1
|
Atac H, Constantinou M, Meziani ZE, Paolone M, Sparveris N. Measurement of the neutron charge radius and the role of its constituents. Nat Commun 2021; 12:1759. [PMID: 33741952 PMCID: PMC7979702 DOI: 10.1038/s41467-021-22028-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/22/2021] [Indexed: 11/24/2022] Open
Abstract
The neutron is a cornerstone in our depiction of the visible universe. Despite the neutron zero-net electric charge, the asymmetric distribution of the positively- (up) and negatively-charged (down) quarks, a result of the complex quark-gluon dynamics, lead to a negative value for its squared charge radius, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩. The precise measurement of the neutron’s charge radius thus emerges as an essential part of unraveling its structure. Here we report on a \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ measurement, based on the extraction of the neutron electric form factor, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${G}_{{\rm{E}}}^{{\rm{n}}}$$\end{document}GEn, at low four-momentum transfer squared (Q2) by exploiting the long known connection between the N → Δ quadrupole transitions and the neutron electric form factor. Our result, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle =-0.110\pm 0.008\,({{\rm{fm}}}^{2})$$\end{document}⟨rn2⟩=−0.110±0.008(fm2), addresses long standing unresolved discrepancies in the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ determination. The dynamics of the strong nuclear force can be viewed through the precise picture of the neutron’s constituent distributions that result into the non-zero \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\langle {r}_{{\rm{n}}}^{2}\rangle$$\end{document}⟨rn2⟩ value. The charge radius of nucleons provides information about their structure. Here the authors present a method, based values of neutron electric form factors, to determine the charge radius of the neutron and provide information on improving the uncertainty of neutron charge radius measurements
Collapse
Affiliation(s)
- H Atac
- Temple University, Philadelphia, PA, USA
| | | | - Z-E Meziani
- Temple University, Philadelphia, PA, USA.,Argonne National Laboratory, Lemont, IL, USA
| | - M Paolone
- New Mexico State University, Las Cruces, NM, USA
| | | |
Collapse
|
2
|
Borah K, Hill RJ, Lee G, Tomalak O. Parametrization and applications of the low-
Q2
nucleon vector form factors. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.074012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Abstract
The Lagrangian that defines quantum chromodynamics (QCD), the strong interaction piece of the Standard Model, appears very simple. Nevertheless, it is responsible for an astonishing array of high-level phenomena with enormous apparent complexity, e.g., the existence, number and structure of atomic nuclei. The source of all these things can be traced to emergent mass, which might itself be QCD’s self-stabilising mechanism. A background to this perspective is provided, presenting, inter alia, a discussion of the gluon mass and QCD’s process-independent effective charge and highlighting an array of observable expressions of emergent mass, ranging from its manifestations in pion parton distributions to those in nucleon electromagnetic form factors.
Collapse
|
4
|
