1
|
Sun S, Zhang K, Xu S, Shi X, Wang J. Diffusion of Nanosheets in Unentangled Polymer Melts. ACS Macro Lett 2025; 14:284-291. [PMID: 39965139 DOI: 10.1021/acsmacrolett.4c00535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Understanding the dynamics of nanosheets in polymer matrices is crucial for the processing of polymer nanocomposites and their applications in drug delivery. In this work, we investigate the diffusion of thin nanosheets in unentangled polymer melts using molecular dynamics simulations. We show that for nanosheets smaller than a characteristic size lc, which is a few times the polymer chain size, the continuum hydrodynamic theory based on macroscopic viscosity breaks down and significantly underestimates the diffusion coefficients. For nanosheets with sizes l < lc, we derive scaling relationships for both translational and rotational diffusion coefficients as functions of l and further reveal the dynamical coupling between nanosheet motion and the modes of the polymer melt. For l > lc, the continuum theory is recovered. Our findings reconcile the continuum and scaling theories for the diffusion of nanoparticles in polymer melts.
Collapse
Affiliation(s)
- Shiwei Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| | - Sai Xu
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Xinghua Shi
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jiuling Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063000, People's Republic of China
| |
Collapse
|
2
|
He H, Liang H, Chu M, Jiang Z, de Pablo JJ, Tirrell MV, Narayanan S, Chen W. Transport coefficient approach for characterizing nonequilibrium dynamics in soft matter. Proc Natl Acad Sci U S A 2024; 121:e2401162121. [PMID: 39042671 PMCID: PMC11295068 DOI: 10.1073/pnas.2401162121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/25/2024] Open
Abstract
Nonequilibrium states in soft condensed matter require a systematic approach to characterize and model materials, enhancing predictability and applications. Among the tools, X-ray photon correlation spectroscopy (XPCS) provides exceptional temporal and spatial resolution to extract dynamic insight into the properties of the material. However, existing models might overlook intricate details. We introduce an approach for extracting the transport coefficient, denoted as [Formula: see text], from the XPCS studies. This coefficient is a fundamental parameter in nonequilibrium statistical mechanics and is crucial for characterizing transport processes within a system. Our method unifies the Green-Kubo formulas associated with various transport coefficients, including gradient flows, particle-particle interactions, friction matrices, and continuous noise. We achieve this by integrating the collective influence of random and systematic forces acting on the particles within the framework of a Markov chain. We initially validated this method using molecular dynamics simulations of a system subjected to changes in temperatures over time. Subsequently, we conducted further verification using experimental systems reported in the literature and known for their complex nonequilibrium characteristics. The results, including the derived [Formula: see text] and other relevant physical parameters, align with the previous observations and reveal detailed dynamical information in nonequilibrium states. This approach represents an advancement in XPCS analysis, addressing the growing demand to extract intricate nonequilibrium dynamics. Further, the methods presented are agnostic to the nature of the material system and can be potentially expanded to hard condensed matter systems.
Collapse
Affiliation(s)
- HongRui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Heyi Liang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Miaoqi Chu
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Zhang Jiang
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Juan J. de Pablo
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Matthew V. Tirrell
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| | - Suresh Narayanan
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL60439
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL60439
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL60637
| |
Collapse
|
3
|
Xue B, Liufu W, Yin J, Yang J, Yin P. Particle topology-regulated relaxation dynamics in cluster-ordering. J Chem Phys 2024; 160:154902. [PMID: 38624128 DOI: 10.1063/5.0195905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
The granular materials of soft particles (SPs) demonstrate unique viscoelasticity distinct from general colloidal and polymer systems. Exploiting dynamic light scattering measurements, together with molecular dynamics simulations, we study the diffusive dynamics of soft particle clusters (SPCs) with spherical and cylindrical brush topologies, respectively, in the melts of SPs. A topologically constrained relaxation theory is proposed by quantitatively correlating the relaxation time to the topologies of the SPCs, through the mean free space (Va) of tethered SPs in the cluster. The tethered SPs in SPCs are crowded by SPs of the melts to form the cage zones, and the cooperative diffusion of the tether SPs in the zones is required for the diffusive motion of SPCs. The cage zone serves as an entropic barrier for the diffusion of SP clusters, while its strength is determined by Va. Three characteristic modes can be confirmed: localized non-diffusive mode around critical Va, diffusive mode with Va deviating far from the critical value, and a sub-diffusive mode as an interlude between two limits. Our studies raise attention to the emergent physical properties of materials based on SPs via a topological design while opening new avenues for the design of soft structural materials.
Collapse
Affiliation(s)
- Binghui Xue
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Wei Liufu
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jiafu Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Junsheng Yang
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices & South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|
4
|
Wu D, Narayanan S, Li R, Feng Y, Akcora P. The effect of dynamically heterogeneous interphases on the particle dynamics of polymer nanocomposites. SOFT MATTER 2023; 19:2764-2770. [PMID: 36988144 DOI: 10.1039/d2sm01617f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The entanglements of dynamically asymmetric polymer layers influence relaxations of nanoparticles in polymer nanocomposites. In this work, the dynamics of polymer-adsorbed and polymer-grafted nanoparticles in a poly(methyl acrylate) matrix polymer was investigated using X-ray photon correlation spectroscopy (XPCS) to understand the role of chain rigidity and chemical heterogeneities in particle dynamics. Locations of dynamic heterogeneities close to nanoparticles and away from particle surfaces were examined with the comparison of adsorbed and grafted nanoparticles. Our results show that the chemical heterogeneities around dispersed nanoparticles transitioned the particle dynamics from Brownian diffusion into hyperdiffusion, and moreover, the high rigidity of chains in the chemically heterogeneous interfacial layers slowed down the particle dynamics. The hyperdiffusion measured both in grafted particles and adsorbed particles was attributed to the dense interfacial mixing of dynamically heterogeneous chains.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ruhao Li
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Yi Feng
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| | - Pinar Akcora
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA.
| |
Collapse
|
5
|
Martín-Martín S, Ramos-Tejada MDM, Rubio-Andrés A, Bonhome-Espinosa AB, Delgado ÁV, Jiménez ML. Electro-optical Study of the Anomalous Rotational Diffusion in Polymer Solutions. Macromolecules 2023; 56:518-527. [PMID: 36711111 PMCID: PMC9879198 DOI: 10.1021/acs.macromol.2c01461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/22/2022] [Indexed: 01/13/2023]
Abstract
Brownian diffusion of spherical nanoparticles is usually exploited to ascertain the rheological properties of complex media. However, the behavior of the tracer particles is affected by a number of phenomena linked to the interplay between the dynamics of the particles and polymer coils. For this reason, the characteristic lengths of the dispersed entities, depletion phenomena, and the presence of sticking conditions have been observed to affect the translational diffusion of the probes. On the other hand, the retardation effect of the host fluid on the rotational diffusion of nonspherical particles is less understood. We explore the possibility of studying this phenomenon by analyzing the electro-orientation of the particles in different scenarios in which we vary the ratio between the particle and polymer characteristic size, and the geometry of the particles, including both elongated and oblate shapes. We find that the Stokes-Einstein relation only applies if the radius of gyration of the polymer is much shorter than the particle size and when some repulsive interaction between both is present.
