1
|
Konovalov O, Rein V, Saedi M, Groot IMN, Renaud G, Jankowski M. Tripling of the scattering vector range of X-ray reflectivity on liquid surfaces using a double-crystal deflector. J Appl Crystallogr 2024; 57:258-265. [PMID: 38596733 PMCID: PMC11001415 DOI: 10.1107/s1600576724000657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/18/2024] [Indexed: 04/11/2024] Open
Abstract
The maximum range of perpendicular momentum transfer (q z) has been tripled for X-ray scattering from liquid surfaces when using a double-crystal deflector setup to tilt the incident X-ray beam. This is achieved by employing a higher-energy X-ray beam to access Miller indices of reflecting crystal atomic planes that are three times higher than usual. The deviation from the exact Bragg angle condition induced by misalignment between the X-ray beam axis and the main rotation axis of the double-crystal deflector is calculated, and a fast and straightforward procedure to align them is deduced. An experimental method of measuring scattering intensity along the q z direction on liquid surfaces up to q z = 7 Å-1 is presented, with liquid copper serving as a reference system for benchmarking purposes.
Collapse
Affiliation(s)
- Oleg Konovalov
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Valentina Rein
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Mehdi Saedi
- Physics Department, Shahid Beheshti University, 1983969411 Tehran, Iran
| | - Irene M. N. Groot
- Leiden Institute of Chemistry, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Gilles Renaud
- Univ. Grenoble Alpes, CEA, IRIG/MEM/NR, 38000 Grenoble, France
| | - Maciej Jankowski
- European Synchrotron Radiation Facility–ESRF, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
2
|
Magnussen OM, Drnec J, Qiu C, Martens I, Huang JJ, Chattot R, Singer A. In Situ and Operando X-ray Scattering Methods in Electrochemistry and Electrocatalysis. Chem Rev 2024; 124:629-721. [PMID: 38253355 PMCID: PMC10870989 DOI: 10.1021/acs.chemrev.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 11/13/2023] [Indexed: 01/24/2024]
Abstract
Electrochemical and electrocatalytic processes are of key importance for the transition to a sustainable energy supply as well as for a wide variety of other technologically relevant fields. Further development of these processes requires in-depth understanding of the atomic, nano, and micro scale structure of the materials and interfaces in electrochemical devices under reaction conditions. We here provide a comprehensive review of in situ and operando studies by X-ray scattering methods, which are powerful and highly versatile tools to provide such understanding. We discuss the application of X-ray scattering to a wide variety of electrochemical systems, ranging from metal and oxide single crystals to nanoparticles and even full devices. We show how structural data on bulk phases, electrode-electrolyte interfaces, and nanoscale morphology can be obtained and describe recent developments that provide highly local information and insight into the composition and electronic structure. These X-ray scattering studies yield insights into the structure in the double layer potential range as well as into the structural evolution during electrocatalytic processes and phase formation reactions, such as nucleation and growth during electrodeposition and dissolution, the formation of passive films, corrosion processes, and the electrochemical intercalation into battery materials.
Collapse
Affiliation(s)
- Olaf M. Magnussen
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
- Ruprecht-Haensel
Laboratory, Kiel University, 24118 Kiel, Germany
| | - Jakub Drnec
- ESRF,
Experiments Division, 38000 Grenoble, France
| | - Canrong Qiu
- Kiel
University, Institute of Experimental and
Applied Physics, 24098 Kiel, Germany
| | | | - Jason J. Huang
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| | - Raphaël Chattot
- ICGM,
Univ. Montpellier, CNRS, ENSCM, 34095 Montpellier Cedex 5, France
| | - Andrej Singer
- Department
of Materials Science and Engineering, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
3
|
Tan J, Wang M, Zhang J, Ye S. Determination of the Thickness of Interfacial Water by Time-Resolved Sum-Frequency Generation Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18573-18580. [PMID: 38051545 DOI: 10.1021/acs.langmuir.3c02906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The physics and chemistry of a charged interface are governed by the structure of the electrical double layer (EDL). Determination of the interfacial water thickness (diw) of the charged interface is crucial to quantitatively describe the EDL structure, but it can be utilized with very scarce experimental methods. Here, we propose and verify that the vibrational relaxation time (T1) of the OH stretching mode at 3200 cm-1, obtained by time-resolved sum frequency generation vibrational spectroscopy with ssp polarizations, provides an effective tool to determine diw. By investigating the T1 values at the SiO2/NaCl solution interface, we established a time-space (T1-diw) relationship. We find that water has a T1 lifetime of ≥0.5 ps for diw ≤ 3 Å, while it displays bulk-like dynamics with T1 ≤ 0.2 ps for diw ≥ 9 Å. T1 decreases as diw increases from ∼3 Å to 9 Å. The hydration water at the DPPG lipid bilayer and LK15β protein interfaces has a thickness of ≥9 Å and shows a bulk-like feature. The time-space relationship will provide a novel tool to pattern the interfacial topography and heterogeneity in Ångstrom-depth resolution by imaging the T1 values.