Cruz-Torres R, Nguyen D, Hauenstein F, Schmidt A, Li S, Abrams D, Albataineh H, Alsalmi S, Androic D, Aniol K, Armstrong W, Arrington J, Atac H, Averett T, Ayerbe Gayoso C, Bai X, Bane J, Barcus S, Beck A, Bellini V, Benmokhtar F, Bhatt H, Bhetuwal D, Biswas D, Blyth D, Boeglin W, Bulumulla D, Camsonne A, Castellanos J, Chen JP, Cohen EO, Covrig S, Craycraft K, Dongwi B, Duer M, Duran B, Dutta D, Fuchey E, Gal C, Gautam TN, Gilad S, Gnanvo K, Gogami T, Golak J, Gomez J, Gu C, Habarakada A, Hague T, Hansen O, Hattawy M, Hen O, Higinbotham DW, Hughes E, Hyde C, Ibrahim H, Jian S, Joosten S, Kamada H, Karki A, Karki B, Katramatou AT, Keppel C, Khachatryan M, Khachatryan V, Khanal A, King D, King P, Korover I, Kutz T, Lashley-Colthirst N, Laskaris G, Li W, Liu H, Liyanage N, Markowitz P, McClellan RE, Meekins D, Mey-Tal Beck S, Meziani ZE, Michaels R, Mihovilovič M, Nelyubin V, Nuruzzaman N, Nycz M, Obrecht R, Olson M, Ou L, Owen V, Pandey B, Pandey V, Papadopoulou A, Park S, Patsyuk M, Paul S, Petratos GG, Piasetzky E, Pomatsalyuk R, Premathilake S, Puckett AJR, Punjabi V, et alCruz-Torres R, Nguyen D, Hauenstein F, Schmidt A, Li S, Abrams D, Albataineh H, Alsalmi S, Androic D, Aniol K, Armstrong W, Arrington J, Atac H, Averett T, Ayerbe Gayoso C, Bai X, Bane J, Barcus S, Beck A, Bellini V, Benmokhtar F, Bhatt H, Bhetuwal D, Biswas D, Blyth D, Boeglin W, Bulumulla D, Camsonne A, Castellanos J, Chen JP, Cohen EO, Covrig S, Craycraft K, Dongwi B, Duer M, Duran B, Dutta D, Fuchey E, Gal C, Gautam TN, Gilad S, Gnanvo K, Gogami T, Golak J, Gomez J, Gu C, Habarakada A, Hague T, Hansen O, Hattawy M, Hen O, Higinbotham DW, Hughes E, Hyde C, Ibrahim H, Jian S, Joosten S, Kamada H, Karki A, Karki B, Katramatou AT, Keppel C, Khachatryan M, Khachatryan V, Khanal A, King D, King P, Korover I, Kutz T, Lashley-Colthirst N, Laskaris G, Li W, Liu H, Liyanage N, Markowitz P, McClellan RE, Meekins D, Mey-Tal Beck S, Meziani ZE, Michaels R, Mihovilovič M, Nelyubin V, Nuruzzaman N, Nycz M, Obrecht R, Olson M, Ou L, Owen V, Pandey B, Pandey V, Papadopoulou A, Park S, Patsyuk M, Paul S, Petratos GG, Piasetzky E, Pomatsalyuk R, Premathilake S, Puckett AJR, Punjabi V, Ransome R, Rashad MNH, Reimer PE, Riordan S, Roche J, Sargsian M, Santiesteban N, Sawatzky B, Segarra EP, Schmookler B, Shahinyan A, Širca S, Skibiński R, Sparveris N, Su T, Suleiman R, Szumila-Vance H, Tadepalli AS, Tang L, Tireman W, Topolnicki K, Tortorici F, Urciuoli G, Weinstein LB, Witała H, Wojtsekhowski B, Wood S, Ye ZH, Ye ZY, Zhang J. Probing Few-Body Nuclear Dynamics via ^{3}H and ^{3}He (e,e^{'}p)pn Cross-Section Measurements. PHYSICAL REVIEW LETTERS 2020; 124:212501. [PMID: 32530643 DOI: 10.1103/physrevlett.124.212501] [Show More Authors] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/12/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
We report the first measurement of the (e,e^{'}p) three-body breakup reaction cross sections in helium-3 (^{3}He) and tritium (^{3}H) at large momentum transfer [⟨Q^{2}⟩≈1.9 (GeV/c)^{2}] and x_{B}>1 kinematics, where the cross section should be sensitive to quasielastic (QE) scattering from single nucleons. The data cover missing momenta 40≤p_{miss}≤500 MeV/c that, in the QE limit with no rescattering, equals the initial momentum of the probed nucleon. The measured cross sections are compared with state-of-the-art ab initio calculations. Overall good agreement, within ±20%, is observed between data and calculations for the full p_{miss} range for ^{3}H and for 100≤p_{miss}≤350 MeV/c for ^{3}He. Including the effects of rescattering of the outgoing nucleon improves agreement with the data at p_{miss}>250 MeV/c and suggests contributions from charge-exchange (SCX) rescattering. The isoscalar sum of ^{3}He plus ^{3}H, which is largely insensitive to SCX, is described by calculations to within the accuracy of the data over the entire p_{miss} range. This validates current models of the ground state of the three-nucleon system up to very high initial nucleon momenta of 500 MeV/c.