Collapse
Affiliation(s)
- Sergio Martín-Martín
- Department
of Applied Physics, School of Sciences, University of Granada, 18071Granada, Spain
| | | | - Antonio Rubio-Andrés
- Department
of Applied Physics, School of Sciences, University of Granada, 18071Granada, Spain
| | - Ana B. Bonhome-Espinosa
- Department
of Applied Physics, School of Sciences, University of Granada, 18071Granada, Spain
| | - Ángel V. Delgado
- Department
of Applied Physics, School of Sciences, University of Granada, 18071Granada, Spain
| | - María L. Jiménez
- Department
of Applied Physics, School of Sciences, University of Granada, 18071Granada, Spain,
| |
Collapse
|
6
|
Mohammed S, Liu M, Zhang Q, Narayanan S, Zhang F, Gadikota G. Resolving Salt-Induced Agglomeration of Laponite Suspensions Using X-ray Photon Correlation Spectroscopy and Molecular Dynamics Simulations. MATERIALS (BASEL, SWITZERLAND) 2022; 16:101. [PMID: 36614439 PMCID: PMC9820912 DOI: 10.3390/ma16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Linking the physics of the relaxation behavior of viscoelastic fluids as they form arrested gel states to the underlying chemical changes is essential for developing predictive controls on the properties of the suspensions. In this study, 3 wt.% laponite suspensions are studied as model systems to probe the influence of salt-induced relaxation behavior arising from the assembly of laponite nanodisks. X-ray Photon Correlation Spectroscopy (XPCS) measurements show that laponite suspensions prepared in the presence of 5 mM concentrations of CaCl2, MgCl2 and CsCl salts accelerate the formation of arrested gel states, with CaCl2 having a significant impact followed by CsCl and MgCl2 salts. The competing effects of ion size and charge on relaxation behavior are noted. For example, the relaxation times of laponite suspensions in the presence of Mg2+ ions are slower compared to Cs+ ions despite the higher charge, suggesting that cation size dominates in this scenario. The faster relaxation behavior of laponite suspensions in the presence of Ca2+ ions compared to Cs+ ions shows that a higher charge dominates the size of the ion. The trends in relaxation behavior are consistent with the cluster formation behavior of laponite suspensions and the electrostatic interactions predicted from MD simulations. Charge balance is achieved by the intercalation of the cations at the negatively charged surfaces of laponite suspensions. These studies show that the arrested gel state of laponite suspensions is accelerated in the presence of salts, with ion sizes and charges having a competing effect on relaxation behavior.
Collapse
Affiliation(s)
- Sohaib Mohammed
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Meishen Liu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Qingteng Zhang
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Suresh Narayanan
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Fan Zhang
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Safi Samghabadi F, Slim AH, Smith MW, Chabi M, Conrad JC. Dynamics of Filamentous Viruses in Polyelectrolyte Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Ali H. Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maxwell W. Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| | - Maede Chabi
- Department of Biomedical Engineering, University of Houston, Houston, Texas77204, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas77204, United States
| |
Collapse
|
8
|
Crowding and confinement act in concert to slow DNA diffusion within cell-sized droplets. iScience 2022; 25:105122. [PMID: 36185357 PMCID: PMC9523355 DOI: 10.1016/j.isci.2022.105122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Dynamics of biological macromolecules, such as DNA, in crowded and confined environments are critical to understanding cellular processes such as transcription, infection, and replication. However, the combined effects of cellular confinement and crowding on macromolecular dynamics remain poorly understood. Here, we use differential dynamic microscopy to investigate the diffusion of large DNA molecules confined in cell-sized droplets and crowded by dextran polymers. We show that confined and crowded DNA molecules exhibit universal anomalous subdiffusion with scaling that is insensitive to the degree of confinement and crowding. However, effective DNA diffusion coefficients Deff decrease up to 2 orders of magnitude as droplet size decreases—an effect that is enhanced by increased crowding. We mathematically model the coupling of crowding and confinement by combining polymer scaling theories with confinement-induced depletion effects. The generality and tunability of our system and models render them applicable to elucidating wide-ranging crowded and confined systems. DNA diffusion measured in cell-sized droplets with differential dynamic microscopy Combination of crowding and confinement leads to subdiffusion and slowing Diffusion coefficients of DNA decrease strongly with decreasing droplet size Polymer scaling theories and depletion effects predict observed dynamics
Collapse
|
9
|
Reiser M, Hallmann J, Möller J, Kazarian K, Orsi D, Randolph L, Rahmann H, Westermeier F, Stellamanns E, Sprung M, Zontone F, Cristofolini L, Gutt C, Madsen A. Photo-Controlled Dynamics and Transport in Entangled Wormlike Micellar Nanocomposites Studied by XPCS. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mario Reiser
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869Schenefeld, Germany
- Department Physik, Universität Siegen, Walter-Flex-Straße 3, 57072Siegen, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869Schenefeld, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869Schenefeld, Germany
| | - Karina Kazarian
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869Schenefeld, Germany
| | - Davide Orsi
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Scienze 7/A, 43124Parma, Italy
| | - Lisa Randolph
- Department Physik, Universität Siegen, Walter-Flex-Straße 3, 57072Siegen, Germany
| | - Hendrik Rahmann
- Department Physik, Universität Siegen, Walter-Flex-Straße 3, 57072Siegen, Germany
| | | | - Eric Stellamanns
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607Hamburg, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron, Notkestraße 85, 22607Hamburg, Germany
| | - Federico Zontone
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, 38043Grenoble, France
| | - Luigi Cristofolini
- Department of Mathematical, Physical and Computer Sciences, University of Parma, Parco Area Scienze 7/A, 43124Parma, Italy
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Straße 3, 57072Siegen, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869Schenefeld, Germany
| |
Collapse
|
10
|
Reiser M, Girelli A, Ragulskaya A, Das S, Berkowicz S, Bin M, Ladd-Parada M, Filianina M, Poggemann HF, Begam N, Akhundzadeh MS, Timmermann S, Randolph L, Chushkin Y, Seydel T, Boesenberg U, Hallmann J, Möller J, Rodriguez-Fernandez A, Rosca R, Schaffer R, Scholz M, Shayduk R, Zozulya A, Madsen A, Schreiber F, Zhang F, Perakis F, Gutt C. Resolving molecular diffusion and aggregation of antibody proteins with megahertz X-ray free-electron laser pulses. Nat Commun 2022; 13:5528. [PMID: 36130930 PMCID: PMC9490738 DOI: 10.1038/s41467-022-33154-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
X-ray free-electron lasers (XFELs) with megahertz repetition rate can provide novel insights into structural dynamics of biological macromolecule solutions. However, very high dose rates can lead to beam-induced dynamics and structural changes due to radiation damage. Here, we probe the dynamics of dense antibody protein (Ig-PEG) solutions using megahertz X-ray photon correlation spectroscopy (MHz-XPCS) at the European XFEL. By varying the total dose and dose rate, we identify a regime for measuring the motion of proteins in their first coordination shell, quantify XFEL-induced effects such as driven motion, and map out the extent of agglomeration dynamics. The results indicate that for average dose rates below 1.06 kGy μs-1 in a time window up to 10 μs, it is possible to capture the protein dynamics before the onset of beam induced aggregation. We refer to this approach as correlation before aggregation and demonstrate that MHz-XPCS bridges an important spatio-temporal gap in measurement techniques for biological samples.