Collapse
Affiliation(s)
- Junjun Tan
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Mengmeng Wang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jiahui Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, and Department of Chemical Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Lesniewska N, Beaussart A, Duval JF. Electrostatics of soft (bio)interfaces: Corrections of mean-field Poisson-Boltzmann theory for ion size, dielectric decrement and ion-ion correlation. J Colloid Interface Sci 2023; 642:154-168. [PMID: 37003010 DOI: 10.1016/j.jcis.2023.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/28/2023]
Abstract
HYPOTHESIS Electrostatics of soft (ion-permeable) (bio)particles (e.g. microorganisms, core/shell colloids) in aqueous electrolytes is commonly formulated by the mean-field Poisson-Boltzmann theory and integration of the charge contributions from electrolyte ions and soft material. However, the effects connected to the size of the electrolyte ions and that of the structural charges carried by the particle, to dielectric decrement and ion-ion correlations on soft interface electrostatics have been so far considered at the margin, despite the limits of the Gouy theory for condensed and/or multivalent electrolytes. EXPERIMENTS Accordingly, we modify herein the Poisson-Boltzmann theory for core/shell (bio)interfaces to include the aforementioned molecular effects considered separately or concomitantly. The formalism is applicable for poorly to highly charged particles in the thin electric double layer regime and to unsymmetrical multivalent electrolytes. FINDINGS Computational examples of practical interests are discussed with emphasis on how each considered molecular effect or combination thereof affects the interfacial potential distribution depending on size and valence of cations and anions, size of particle charges, length scale of ionic correlations and shell-to-Debye layer thickness ratio. The origins of here-evidenced pseudo-harmonic potential profile and ion size-dependent screening of core/shell particle charges are detailed. In addition, the existence and magnitude of the Donnan potential when reached in the shell layer are shown to depend on the excluded volumes of the electrolyte ions.
Collapse
|
5
|
Narayanan T, Konovalov O. Synchrotron Scattering Methods for Nanomaterials and Soft Matter Research. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E752. [PMID: 32041363 PMCID: PMC7040635 DOI: 10.3390/ma13030752] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
This article aims to provide an overview of broad range of applications of synchrotron scattering methods in the investigation of nanoscale materials. These scattering techniques allow the elucidation of the structure and dynamics of nanomaterials from sub-nm to micron size scales and down to sub-millisecond time ranges both in bulk and at interfaces. A major advantage of scattering methods is that they provide the ensemble averaged information under in situ and operando conditions. As a result, they are complementary to various imaging techniques which reveal more local information. Scattering methods are particularly suitable for probing buried structures that are difficult to image. Although, many qualitative features can be directly extracted from scattering data, derivation of detailed structural and dynamical information requires quantitative modeling. The fourth-generation synchrotron sources open new possibilities for investigating these complex systems by exploiting the enhanced brightness and coherence properties of X-rays.