Collapse
Affiliation(s)
- R Cruz-Torres
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D Nguyen
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- University of Education, Hue University, Hue City, Vietnam
| | - F Hauenstein
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - A Schmidt
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Li
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - D Abrams
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - H Albataineh
- Texas A & M University, Kingsville, Texas 78363, USA
| | - S Alsalmi
- King Saud University, Riyadh 11451, Kingdom of Saudi Arabia
| | - D Androic
- University of Zagreb, 10000 Zagreb, Croatia
| | - K Aniol
- California State University, Los Angeles, California 90032, USA
| | - W Armstrong
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - J Arrington
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - H Atac
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Averett
- The College of William and Mary, Williamsburg, Virginia 23185, USA
| | - C Ayerbe Gayoso
- The College of William and Mary, Williamsburg, Virginia 23185, USA
| | - X Bai
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - J Bane
- University of Tennessee, Knoxville, Tennessee 37966, USA
| | - S Barcus
- The College of William and Mary, Williamsburg, Virginia 23185, USA
| | - A Beck
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Bellini
- INFN Sezione di Catania, 95123 Catania, Italy
| | - F Benmokhtar
- Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - H Bhatt
- Mississippi State University, Mississippi 39762, USA
| | - D Bhetuwal
- Mississippi State University, Mississippi 39762, USA
| | - D Biswas
- Hampton University, Hampton, Virginia 23669, USA
| | - D Blyth
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - W Boeglin
- Florida International University, Miami, Florida 33199, USA
| | - D Bulumulla
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - A Camsonne
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - J Castellanos
- Florida International University, Miami, Florida 33199, USA
| | - J-P Chen
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - E O Cohen
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - S Covrig
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - K Craycraft
- University of Tennessee, Knoxville, Tennessee 37966, USA
| | - B Dongwi
- Hampton University, Hampton, Virginia 23669, USA
| | - M Duer
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - B Duran
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - D Dutta
- Mississippi State University, Mississippi 39762, USA
| | - E Fuchey
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - C Gal
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - T N Gautam
- Hampton University, Hampton, Virginia 23669, USA
| | - S Gilad
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - K Gnanvo
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - T Gogami
- Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - J Golak
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | - J Gomez
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - C Gu
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Habarakada
- Hampton University, Hampton, Virginia 23669, USA
| | - T Hague
- Kent State University, Kent, Ohio 44240, USA
| | - O Hansen
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - M Hattawy
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - O Hen
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - E Hughes
- Columbia University, New York, New York 10027, USA
| | - C Hyde
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - H Ibrahim
- Cairo University, 12613 Cairo, Egypt
| | - S Jian
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - S Joosten
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - H Kamada
- Department of Physics, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
| | - A Karki
- Mississippi State University, Mississippi 39762, USA
| | - B Karki
- Ohio University, Athens, Ohio 45701, USA
| | | | - C Keppel
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - M Khachatryan
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - V Khachatryan
- Stony Brook, State University of New York, New York 11794, USA
| | - A Khanal
- Florida International University, Miami, Florida 33199, USA
| | - D King
- Syracuse University, Syracuse, New York 13244, USA
| | - P King
- Ohio University, Athens, Ohio 45701, USA
| | - I Korover
- Nuclear Research Center-Negev, Beer-Sheva, Israel
| | - T Kutz
- Stony Brook, State University of New York, New York 11794, USA
| | | | - G Laskaris
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - W Li
- University of Regina, Regina, SK S4S 0A2, Canada
| | - H Liu
- Columbia University, New York, New York 10027, USA
| | - N Liyanage
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - P Markowitz
- Florida International University, Miami, Florida 33199, USA
| | | | - D Meekins