Collapse
Affiliation(s)
- Mario Reiser
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Anita Girelli
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Anastasia Ragulskaya
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Sudipta Das
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Sharon Berkowicz
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Maddalena Bin
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Mariia Filianina
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Hanna-Friederike Poggemann
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.,Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Nafisa Begam
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | | | - Sonja Timmermann
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Lisa Randolph
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany
| | - Yuriy Chushkin
- ESRF - The European Synchrotron, 71 Avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Tilo Seydel
- Institut Laue-Langevin, 71 Avenue des Martyrs, CS 20156, 38042, Grenoble Cedex 9, France
| | - Ulrike Boesenberg
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Jörg Hallmann
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Johannes Möller
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | | | - Robert Rosca
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Robert Schaffer
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Markus Scholz
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Roman Shayduk
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Alexey Zozulya
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Anders Madsen
- European X-Ray Free-Electron Laser Facility, Holzkoppel 4, 22869, Schenefeld, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fajun Zhang
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, 72076, Tübingen, Germany
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Christian Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, 57072, Siegen, Germany.
| |
Collapse
|
11
|
Rheological properties of crosslinked unentangled and entangled Poly(methyl acrylate) nanocomposite networks. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Zhao BR, Li B. Molecular Simulation of Hopping Mechanisms of Nanoparticles in Regular Cross-Linked Polymer Networks. J Chem Phys 2022; 157:104901. [DOI: 10.1063/5.0098947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use coarse-grained simulations to explore the diffusion mechanism of nanoparticles with different sizes at various nanoparticle-polymer interactions in regular cross-linked polymer networks. The long time diffusivities of nanoparticles show a non-monotonic tendency at various nanoparticle-polymer interactions, due to the intermittent hopping of nanoparticles through network cells. The preferred locations of small nanoparticles switch from the cell centers to the corner of cells as they interact with network more strongly, which results in the hopping energy barrier between different cells switching from cell center localization to adsorption on networks. Steric hindrance seriously hampers large nanoparticles from hopping to neighboring network cells, the interactions between nanoparticle and network enhance the network deformability and also affect the hopping of nanoparticles. The multiple constraint mechanisms result in the non-monotonic diffusivities of nanoparticles with different interactions and non-Brownian motions at different time scales. Our work illustrates the hopping mechanisms of nanoparticles in polymer networks from thermodynamic and dynamic points of view.
Collapse
Affiliation(s)
- Bo-Ran Zhao
- Sun Yat-sen University - Zhuhai Campus, China
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University - Zhuhai Campus, China
| |
Collapse
|
13
|
Abstract
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy. By studying the dynamics of a model associative gel system that undergoes dynamical arrest in the absence of aging effects, we show that the mean stress relaxation time measured from linear rheometry is directly correlated to the quiescent superdiffusive dynamics of the microscopic clusters, which are governed by a buildup of internal stresses during arrest. We also show that perturbing the system via small mechanical deformations can result in large intermittent fluctuations in the form of avalanches, which give rise to a broad non-Gaussian spectrum of relaxation modes at short times that is observed in stress relaxation measurements. These findings suggest that the linear viscoelastic stress relaxation in arrested soft materials may be governed by nonlinear phenomena involving an interplay of internal stress relaxations and perturbation-induced intermittent avalanches.
Collapse
|
14
|
Slim AH, Shi WH, Safi Samghabadi F, Faraone A, Marciel AB, Poling-Skutvik R, Conrad JC. Electrostatic Repulsion Slows Relaxations of Polyelectrolytes in Semidilute Solutions. ACS Macro Lett 2022; 11:854-860. [PMID: 35758769 DOI: 10.1021/acsmacrolett.2c00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigate the structure and dynamics of unentangled semidilute solutions of sodium polystyrenesulfonate (NaPSS) using small-angle neutron scattering (SANS) and neutron spin-echo (NSE) spectroscopy. The effects of electrostatic interactions and chain structure are examined as a function of ionic strength and polymer concentration, respectively. The SANS profiles exhibit a characteristic structural peak, signature of polyelectrolyte solutions, that can be fit with a combination of a semiflexible chain with excluded volume interactions form factor and a polymer reference interaction site model (PRISM) structure factor. We confirm that electrostatic interactions vary with ionic strength across solutions with similar geometries. The segmental relaxations from NSE deviate from theoretical predictions from Zimm and exhibit two scaling behaviors, with the crossover between the two regimes taking place around the characteristic structural peak. The chain dynamics are suppressed across the length scale of the correlation blob, and inversely related to the structure factor. These observations suggest that the highly correlated nature of polyelectrolytes presents an additional energy barrier that leads to de Gennes narrowing behavior.
Collapse
Affiliation(s)
- Ali H Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Winnie H Shi
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Farshad Safi Samghabadi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Antonio Faraone
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| | - Amanda B Marciel
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Chen Y, Xu H, Ma Y, Liu J, Zhang L. Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts. Phys Chem Chem Phys 2022; 24:11322-11335. [PMID: 35485911 DOI: 10.1039/d2cp00002d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The dynamics of polymer-grafted nanoparticles (PGNPs) in melts of unentangled linear chains were investigated by means of coarse-grained molecular dynamics simulations. The results demonstrated that the graft monomers closer to the particle surface relax more slowly than those farther away due to the constraint of the grafted surface and the confinement of the neighboring chains. Such heterogeneous relaxations of the surrounding environment would perturb the particle motion, making them fluctuating around their centers before they can diffuse through the melt. During such intermediate-time stage, the dynamics is subdiffusive while the distribution of particle displacements is Gaussian, which can be described by the popular fractional Brownian motion model. For the long-time Fickian diffusion, we found that the diffusivity D decreases with increasing grafting density Σg, grafted chain length Ng, and matrix chain length Nm. This is due to the fact that the diffusivity is controlled by the viscous drag of an effective core, consisting of the NP and the non-draining layer of graft segments, and that of the free-draining graft layer outside the "core". With increasing Σg, the PGNPs become harder with greater effective size and thinner free draining layer, resulting in a reduction in D. At extremely high Σg, the diffusivity can even be estimated by the diameter-renormalized Stokes-Einstein (SE) relation. With increasing Ng, both the effective core size and the thickness of the free-draining layer increase, leading to a reduction in diffusivity by D ∼ N-γg with 0.5 < γ < 1. Increasing Nm would lead to the enlargement of the effective core size but meanwhile result in the reduction of the free-draining layer thickness due to autophobic dewetting. The counteraction between these two opposite effects leads to only a slight reduction in the diffusivity, significantly different from the typical SE behavior where D ∼ Nm-1. These findings bear significance in unraveling the fundamental physics of the anomalous dynamics of PGNPs in various polymers, including biological and synthetic.