Collapse
|
6
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
7
|
Ben Jabrallah S, Malloggi F, Belloni L, Girard L, Novikov D, Mocuta C, Thiaudière D, Daillant J. Electrolytes at interfaces: accessing the first nanometers using X-ray standing waves. Phys Chem Chem Phys 2016; 19:167-174. [PMID: 27929155 DOI: 10.1039/c6cp06888j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion-surface interactions are of high practical importance in a wide range of technological, environmental and biological problems. In particular, they ultimately control the electric double layer structure, hence the interaction between particles in aqueous solutions. Despite numerous achievements, progress in their understanding is still limited by the lack of experimental determination of the surface composition with appropriate resolution. Tackling this challenge, we have developed a method based on X-ray standing waves coupled to nano-confinement which allows the determination of ion concentrations at a solid-solution interface with a sub-nm resolution. We have investigated mixtures of KCl/CsCl and KCl/KI in 0.1 mM to 10 mM concentrations on silica surfaces and obtained quantitative information on the partition of ions between bulk and Stern layer as well as their distribution in the Stern layer. Regarding partition of potassium ions, our results are in agreement with a recent AFM study. We show that in a mixture of KCl and KI, chloride ions exhibit a higher surface propensity than iodide ions, having a higher concentration within the Stern layer and being on average closer to the surface by ≈1-2 Å, in contrast to the solution water interface. Confronting such data with molecular simulations will lead to a precise understanding of ionic distributions at aqueous interfaces.
Collapse
Affiliation(s)
- Soumaya Ben Jabrallah
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Florent Malloggi
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Luc Belloni
- Laboratoire Interdisciplinaire sur l'Organisation Nanométrique et Supramoléculaire, NIMBE, CEA, CNRS, Université Paris-Saclay, CEA Saclay 91191 Gif sur Yvette Cedex, France.
| | - Luc Girard
- ICSM UMR 5257 - CEA/CNRS/UM/ENSCM, Site de Marcoule, Bâtiment 426 BP 17171 F-30207 Bagnols sur Cèze Cedex, France
| | - Dmitri Novikov
- Deutsches Elektronensynchrotron DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Cristian Mocuta
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Dominique Thiaudière
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| | - Jean Daillant
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, F-91192 Gif-sur-Yvette Cedex, France
| |
Collapse
|
8
|
Murphy BM, Festersen S, Magnussen OM. The Atomic scale structure of liquid metal-electrolyte interfaces. NANOSCALE 2016; 8:13859-13866. [PMID: 27301317 DOI: 10.1039/c6nr01571a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrochemical interfaces between immiscible liquids have lately received renewed interest, both for gaining fundamental insight as well as for applications in nanomaterial synthesis. In this feature article we demonstrate that the atomic scale structure of these previously inaccessible interfaces nowadays can be explored by in situ synchrotron based X-ray scattering techniques. Exemplary studies of a prototypical electrochemical system - a liquid mercury electrode in pure NaCl solution - reveal that the liquid metal is terminated by a well-defined atomic layer. This layering decays on length scales of 0.5 nm into the Hg bulk and displays a potential and temperature dependent behaviour that can be explained by electrocapillary effects and contributions of the electronic charge distribution on the electrode. In similar studies of nanomaterial growth, performed for the electrochemical deposition of PbFBr, a complex nucleation and growth behaviour is found, involving a crystalline precursor layer prior to the 3D crystal growth. Operando X-ray scattering measurements provide detailed data on the processes of nanoscale film formation.
Collapse
Affiliation(s)
- B M Murphy
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstr. 19, D-24098 Kiel, Germany.
| | | | | |
Collapse
|
9
|
Elfassy E, Mastai Y, Pontoni D, Deutsch M. Liquid-Mercury-Supported Langmuir Films of Ionic Liquids: Isotherms, Structure, and Time Evolution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3164-3173. [PMID: 26963651 DOI: 10.1021/acs.langmuir.6b00196] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ionic liquids have been intensively developed for the last few decades and are now used in a wide range of applications, from electrochemistry to catalysis and nanotechnology. Many of these applications involve ionic liquid interfaces with other liquids and solids, the subnanometric experimental study of which is highly demanding, and has been little studied to date. We present here a study of mercury-supported Langmuir films of imidazolium-based ionic liquids by surface tensiometry and X-ray reflectivity. The charge-delocalized ionic liquids studied here exhibit no 2D lateral order but show diffuse surface-normal electron density profiles exhibiting gradual mercury penetration into the ionic liquid film, and surface-normal structure evolution over a period of hours. The effect of increasing the nonpolar alkyl chain length was also investigated. The results obtained provide insights into the interactions between these ionic liquids and liquid mercury and about the time evolution of the structure and composition of their interface.