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - S Mey-Tal Beck
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Z-E Meziani
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Columbia University, New York, New York 10027, USA
| | - R Michaels
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - M Mihovilovič
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, Jožef Stefan Institute, Ljubljana, Slovenia
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, DE-55128 Mainz, Germany
| | - V Nelyubin
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - N Nuruzzaman
- Hampton University, Hampton, Virginia 23669, USA
| | - M Nycz
- Kent State University, Kent, Ohio 44240, USA
| | - R Obrecht
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - M Olson
- Saint Norbert College, De Pere, Wisconsin 54115, USA
| | - L Ou
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - V Owen
- The College of William and Mary, Williamsburg, Virginia 23185, USA
| | - B Pandey
- Hampton University, Hampton, Virginia 23669, USA
| | - V Pandey
- Department of Physics, University of Florida, Gainesville, Florida 32611, USA
| | - A Papadopoulou
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Park
- Stony Brook, State University of New York, New York 11794, USA
| | - M Patsyuk
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Paul
- The College of William and Mary, Williamsburg, Virginia 23185, USA
| | | | - E Piasetzky
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - R Pomatsalyuk
- Institute of Physics and Technology, Kharkov 61108, Ukraine
| | - S Premathilake
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - A J R Puckett
- University of Connecticut, Storrs, Connecticut 06269, USA
| | - V Punjabi
- Norfolk State University, Norfolk, Virginia 23504, USA
| | - R Ransome
- Rutgers University, New Brunswick, New Jersey 08901, USA
| | - M N H Rashad
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - P E Reimer
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - S Riordan
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - J Roche
- Ohio University, Athens, Ohio 45701, USA
| | - M Sargsian
- Florida International University, Miami, Florida 33199, USA
| | - N Santiesteban
- University of New Hampshire, Durham, New Hampshire 03824, USA
| | - B Sawatzky
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - E P Segarra
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - B Schmookler
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Shahinyan
- Yerevan Physics Institute, 0036 Yerevan, Armenia
| | - S Širca
- University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, Jožef Stefan Institute, SI-1000, Ljubljana, Slovenia
| | - R Skibiński
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | - N Sparveris
- Columbia University, New York, New York 10027, USA
| | - T Su
- Kent State University, Kent, Ohio 44240, USA
| | - R Suleiman
- Jefferson Lab, Newport News, Virginia 23606, USA
| | | | - A S Tadepalli
- Rutgers University, New Brunswick, New Jersey 08901, USA
| | - L Tang
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - W Tireman
- Northern Michigan University, Marquette, Michigan 49855, USA
| | - K Topolnicki
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | - F Tortorici
- INFN Sezione di Catania, 95123 Catania, Italy
| | | | - L B Weinstein
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - H Witała
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | | | - S Wood
- Jefferson Lab, Newport News, Virginia 23606, USA
| | - Z H Ye
- Physics Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Z Y Ye
- University of Illinois-Chicago, Chicago, Illinois 60607, USA
| | - J Zhang
- Stony Brook, State University of New York, New York 11794, USA
| |
Collapse
|
5
|
Koshchii O, Afanasev A. Target-normal single-spin asymmetry in elastic electron-nucleon scattering. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.056007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
6
|
Abstract
This article reviews the physics and technology of producing large quantities of highly spin-polarized 3He nuclei using spin-exchange (SEOP) and metastability-exchange (MEOP) optical pumping. Both technical developments and deeper understanding of the physical processes involved have led to substantial improvements in the capabilities of both methods. For SEOP, the use of spectrally narrowed lasers and K-Rb mixtures has substantially increased the achievable polarization and polarizing rate. For MEOP nearly lossless compression allows for rapid production of polarized 3He and operation in high magnetic fields has likewise significantly increased the pressure at which this method can be performed, and revealed new phenomena. Both methods have benefitted from development of storage methods that allow for spin-relaxation times of hundreds of hours, and specialized precision methods for polarimetry. SEOP and MEOP are now widely applied for spin-polarized targets, neutron spin filters, magnetic resonance imaging, and precision measurements.