Collapse
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yangwei Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Liqun Zhang
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
16
|
Cho NH, Zhang Q, Dufresne EM, Narayanan S, Richards JJ. Microscopic Dynamics of Inverse Wormlike Micelles Probed Using X-ray Photon Correlation Spectroscopy. ACS Macro Lett 2022; 11:575-579. [PMID: 35575339 DOI: 10.1021/acsmacrolett.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wormlike micelles (WLMs) are ubiquitous viscoelastic modifiers that share properties with polymer solutions. While their macroscopic rheology is well-understood, their microscopic dynamics remain difficult to measure because they span a large range of time and length scales. In this work, we demonstrate the use of X-ray photon correlation spectroscopy to interrogate the segmental dynamics of inverse WLM solutions swollen with a rubidium chloride solution. We observe a diffusive scaling of the dynamics and extract a temperature-dependent diffusion coefficient, which we associate with the thermal interactions of the slow segmental dynamics near entanglement points. We probe this relaxation process across the unbranched to branched topological transition and find no microstructural evidence of branch formation in the slow mode. Instead, we observe that the dynamics become more homogeneous and prominent as the temperature is reduced and water content increases.
Collapse
Affiliation(s)
- Noah H. Cho
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Eric M. Dufresne
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jeffrey J. Richards
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Senses E, Kitchens CL, Faraone A. Viscosity reduction in polymer nanocomposites: Insights from dynamic neutron and X‐ray scattering. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering Koc University Istanbul Turkey
| | - Christopher L. Kitchens
- Department of Chemical and Biomolecular Engineering Clemson University Clemson South Carolina USA
| | - Antonio Faraone
- Center for Neutron Research National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
18
|
Cheng CH, Kamitani K, Masuda S, Uno K, Dechnarong N, Hoshino T, Kojio K, Takahara A. Dynamics of matrix-free nanocomposites consisting of block copolymer-grafted silica nanoparticles under elongation evaluated through X-ray photon correlation spectroscopy. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Smith M, Poling-Skutvik R, Slim AH, Willson RC, Conrad JC. Dynamics of Flexible Viruses in Polymer Solutions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maxwell Smith
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Ryan Poling-Skutvik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Ali H. Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Richard C. Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
20
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
21
|
Cho JH, Bischofberger I. Two modes of cluster dynamics govern the viscoelasticity of colloidal gels. Phys Rev E 2021; 103:032609. [PMID: 33862797 DOI: 10.1103/physreve.103.032609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Colloidal gels formed by strongly attractive particles at low particle volume fractions are composed of space-spanning networks of uniformly sized clusters. We study the thermal fluctuations of the clusters using differential dynamic microscopy by decomposing them into two modes of dynamics, and link them to the macroscopic viscoelasticity via rheometry. The first mode, dominant at early times, represents the localized, elastic fluctuations of individual clusters. The second mode, pronounced at late times, reflects the collective, viscoelastic dynamics facilitated by the connectivity of the clusters. By mixing two types of particles of distinct attraction strengths in different proportions, we control the transition time at which the collective mode starts to dominate, and hence tune the frequency dependence of the linear viscoelastic moduli of the binary gels.
Collapse
Affiliation(s)
- Jae Hyung Cho
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Irmgard Bischofberger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Slim AH, Poling-Skutvik R, Conrad JC. Local Confinement Controls Diffusive Nanoparticle Dynamics in Semidilute Polyelectrolyte Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9153-9159. [PMID: 32678607 DOI: 10.1021/acs.langmuir.0c01402] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the mobility of polystyrene particles ranging from 100 to 790 nm in diameter in dilute and semidilute sodium polystyrene sulfonate (NaPSS) solutions using fluorescence microscopy. We tune the polymer conformations by varying the ionic strength of the solution. The nanoparticle mean-squared displacements evolve linearly with time at all time scales, indicating Fickian diffusive dynamics. In solutions of high ionic strength, chains adopt a random walk conformation and particle dynamics couple to the bulk zero-shear rate viscosity, according to the Stokes-Einstein picture. In solutions of low ionic strength, however, particle dynamics nonmonotonically deviate from bulk predictions as polymer concentration increases and are not accurately predicted by the available models. These nonmonotonic dynamics directly correlate with the non-Gaussianity in distributions of particle displacements, suggesting the emergence of a local confining length scale as polyelectrolyte concentration increases.
Collapse
Affiliation(s)
- Ali H Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
23
|
Frenzel L, Lokteva I, Koof M, Narayanan S, Grübel G, Lehmkühler F. Influence of TMAO as co-solvent on the gelation of silica-PNIPAm core-shell nanogels at intermediate volume fractions. Chemphyschem 2020; 21:1318-1325. [PMID: 32250508 PMCID: PMC7318175 DOI: 10.1002/cphc.202000114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/20/2020] [Indexed: 12/29/2022]
Abstract
We study the structure and dynamics of poly(N-isopropylacrylamide) (PNIPAm) core-shell nanogels dispersed in aqueous trimethylamine N-oxide (TMAO) solutions by means of small-angle X-ray scattering and X-ray photon correlation spectroscopy (XPCS). Upon increasing the temperature above the lower critical solution temperature of PNIPAm at 33 °C, a colloidal gel is formed as identified by an increase of I(q) at small q as well as a slowing down of sample dynamics by various orders of magnitude. With increasing TMAO concentration the gelation transition shifts linearly to lower temperatures. Above a TMAO concentration of approximately 0.40 mol/L corresponding to a 1 : 1 ratio of TMAO and NIPAm groups, collapsed PNIPAm states are found for all temperatures without any gelation transition. This suggests that reduction of PNIPAm-water hydrogen bonds due to the presence of TMAO results in a stabilisation of the collapsed PNIPAm state and suppresses gelation of the nanogel.