Collapse
Affiliation(s)
| | | | - Diego Pontoni
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, 38000 Grenoble, France
| | | |
Collapse
|
10
|
Murphy BM, Greve M, Runge B, Koops CT, Elsen A, Stettner J, Seeck OH, Magnussen OM. A novel X-ray diffractometer for studies of liquid-liquid interfaces. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:45-56. [PMID: 24365915 DOI: 10.1107/s1600577513026192] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 09/22/2013] [Indexed: 06/03/2023]
Abstract
The study of liquid-liquid interfaces with X-ray scattering methods requires special instrumental considerations. A dedicated liquid surface diffractometer employing a tilting double-crystal monochromator in Bragg geometry has been designed. This diffractometer allows reflectivity and grazing-incidence scattering measurements of an immobile mechanically completely decoupled liquid sample, providing high mechanical stability. The available energy range is from 6.4 to 29.4 keV, covering many important absorption edges. The instrument provides access in momentum space out to 2.54 Å(-1) in the surface normal and out to 14.8 Å(-1) in the in-plane direction at 29.4 keV. Owing to its modular design the diffractometer is also suitable for heavy apparatus such as vacuum chambers. The instrument performance is described and examples of X-ray reflectivity studies performed under in situ electrochemical control and on biochemical model systems are given.
Collapse
Affiliation(s)
- Bridget M Murphy
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Matthais Greve
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Christian T Koops
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Annika Elsen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Jochim Stettner
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| | - Oliver H Seeck
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany
| | - Olaf M Magnussen
- Institute for Experimental and Applied Physics, University of Kiel, D-24098 Kiel, Germany
| |
Collapse
|
11
|
Elsen A, Festersen S, Runge B, Koops CT, Ocko BM, Deutsch M, Seeck OH, Murphy BM, Magnussen OM. In situ X-ray studies of adlayer-induced crystal nucleation at the liquid-liquid interface. Proc Natl Acad Sci U S A 2013; 110:6663-8. [PMID: 23553838 PMCID: PMC3637733 DOI: 10.1073/pnas.1301800110] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crystal nucleation and growth at a liquid-liquid interface is studied on the atomic scale by in situ Å-resolution X-ray scattering methods for the case of liquid Hg and an electrochemical dilute electrolyte containing Pb(2+), F(-), and Br(-) ions. In the regime negative of the Pb amalgamation potential Φ(rp) = -0.70 V, no change is observed from the surface-layered structure of pure Hg. Upon potential-induced release of Pb(2+) from the Hg bulk at Φ > Φ(rp), the formation of an intriguing interface structure is observed, comprising a well-defined 7.6-Å-thick adlayer, decorated with structurally related 3D crystallites. Both are identified by their diffraction peaks as PbFBr, preferentially aligned with their axis along the interface normal. X-ray reflectivity shows the adlayer to consist of a stack of five ionic layers, forming a single-unit-cell-thick crystalline PbFBr precursor film, which acts as a template for the subsequent quasiepitaxial 3D crystal growth. This growth behavior is assigned to the combined action of electrostatic and short-range chemical interactions.
Collapse
Affiliation(s)
- Annika Elsen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Sven Festersen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Benjamin Runge
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christian T. Koops
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Benjamin M. Ocko
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY 11973
| | - Moshe Deutsch
- Physics Department, and Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Oliver H. Seeck
- Deutsches Elektronensynchrotron DESY, 22607 Hamburg, Germany; and
| | - Bridget M. Murphy
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Olaf M. Magnussen
- Institute for Experimental and Applied Physics, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
- Ruprecht Haensel Laboratory, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
12
|
Zimmermann R, Dukhin SS, Werner C, Duval JF. On the use of electrokinetics for unraveling charging and structure of soft planar polymer films. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|