Collapse
Affiliation(s)
- T. R. Gentile
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, USA
| | - P. J. Nacher
- Laboratoire Kastler Brossel, ENS-PSL Research University, CNRS, UPMC-Sorbonne Universités, Collège de France, Paris, France
| | - B. Saam
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - T. G. Walker
- Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
7
|
Gutsche T, Lyubovitskij VE, Schmidt I, Vega A. Nucleon structure in a light-front quark model consistent with quark counting rules and data. Int J Clin Exp Med 2015. [DOI: 10.1103/physrevd.91.054028] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Repetto M, Babcock E, Blümler P, Heil W, Karpuk S, Tullney K. Systematic T1 improvement for hyperpolarized 129xenon. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:163-169. [PMID: 25702572 DOI: 10.1016/j.jmr.2015.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 06/04/2023]
Abstract
The spin-lattice relaxation time T1 of hyperpolarized (HP)-(129)Xe was improved at typical storage conditions (i.e. low and homogeneous magnetic fields). Very long wall relaxation times T(1)(wall) of about 18 h were observed in uncoated, spherical GE180 glass cells of ∅=10 cm which were free of rubidium and not permanently sealed but attached to a standard glass stopcock. An "aging" process of the wall relaxation was identified by repeating measurements on the same cell. This effect could be easily removed by repeating the initial cleaning procedure. In this way, a constant wall relaxation was ensured. The Xe nuclear spin-relaxation rate 1/T1(Xe-Xe) due to van der Waals molecules was investigated too, by admixing three different buffer gases (N(2), SF(6) and CO(2)). Especially CO(2) exhibited an unexpected high efficiency (r) in shortening the lifetime of the Xe-Xe dimers and hence prolonging the total T1 relaxation even further. These measurements also yielded an improved accuracy for the van der Waals relaxation for pure Xe (with 85% (129)Xe) of T(1)(Xe-Xe)=(4.6±0.1)h. Repeating the measurements with HP (129)Xe in natural abundance in mixtures with SF6, a strong dependence of T(1)(Xe-Xe) and r on the isotopic enrichment was observed, uncovering a shorter T(1)(Xe-Xe) relaxation for the (129)Xe in natural composition as compared to the 85% isotopically enriched gas.
Collapse
Affiliation(s)
- Maricel Repetto
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Earl Babcock
- Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Peter Blümler
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany.
| | - Werner Heil
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Sergei Karpuk
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Kathlynne Tullney
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
9
|
|
10
|
Posik M, Flay D, Parno DS, Allada K, Armstrong W, Averett T, Benmokhtar F, Bertozzi W, Camsonne A, Canan M, Cates GD, Chen C, Chen JP, Choi S, Chudakov E, Cusanno F, Dalton MM, Deconinck W, de Jager CW, Deng X, Deur A, Dutta C, El Fassi L, Franklin GB, Friend M, Gao H, Garibaldi F, Gilad S, Gilman R, Glamazdin O, Golge S, Gomez J, Guo L, Hansen O, Higinbotham DW, Holmstrom T, Huang J, Hyde C, Ibrahim HF, Jiang X, Jin G, Katich J, Kelleher A, Kolarkar A, Korsch W, Kumbartzki G, LeRose JJ, Lindgren R, Liyanage N, Long E, Lukhanin A, Mamyan V, McNulty D, Meziani ZE, Michaels R, Mihovilovič M, Moffit B, Muangma N, Nanda S, Narayan A, Nelyubin V, Norum B, Oh Y, Peng JC, Qian X, Qiang Y, Rakhman A, Riordan S, Saha A, Sawatzky B, Shabestari MH, Shahinyan A, Širca S, Solvignon P, Subedi R, Sulkosky V, Tobias WA, Troth W, Wang D, Wang Y, Wojtsekhowski B, Yan X, Yao H, Ye Y, Ye Z, Yuan L, Zhan X, Zhang Y, Zhang YW, Zhao B, Zheng X. Precision measurement of the neutron twist-3 matrix element d(2)(n): probing color forces. PHYSICAL REVIEW LETTERS 2014; 113:022002. [PMID: 25062166 DOI: 10.1103/physrevlett.113.022002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Double-spin asymmetries and absolute cross sections were measured at large Bjorken x (0.25≤x≤0.90), in both the deep-inelastic and resonance regions, by scattering longitudinally polarized electrons at beam energies of 4.7 and 5.9 GeV from a transversely and longitudinally polarized (3)He target. In this dedicated experiment, the spin structure function g(2)((3)He) was determined with precision at large x, and the neutron twist-3 matrix element d(2)(n) was measured at ⟨Q(2)⟩ of 3.21 and 4.32 GeV(2)/c(2), with an absolute precision of about 10(-5). Our results are found to be in agreement with lattice QCD calculations and resolve the disagreement found with previous data at ⟨Q(2)⟩=5 GeV(2)/c(2). Combining d(2)(n) and a newly extracted twist-4 matrix element f(2)(n), the average neutron color electric and magnetic forces were extracted and found to be of opposite sign and about 30 MeV/fm in magnitude.