Collapse
Affiliation(s)
- Lara Frenzel
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
- The Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761HamburgGermany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
- The Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761HamburgGermany
| | - Michael Koof
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
- The Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761HamburgGermany
| | - Suresh Narayanan
- Advanced Photon SourceArgonne National LaboratoryArgonneIllinois60439United States
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
- The Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761HamburgGermany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESYNotkestr. 8522607HamburgGermany
- The Hamburg Centre for Ultrafast ImagingLuruper Chaussee 14922761HamburgGermany
| |
Collapse
|
24
|
Chen Y, Ma R, Qian X, Zhang R, Huang X, Xu H, Zhou M, Liu J. Nanoparticle Mobility within Permanently Cross-Linked Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yulong Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rui Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xin Qian
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Xifu Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Ningbo Detai Chemical Co., Ltd., Ningbo 315204, China
| | - Haohao Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jun Liu
- Key Laboratory of Beijing City on Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Characterization of conformational transition of polymers with low molecular weights in solutions by fluorescence resonance energy transfer. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Yang Y, Gao L, Xie J, Zhou Y, Hu J, Li Q, He J. Defect-targeted self-healing of multiscale damage in polymers. NANOSCALE 2020; 12:3605-3613. [PMID: 31844869 DOI: 10.1039/c9nr09438e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healing materials capable of restoring functionality in response to damage are expected to gain prolonged service lifespan. Yet the ability to repair damage of diverse length scales which is demanded for the survival of highly capricious and uncontrolled damage modes has not been demonstrated with current self-healing approaches. Herein the repeatable self-healing of multiscale damage ranging from nanometer to millimeter is achieved in thermoplastic polymers through defect-targeted heating and welding. The key to the ability to deal with multiscale damage is the automatic and targeted transport and assembly of superparamagnetic nanoparticles toward the defect site. This allows the concentrated nanoparticles to deliver a high heating power under an oscillating magnetic field and locally fuse the matrix, whereas the overall dimensional integrity of the material is well preserved. Moreover, as the polymer melt drives progressively into the open volume of the crack, the nanoparticles keep migrating with the edge of the crack until the fractured portions are united. The cracking-healing cycle can be repeated 100 times with a constantly high healing efficiency above 95%. This work sheds light on the new design of self-healing materials where the ability to deal with complex damage modes represents a key merit to prompt real-world applications.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Lei Gao
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jiaye Xie
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Yao Zhou
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jun Hu
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Qi Li
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| | - Jinliang He
- State Key Laboratory of Power System, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Jiang S, Zhao J, Förster R, Weidlich S, Plidschun M, Kobelke J, Fatobene Ando R, Schmidt MA. Three dimensional spatiotemporal nano-scale position retrieval of the confined diffusion of nano-objects inside optofluidic microstructured fibers. NANOSCALE 2020; 12:3146-3156. [PMID: 31967162 DOI: 10.1039/c9nr10351a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the dynamics of single nano-scale species at high spatiotemporal resolution is of utmost importance within fields such as bioanalytics or microrheology. Here we introduce the concept of axial position retrieval via scattered light at evanescent fields inside a corralled geometry using optofluidic microstructured optical fibers allowing to unlock information about diffusing nano-scale objects in all three spatial dimensions at kHz acquisition rate for several seconds. Our method yields the lateral positions by localizing the particle in a wide-field microscopy image. In addition, the axial position is retrieved via the scattered light intensity of the particle, as a result of the homogenized evanescent fields inside a microchannel running parallel to an optical core. This method yields spatial localization accuracies <3 nm along the transverse and <21 nm along the retrieved directions. Due to its unique properties such as three dimensional tracking, straightforward operation, mechanical flexibility, strong confinement, fast and efficient data recording, long observation times, low background scattering, and compatibility with microscopy and fiber circuitry, our concept represents a new paradigm in light-based nanoscale detection techniques, extending the capabilities of the field of nanoparticle tracking analysis and potentially allowing for the observation of so far inaccessible processes at the nanoscale level.
Collapse
Affiliation(s)
- Shiqi Jiang
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Jiangbo Zhao
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Ronny Förster
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Stefan Weidlich
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Malte Plidschun
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Jens Kobelke
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Ron Fatobene Ando
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany.
| | - Markus A Schmidt
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany. and Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Fraunhoferstr. 6, 07743 Jena, Germany and Abbe Center of Photonics and Faculty of Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| |
Collapse
|
28
|
Zhang Z, Ding J, Ocko BM, Fluerasu A, Wiegart L, Zhang Y, Kobrak M, Tian Y, Zhang H, Lhermitte J, Choi CH, Fisher FT, Yager KG, Black CT. Nanoscale viscosity of confined polyethylene oxide. Phys Rev E 2020; 100:062503. [PMID: 31962430 DOI: 10.1103/physreve.100.062503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Indexed: 11/07/2022]
Abstract
Complex fluids near interfaces or confined within nanoscale volumes can exhibit substantial shifts in physical properties compared to bulk, including glass transition temperature, phase separation, and crystallization. Because studies of these effects typically use thin film samples with one dimension of confinement, it is generally unclear how more extreme spatial confinement may influence these properties. In this work, we used x-ray photon correlation spectroscopy and gold nanoprobes to characterize polyethylene oxide confined by nanostructured gratings (<100nm width) and measured the viscosity in this nanoconfinement regime to be ∼500 times the bulk viscosity. This enhanced viscosity occurs even when the scale of confinement is several times the polymer's radius of gyration, consistent with previous reports of polymer viscosity near flat interfaces.
Collapse
Affiliation(s)
- Zheng Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Junjun Ding
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Benjamin M Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yugang Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Mark Kobrak
- Brooklyn College and the Graduate Center of the City University of New York, Brooklyn, New York, USA
| | - Ye Tian
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Honghu Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Julien Lhermitte
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Chang-Hwan Choi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Frank T Fisher
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Charles T Black
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
29
|
Mansel BW, Chen CY, Lin JM, Huang YS, Lin YC, Chen HL. Hierarchical Structure and Dynamics of a Polymer/Nanoparticle Hybrid Displaying Attractive Polymer–Particle Interaction. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bradley W. Mansel
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Yu Chen
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Jhih-Min Lin
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Shan Huang
- Experimental Facility Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yu-Chiao Lin
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu 31057, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
30
|
You W, Yu W. Slow Linear Viscoelastic Relaxation of Polymer Nanocomposites: Contribution from Confined Diffusion of Nanoparticles. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01538] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wei You
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department of Polymer Science and Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
31
|
Jung J, Kwon T, Oh Y, Lee YR, Sung BJ. Spatial Dependence of Non-Gaussian Diffusion of Nanoparticles in Free-Standing Thin Polymer Films. J Phys Chem B 2019; 123:9250-9259. [PMID: 31589036 DOI: 10.1021/acs.jpcb.9b07236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The addition of nanoparticles (NPs) to a free-standing polymer film affects the properties of the film such as viscosity and glass transition temperature. Recent experiments, for example, showed that the glass transition temperature of thin polymer films was dependent on how NPs were distributed within the polymer films. However, the spatial arrangement of NPs in free-standing polymer films and its effect on the diffusion of NPs and polymers remain elusive at a molecular level. In this study, we employ generic coarse-grained models for polymers and NPs and perform extensive molecular dynamics simulations to investigate the diffusion of polymers and NPs in free-standing thin polymer films. We find that small NPs are likely to stay at the interfacial region of the polymer film, while large NPs tend to stay at the center of the film. On the other hand, as the interaction between a NP and a monomer becomes more attractive, the NP is more likely to be placed at the film center. The diffusion of monomers slows down slightly as more NPs are added to the film. Interestingly, the NP diffusion is dependent strongly on the spatial arrangement of the NPs: NPs at the interfacial region diffuse faster and undergo more non-Gaussian diffusion than NPs at the film center, which implies that the interfacial region would be more mobile and dynamically heterogeneous than the film center. We also find that the mechanism for non-Gaussian diffusion of NPs at the film center differs from that at the interfacial region and that the NP diffusion would reflect the local viscosity of the polymer films.
