 10:10747. [PMID: 32612117 PMCID: PMC7330051 DOI: 10.1038/s41598-020-67212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, like many bacilliforms, are not limited only to swimming motility but rather possess many motility strategies. In particular, twitching-mode motility employs hair-like pili to transverse moist surfaces with a jittery irregular crawl. Twitching motility plays a critical role in redistributing cells on surfaces prior to and during colony formation. We combine molecular dynamics and rule-based simulations to study twitching-mode motility of model bacilliforms and show that there is a critical surface coverage fraction at which collective effects arise. Our simulations demonstrate dynamic clustering of twitcher-type bacteria with polydomains of local alignment that exhibit spontaneous correlated motions, similar to rafts in many bacterial communities.
Collapse
|
50
|
Ma Z, Yang M, Ni R. Dynamic Assembly of Active Colloids: Theory and Simulation. ADVANCED THEORY AND SIMULATIONS 2020. [DOI: 10.1002/adts.202000021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhan Ma
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing 100190 China
- School of Physical SciencesUniversity of Chinese Academy of SciencesBeijing 100049 China
| | - Ran Ni
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang Drive, 637459 Singapore
| |
Collapse
|