Collapse
Affiliation(s)
- M Posik
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - D Flay
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - D S Parno
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA and Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, Washington 98195, USA
| | - K Allada
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - W Armstrong
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Averett
- College of William and Mary, Williamsburg, Virginia 23187, USA
| | - F Benmokhtar
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA and Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | - W Bertozzi
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - A Camsonne
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M Canan
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - G D Cates
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - C Chen
- Hampton University, Hampton, Virginia 23187, USA
| | - J-P Chen
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - S Choi
- Seoul National University, Seoul 151-742, South Korea
| | - E Chudakov
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - F Cusanno
- INFN, Sezione di Roma, I-00161 Rome, Italy and Istituto Superiore di Sanità, I-00161 Rome, Italy
| | - M M Dalton
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - W Deconinck
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C W de Jager
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - X Deng
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Deur
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - C Dutta
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - L El Fassi
- Old Dominion University, Norfolk, Virginia 23529, USA and Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA
| | - G B Franklin
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - M Friend
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - H Gao
- Duke University, Durham, North Carolina 27708, USA
| | | | - S Gilad
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - R Gilman
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA and Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA
| | - O Glamazdin
- Kharkov Institute of Physics and Technology, Kharkov 61108, Ukraine
| | - S Golge
- Old Dominion University, Norfolk, Virginia 23529, USA
| | - J Gomez
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - L Guo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - O Hansen
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - D W Higinbotham
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - T Holmstrom
- Longwood University, Farmville, Virginia 23909, USA
| | - J Huang
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Hyde
- Old Dominion University, Norfolk, Virginia 23529, USA and Université Blaise Pascal/IN2P3, F-63177 Aubière, France
| | | | - X Jiang
- Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA and Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - G Jin
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - J Katich
- College of William and Mary, Williamsburg, Virginia 23187, USA
| | - A Kelleher
- College of William and Mary, Williamsburg, Virginia 23187, USA
| | - A Kolarkar
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - W Korsch
- University of Kentucky, Lexington, Kentucky 40506, USA
| | - G Kumbartzki
- Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA
| | - J J LeRose
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - R Lindgren
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - N Liyanage
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - E Long
- Kent State University, Kent, Ohio 44242, USA
| | - A Lukhanin
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - V Mamyan
- Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - D McNulty
- University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Z-E Meziani
- Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Michaels
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | | | - B Moffit
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - N Muangma
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - S Nanda
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - A Narayan
- Mississippi State University, Mississippi 39762, USA
| | - V Nelyubin
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - B Norum
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - Y Oh
- Seoul National University, Seoul 151-742, South Korea
| | - J C Peng
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - X Qian
- Duke University, Durham, North Carolina 27708, USA and Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125, USA
| | - Y Qiang
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA and Duke University, Durham, North Carolina 27708, USA
| | - A Rakhman
- Syracuse University, Syracuse, New York 13244, USA
| | - S Riordan
- University of Virginia, Charlottesville, Virginia 22904, USA and University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - A Saha