Collapse
Affiliation(s)
- Jinkwan Jung
- Department of Chemistry , Sogang University , Seoul 04107 , Republic of Korea
| | - Taejin Kwon
- Department of Chemistry , Sogang University , Seoul 04107 , Republic of Korea
| | - Younghoon Oh
- Department of Chemistry , Sogang University , Seoul 04107 , Republic of Korea
| | - Young-Ro Lee
- Department of Chemistry , Sogang University , Seoul 04107 , Republic of Korea
| | - Bong June Sung
- Department of Chemistry , Sogang University , Seoul 04107 , Republic of Korea
| |
Collapse
|
32
|
Frenzel L, Lehmkühler F, Lokteva I, Narayanan S, Sprung M, Grübel G. Anomalous Dynamics of Concentrated Silica-PNIPAm Nanogels. J Phys Chem Lett 2019; 10:5231-5236. [PMID: 31433650 DOI: 10.1021/acs.jpclett.9b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present the structure and dynamics of highly concentrated core-shell nanoparticles composed of a silica core and a poly(N-isoproylacrylamide) (PNIPAm) shell suspended in water. With X-ray photon correlation spectroscopy, we are able to follow dynamical changes over the volume phase transition of PNIPAm at LCST = 32 °C. On raising the temperature beyond LCST, the structural relaxation times continue to decrease. The effect is accompanied by a transition from stretched to compressed exponential shape of the intensity autocorrelation function. Upon further heating, we find a sudden slowing down for the particles in their collapsed state. The q dependence of the relaxation time shows an anomalous change from τc ∝ q-3 to τc ∝ q-1. Small angle X-ray scattering data evidence a temperature-induced transition from repulsive to attractive forces. Our results indicate a temperature-induced phase transition from a colloidal liquid with polymer-driven dynamics toward a colloidal gel.
Collapse
Affiliation(s)
- Lara Frenzel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Felix Lehmkühler
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Irina Lokteva
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging (CUI), Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
33
|
Poling-Skutvik R, Slim AH, Narayanan S, Conrad JC, Krishnamoorti R. Soft Interactions Modify the Diffusive Dynamics of Polymer-Grafted Nanoparticles in Solutions of Free Polymer. ACS Macro Lett 2019; 8:917-922. [PMID: 35619487 DOI: 10.1021/acsmacrolett.9b00294] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examine the dynamics of silica particles grafted with high molecular weight polystyrene suspended in semidilute solutions of chemically similar linear polymer using X-ray photon correlation spectroscopy. The particle dynamics decouple from the bulk viscosity despite their large hydrodynamic size and instead experience an effective viscosity that depends on the molecular weight of the free polymer chains. Unlike for hard-sphere nanoparticles in semidilute polymer solutions, the diffusivities of the polymer-grafted nanoparticles do not collapse onto a master curve solely as a function of normalized length scales. Instead, the diffusivities can be collapsed across two orders of magnitude in free polymer molecular weight and concentration and one order of magnitude in grafted molecular weight by incorporating the ratio of free to grafted polymer molecular weights. These results suggest that the soft interaction potential between polymer-grafted nanoparticles and free polymer allows polymer-grafted nanoparticles to diffuse faster than predicted based on bulk rheology and modifies the coupling between grafted particle dynamics and the relaxations of the surrounding free polymer.
Collapse
Affiliation(s)
- Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Ali H. Slim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
34
|
Zöttl A, Yeomans JM. Driven spheres, ellipsoids and rods in explicitly modeled polymer solutions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:234001. [PMID: 30836331 DOI: 10.1088/1361-648x/ab0cf8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Understanding the transport of driven nano- and micro-particles in complex fluids is of relevance for many biological and technological applications. Here we perform hydrodynamic multiparticle collision dynamics simulations of spherical and elongated particles driven through polymeric fluids containing different concentrations of polymers. We determine the mean particle velocities which are larger than expected from Stokes law for all particle shapes and polymer densities. Furthermore we measure the fluid flow fields and local polymer density and polymer conformation around the particles. We find that polymer-depleted regions close to the particles are responsible for an apparent tangential slip velocity which accounts for the measured flow fields and transport velocities. A simple two-layer fluid model gives a good match to the simulation results.
Collapse
Affiliation(s)
- Andreas Zöttl
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Clarendon Lab., Parks Rd., Oxford, OX1 3PU, United Kingdom. Institute for Theoretical Physics, TU Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria. Erwin Schrödinger Int. Institute for Mathematics and Physics, University of Vienna, Boltzmanngasse 9, A-1090 Wien, Austria
| | | |
Collapse
|
35
|
Senses E, Narayanan S, Faraone A. Nanoscale Particle Motion Reveals Polymer Mobility Gradient in Nanocomposites. ACS Macro Lett 2019; 8:558-562. [PMID: 35619363 PMCID: PMC11132598 DOI: 10.1021/acsmacrolett.9b00176] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polymer mobility near nanoparticle surfaces has been extensively discussed; however, direct experimental observation in the nanocomposite melts has been a difficult task. Here, by taking advantage of large dynamical asymmetry between the miscible matrix and surface-bound polymers, we highlighted their interphases and studied the resulting effect on the nanoparticle relaxation using X-ray photon correlation spectroscopy. The local mobility gradient is signified by an unprecedented increase in the relaxation time at length scales on the order of polymer radius of gyration. The effect is accompanied by a transition from simple diffusive to subdiffusive behavior in accord with viscous and entangled dynamics of polymers in the matrix and in the interphase, respectively. Our results demonstrate that the nanoparticle-induced polymer mobility changes in the interphases of nanocomposite melts can be extracted from the length-scale-dependent slow particle motion.