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - B Sawatzky
- Temple University, Philadelphia, Pennsylvania 19122, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - M H Shabestari
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - A Shahinyan
- Yerevan Physics Institute, Yerevan 375036, Armenia
| | - S Širca
- Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia and University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - P Solvignon
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA and Argonne National Lab, Argonne, Illinois 60439, USA
| | - R Subedi
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - V Sulkosky
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA and Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - W A Tobias
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - W Troth
- Longwood University, Farmville, Virginia 23909, USA
| | - D Wang
- University of Virginia, Charlottesville, Virginia 22904, USA
| | - Y Wang
- University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - B Wojtsekhowski
- Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
| | - X Yan
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - H Yao
- Temple University, Philadelphia, Pennsylvania 19122, USA and College of William and Mary, Williamsburg, Virginia 23187, USA
| | - Y Ye
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Z Ye
- Hampton University, Hampton, Virginia 23187, USA
| | - L Yuan
- Hampton University, Hampton, Virginia 23187, USA
| | - X Zhan
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Y Zhang
- Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - Y-W Zhang
- Rutgers, The State University of New Jersey, Piscataway, New Jersey 08855, USA and Lanzhou University, Lanzhou 730000, Gansu, People's Republic of China
| | - B Zhao
- College of William and Mary, Williamsburg, Virginia 23187, USA
| | - X Zheng
- University of Virginia, Charlottesville, Virginia 22904, USA
| |
Collapse
|
11
|
Selyugin O. Models of parton distributions and the description of form factors of nucleon. Int J Clin Exp Med 2014. [DOI: 10.1103/physrevd.89.093007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Qattan IA, Arrington J. Up- and Down-Quark Contributions to the Nucleon Form Factors. EPJ WEB OF CONFERENCES 2014. [DOI: 10.1051/epjconf/20146606020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Adamuščín C, Bartoš E, Dubnička S, Dubničková A. Advanced nucleon electromagnetic structure model and charge proton rms radius. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.nuclphysbps.2013.10.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Schlimme BS, Achenbach P, Ayerbe Gayoso CA, Bernauer JC, Böhm R, Bosnar D, Challand T, Distler MO, Doria L, Fellenberger F, Fonvieille H, Gómez Rodríguez M, Grabmayr P, Hehl T, Heil W, Kiselev D, Krimmer J, Makek M, Merkel H, Middleton DG, Müller U, Nungesser L, Ott BA, Pochodzalla J, Potokar M, Sánchez Majos S, Sargsian MM, Sick I, Sirca S, Weinriefer M, Wendel M, Yoon CJ. Measurement of the neutron electric to magnetic form factor ratio at Q2=1.58 GeV2 using the reaction 3He[over →](e[over →],e'n)pp. PHYSICAL REVIEW LETTERS 2013; 111:132504. [PMID: 24116774 DOI: 10.1103/physrevlett.111.132504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 06/02/2023]
Abstract
A measurement of beam helicity asymmetries in the reaction 3He[over →](e[over →],e'n)pp is performed at the Mainz Microtron in quasielastic kinematics to determine the electric to magnetic form factor ratio of the neutron GEn/GMn at a four-momentum transfer Q2=1.58 GeV2. Longitudinally polarized electrons are scattered on a highly polarized 3He gas target. The scattered electrons are detected with a high-resolution magnetic spectrometer, and the ejected neutrons are detected with a dedicated neutron detector composed of scintillator bars. To reduce systematic errors, data are taken for four different target polarization orientations allowing the determination of GEn/GMn from a double ratio. We find μnGEn/GMn=0.250±0.058(stat)±0.017(syst).
Collapse
Affiliation(s)
- B S Schlimme
- Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Laskaris G, Ye Q, Lalremruata B, Ye QJ, Ahmed MW, Averett T, Deltuva A, Dutta D, Fonseca AC, Gao H, Golak J, Huang M, Karwowski HJ, Mueller JM, Myers LS, Peng C, Perdue BA, Qian X, Sauer PU, Skibiński R, Stave S, Tompkins JR, Weller HR, Witała H, Wu YK, Zhang Y, Zheng W. First measurements of spin-dependent double-differential cross sections and the Gerasimov-Drell-Hearn Integrand from 3He(γ,n)pp at incident photon energies of 12.8 and 14.7 MeV. PHYSICAL REVIEW LETTERS 2013; 110:202501. [PMID: 25167400 DOI: 10.1103/physrevlett.110.202501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Indexed: 06/03/2023]
Abstract
The first measurement of the three-body photodisintegration of longitudinally polarized (3)He with a circularly polarized γ-ray beam was carried out at the High Intensity γ-ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the (3)He Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.
Collapse
Affiliation(s)
- G Laskaris
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Q Ye
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - B Lalremruata
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Q J Ye
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - M W Ahmed
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA and Department of Mathematics and Physics, North Carolina Central University, Durham, North Carolina 27707, USA
| | - T Averett
- College of William and Mary, Williamsburg, Virginia 23187, USA
| | - A Deltuva
- Centro de Física Nuclear da Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| | - D Dutta
- Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - A C Fonseca
- Centro de Física Nuclear da Universidade de Lisboa, P-1649-003 Lisboa, Portugal
| | - H Gao
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - J Golak
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
| | - M Huang
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - H J Karwowski
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - J M Mueller
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - L S Myers
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - C Peng
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - B A Perdue
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - X Qian
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - P U Sauer
- Institut für Theoretische Physik, Leibniz Universität Hannover, D-30167 Hannover, Germany
| | - R Skibiński
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
| | - S Stave
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - J R Tompkins
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - H R Weller
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - H Witała
- M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30059 Kraków, Poland
| | - Y K Wu
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Y Zhang
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - W Zheng
- Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708, USA and Department of Physics, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|
16
|
Holt RJ, Gilman R. Transition between nuclear and quark-gluon descriptions of hadrons and light nuclei. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:086301. [PMID: 22835935 DOI: 10.1088/0034-4885/75/8/086301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We provide a perspective on studies aimed at observing the transition between hadronic and quark-gluonic descriptions of reactions involving light nuclei. We begin by summarizing the results for relatively simple reactions such as the pion form factor and the neutral pion transition form factor as well as that for the nucleon and end with exclusive photoreactions in our simplest nuclei. A particular focus will be on reactions involving the deuteron. It is noted that a firm understanding of these issues is essential for unravelling important structure information from processes such as deeply virtual Compton scattering as well as deeply virtual meson production. The connection to exotic phenomena such as color transparency will be discussed. A number of outstanding challenges will require new experiments at modern facilities on the horizon as well as further theoretical developments.
Collapse
Affiliation(s)
- R J Holt
- Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | |
Collapse
|
17
|
Ankowski AM, Benhar O, Mori T, Yamaguchi R, Sakuda M. Analysis of γ-ray production in neutral-current neutrino-oxygen interactions at energies above 200 MeV. PHYSICAL REVIEW LETTERS 2012; 108:052505. [PMID: 22400931 DOI: 10.1103/physrevlett.108.052505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Indexed: 05/31/2023]
Abstract
It has long been recognized that the observation of γ rays originating from nuclear deexcitation can be exploited to identify neutral-current neutrino-nucleus interactions in water-Cherenkov detectors. We report the results of a calculation of the neutrino- and antineutrino-induced γ-ray production cross section for the oxygen target. Our analysis is focused on the kinematical region of neutrino energy larger than ∼200 MeV, in which a single-nucleon knockout is known to be the dominant reaction mechanism. The numerical results have been obtained using for the first time a realistic model of the target spectral function, extensively tested against electron-nucleus scattering data. We find that at a neutrino energy of 600 MeV the fraction of neutral-current interactions leading to emission of γ rays of energy larger than 6 MeV is ∼41%, and that the contribution of the p_{3/2} state is overwhelming.
Collapse
Affiliation(s)
- Artur M Ankowski
- INFN and Department of Physics, "Sapienza" Università di Roma, I-00185 Roma, Italy.
| | | | | | | | | |
Collapse
|
18
|
Cates GD, de Jager CW, Riordan S, Wojtsekhowski B. Flavor decomposition of the elastic nucleon electromagnetic form factors. PHYSICAL REVIEW LETTERS 2011; 106:252003. [PMID: 21770634 DOI: 10.1103/physrevlett.106.252003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 05/31/2023]
Abstract
The u- and d-quark contributions to the elastic nucleon electromagnetic form factors have been determined by using experimental data on G(E)(n), G(M)(n), G(E)(p), and G(M)(p). Such a flavor separation of the form factors became possible up to negative four-momentum transfer squared Q(2) = 3.4 GeV(2) with recent data on G(E)(n) from Hall A at Jefferson Lab. For Q(2) above 1 GeV(2), for both the u and the d quark, the ratio of the Pauli and Dirac form factors, F(2)/F(1), was found to be almost constant in sharp contrast to the behavior of F(2)/F(1) for the proton as a whole. Also, again for Q(2)>1 GeV(2), both F(2)(d) and F(1)(d) are roughly proportional to 1/Q(4), whereas the dropoff of F(2)(u) and F(1)(u) is more gradual.
Collapse
Affiliation(s)
- G D Cates
- University of Virginia, Charlottesville, Virginia 22903, USA
| | | | | | | |
Collapse
|
19
|
Arrington J, de Jager K, Perdrisat CF. Nucleon Form Factors – A Jefferson Lab Perspective. ACTA ACUST UNITED AC 2011. [DOI: 10.1088/1742-6596/299/1/012002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
20
|
|