Collapse
Affiliation(s)
- Erkan Senses
- Department of Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Antonio Faraone
- NIST Center for Neutron Research, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
36
|
Ehrburger-Dolle F, Morfin I, Bley F, Livet F, Heinrich G, Chushkin Y, Sutton M. Anisotropic and heterogeneous dynamics in stretched elastomer nanocomposites. SOFT MATTER 2019; 15:3796-3806. [PMID: 30990483 DOI: 10.1039/c8sm02289e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use X-ray photon correlation spectroscopy (XPCS) to investigate the dynamics of a stretched elastomer by means of probe particles. The particles dispersed in the elastomer were carbon black or silica aggregates classically used for elastomer reinforcement but their volume fraction is very low (φ < 10-2). We show that their dynamics is slower in the direction of the tensile strain than in the perpendicular one. For hydroxylated silica which is poorly wetted by the elastomer, there is no anisotropy. Two-time correlation functions confirm anisotropic dynamics and suggest dynamical heterogeneity already expected from the q-1 behavior of the relaxation times. The height χ* of the peak of the dynamical susceptibility, determined by the normalized variance of the instantaneous correlation function, is larger in the direction parallel to the strain than in the perpendicular one. It also appears that its q dependence changes with the morphology of the probe particle. Therefore, the heterogeneous dynamic probed by the particles is not related only to that of the strained elastomer matrix. In fact, it results from modification of the dynamics of the polymer chains near the surface of the particles and within the aggregate porosity (bound polymer). It is concluded that XPCS is a powerful method for investigating the dynamics, at a given strain, of the bound polymer-particle units which are responsible, at large volume fractions, for the reinforcement.
Collapse
|
37
|
Song JJ, Bhattacharya R, Kim H, Chang J, Tang TY, Guo H, Ghosh SK, Yang Y, Jiang Z, Kim H, Russell TP, Arya G, Narayanan S, Sinha SK. One-Dimensional Anomalous Diffusion of Gold Nanoparticles in a Polymer Melt. PHYSICAL REVIEW LETTERS 2019; 122:107802. [PMID: 30932658 DOI: 10.1103/physrevlett.122.107802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 06/09/2023]
Abstract
We investigated the dynamics of polymer-grafted gold nanoparticles loaded into polymer melts using x-ray photon correlation spectroscopy. For low molecular weight host matrix polymer chains, normal isotropic diffusion of the gold nanoparticles is observed. For larger molecular weights, anomalous diffusion of the nanoparticles is observed that can be described by ballistic motion and generalized Lévy walks, similar to those often used to discuss the dynamics of jammed systems. Under certain annealing conditions, the diffusion is one-dimensional and related to the direction of heat flow during annealing and is associated with an dynamic alignment of the host polymer chains. Molecular dynamics simulations of a single gold nanoparticle diffusing in a partially aligned polymer network semiquantitatively reproduce the experimental results to a remarkable degree. The results help to showcase how nanoparticles can under certain circumstances move rapidly in polymer networks.
Collapse
Affiliation(s)
- Jing-Jin Song
- Department of Materials Science & Engineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Rupak Bhattacharya
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Hyunki Kim
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Jooyoung Chang
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Tsung-Yeh Tang
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Hongyu Guo
- National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899-6102, USA
| | - Sajal K Ghosh
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Yi Yang
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Zhang Jiang
- Advanced Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, Illinois 60439, USA
| | - Hyeyoung Kim
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Thomas P Russell
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst Massachusetts 01003, USA
| | - Gaurav Arya
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, 9700 Cass Ave, Lemont, Illinois 60439, USA
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, 9500 Gilman Dr. La Jolla, California 92093, USA
| |
Collapse
|
38
|
Ge T, Rubinstein M. Mobility of Polymer-Tethered Nanoparticles in Unentangled Polymer Melts. Macromolecules 2019; 52:1536-1545. [PMID: 30956355 PMCID: PMC6449055 DOI: 10.1021/acs.macromol.8b02138] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A scaling theory is developed for the motion of a polymer-tethered nanoparticle (NP) in an unentangled polymer melt. We identify two types of scaling regimes depending on the NP diameter d and the size of a grafted polymer chain (tail) R tail . In one type of regimes, the tethered NP motion is dominated by the bare NP, as the friction coefficient of the tails is lower than that of the less mobile particle. The time dependence of the mean square displacement (MSD) of the tethered NP ⟨Δr 2(t)⟩ in the particle-dominated regime can be approximated by ⟨Δr 2(t)⟩ bare for the bare NP. In the other type of regimes, the tethered NP motion is dominated by the tails when the friction coefficient of the tails surpasses that of the particle at times longer than the crossover time τ ∗. In a tail-dominated regime, the MSD ⟨Δr 2(t)⟩ ≈ ⟨Δr 2(t)⟩ bare only for t < τ ∗. ⟨Δr 2(t)⟩ of a single-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ tail of monomers in a free tail, whereas ⟨Δr 2(t)⟩ of a multi-tail NP for t > τ ∗ is approximated as the MSD ⟨Δr 2(t)⟩ star of the branch point of a star polymer. The time dependence of ⟨Δr 2(t)⟩ in a tail-dominated regime exhibits two qualitatively different sub-diffusive regimes. The first sub-diffusive regime for t < τ ∗ arises from the dynamical coupling between the particle and the melt chains. The second sub-diffusive regime for t > τ ∗ occurs as the particle participates in the dynamics of the tails. For NPs with loosely grafted chains, there is a Gaussian brush region surrounding the NP, where the chain strands in Gaussian conformations undergo Rouse dynamics with no hydrodynamic coupling. The crossover time τ ∗ for loosely grafted multi-tail NPs in a tail-dominated regime decreases as the number of tails increases. For NPs with densely grafted chains, the tails are hydrodynamically coupled to each other. The hydrodynamic radii for the diffusion of densely grafted multi-tail NPs are approximated by the sum of the particle and tail sizes.
Collapse
Affiliation(s)
- Ting Ge
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Michael Rubinstein
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Senanayake KK, Fakhrabadi EA, Liberatore MW, Mukhopadhyay A. Diffusion of Nanoparticles in Entangled Poly(vinyl alcohol) Solutions and Gels. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01917] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Matthew W. Liberatore
- Department of Chemical Engineering, University of Toledo, Toledo, Ohio 43606, United States
| | - Ashis Mukhopadhyay
- Department of Physics, Wayne State University, Detroit, Michigan 48201, United States
| |
Collapse
|
40
|
Volgin IV, Larin SV, Lyulin SV. Diffusion of Nanoparticles in Polymer Systems. POLYMER SCIENCE SERIES C 2018. [DOI: 10.1134/s1811238218020212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
41
|
Lehmkühler F, Valerio J, Sheyfer D, Roseker W, Schroer MA, Fischer B, Tono K, Yabashi M, Ishikawa T, Grübel G. Dynamics of soft nanoparticle suspensions at hard X-ray FEL sources below the radiation-damage threshold. IUCRJ 2018; 5:801-807. [PMID: 30443363 PMCID: PMC6211528 DOI: 10.1107/s2052252518013696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The application of X-ray photon correlation spectroscopy (XPCS) at free-electron laser (FEL) facilities enables, for the first time, the study of dynamics on a (sub-)nanometre scale in an unreached time range between femtoseconds and seconds. For soft-matter materials, radiation damage is a major limitation when going beyond single-shot applications. Here, an XPCS study is presented at a hard X-ray FEL on radiation-sensitive polymeric poly(N-isopropylacrylamide) (PNIPAM) nanoparticles. The dynamics of aqueous suspensions of densely packed silica-PNIPAM core-shell particles and a PNIPAM nanogel below the radiation-damage threshold are determined. The XPCS data indicate non-diffusive behaviour, suggesting ballistic and stress-dominated heterogeneous particle motions. These results demonstrate the feasibility of XPCS experiments on radiation-sensitive soft-matter materials at FEL sources and pave the way for future applications at MHz repetition rates as well as ultrafast modes using split-pulse devices.
Collapse
Affiliation(s)
- Felix Lehmkühler
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Joana Valerio
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Dina Sheyfer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Roseker
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
| | - Martin A. Schroer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Birgit Fischer
- Institute of Physical Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Gerhard Grübel
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, 22607 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
42
|
Yang S, Liu S, Narayanan S, Zhang C, Akcora P. Chemical heterogeneity in interfacial layers of polymer nanocomposites. SOFT MATTER 2018; 14:4784-4791. [PMID: 29808217 DOI: 10.1039/c8sm00663f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is well-known that particle-polymer interactions strongly control the adsorption and conformations of adsorbed chains. Interfacial layers around nanoparticles consisting of adsorbed and free matrix chains have been extensively studied to reveal their rheological contribution to the behavior of nanocomposites. This work focuses on how chemical heterogeneity of the interfacial layers around the particles governs the microscopic mechanical properties of polymer nanocomposites. Low glass-transition temperature composites consisting of poly(vinyl acetate) coated silica nanoparticles in poly(ethylene oxide) and poly(methyl acrylate) matrices, and of poly(methyl methacrylate) silica nanoparticles in a poly(methyl acrylate) matrix are examined using rheology and X-ray photon correlation spectroscopy. We demonstrate that miscibility between the adsorbed and matrix chains in the interfacial layers led to the observed unusual reinforcement. We suggest that packing of chains in the interfacial regions may also contribute to the reinforcement in the polymer nanocomposites. These features may be used in designing mechanically adaptive composites operating at varying temperature.
Collapse
Affiliation(s)
- Siyang Yang
- Department of Chemical Engineering & Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030, USA.
| | | | | | | | | |
Collapse
|
43
|
Ren KX, Jia XM, Jiao GS, Chen T, Qian HJ, Lu ZY. Interfacial Properties and Hopping Diffusion of Small Nanoparticle in Polymer/Nanoparticle Composite with Attractive Interaction on Side Group. Polymers (Basel) 2018; 10:E598. [PMID: 30966632 PMCID: PMC6403981 DOI: 10.3390/polym10060598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/03/2022] Open
Abstract
The diffusion dynamics of fullerene (C 60 ) in unentangled linear atactic polystyrene (PS) and polypropylene (PP) melts and the structure and dynamic properties of polymers in interface area are investigated by performing all-atom molecular dynamics simulations. The comparison of the results in two systems emphasises the influence of local interactions exerted by polymer side group on the diffusion dynamics of the nanoparticle. In the normal diffusive regime at long time scales, the displacement distribution function (DDF) follows a Gaussian distribution in PP system, indicating a normal diffusion of C 60 . However, we observe multiple peaks in the DDF curve for C 60 diffusing in PS melt, which indicates a diffusion mechanism of hopping of C 60 . The attractive interaction between C 60 and phenyl ring side groups are found to be responsible for the observed hopping diffusion. In addition, we find that the C 60 is dynamically coupled with a subsection of a tetramer on PS chain, which has a similar size with C 60 . The phenyl ring on PS chain backbone tends to have a parallel configuration in the vicinity of C 60 surface, therefore neighbouring phenyl rings can form chelation effect on the C 60 surface. Consequently, the rotational dynamics of phenyl ring and the translational diffusion of styrene monomers are found to be slowed down in this interface area. We hope our results can be helpful for understanding of the influence of the local interactions on the nanoparticle diffusion dynamics and interfacial properties in polymer/nanoparticle composites.
Collapse
Affiliation(s)
- Kai-Xin Ren
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Xiang-Meng Jia
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Gui-Sheng Jiao
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Tao Chen
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, and Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China.
| |
Collapse
|
44
|
Carroll B, Bocharova V, Carrillo JMY, Kisliuk A, Cheng S, Yamamoto U, Schweizer KS, Sumpter BG, Sokolov AP. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02695] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
| | | | | | | | - Shiwang Cheng
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Umi Yamamoto
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Kenneth S. Schweizer
- Departments of Materials Science and Chemistry, Frederick Seitz Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| | | | | |
Collapse
|
45
|
Yamamoto U, Carrillo JMY, Bocharova V, Sokolov AP, Sumpter BG, Schweizer KS. Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02694] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Umi Yamamoto
- Department of Physics, University of Illinois, Urbana, Illinois 61801, United States
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | | | | | - Alexei P. Sokolov
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | | | | |
Collapse
|
46
|
Chen R, Poling-Skutvik R, Nikoubashman A, Howard MP, Conrad JC, Palmer JC. Coupling of Nanoparticle Dynamics to Polymer Center-of-Mass Motion in Semidilute Polymer Solutions. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02441] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Renjie Chen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ryan Poling-Skutvik
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Arash Nikoubashman
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| | - Michael P. Howard
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacinta C. Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeremy C. Palmer
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
47
|
Ge T, Grest GS, Rubinstein M. Nanorheology of Entangled Polymer Melts. PHYSICAL REVIEW LETTERS 2018; 120:057801. [PMID: 29481209 PMCID: PMC5896298 DOI: 10.1103/physrevlett.120.057801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/17/2017] [Indexed: 06/08/2023]
Abstract
We use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G_{GSE}(t) from the mean square displacement of NPs. G_{GSE}(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G_{GSE}(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G_{GSE}(t) emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G_{GSE}(t) approaches G(t) of the ring melt with no entanglement plateau.
Collapse
Affiliation(s)
- Ting Ge
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Michael Rubinstein
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
48
|
Dumazer G, Flekkøy E, Renard F, Angheluta L. Transient anomalous diffusion regimes in reversible adsorbing systems. Phys Rev E 2018; 96:042106. [PMID: 29347621 DOI: 10.1103/physreve.96.042106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 11/07/2022]
Abstract
A solvable, minimal model of diffusion in the presence of a reversible adsorption site is investigated. We show that the diffusive particles are influenced by the adsorbing site on transient times when they have anomalous subdiffusive behavior. However, the particle dispersion law crosses over to the normal diffusive regime on asymptotically long times. The subdiffusive regime is characterized by a t^{1/4} transient scaling with the same exponent as for the irreversible adsorption. On this transient time scale dominated by particle adsorption, there is a depletion of particles near the adsorbing site, and the typical width of the depletion zone grows in time as t^{1/4} with the same exponent as the subdiffusive dispersion. We show that having a nonzero desorption probability for the adsorbed particles produces a crossover towards normal diffusion on time scales larger than a characteristic reactive time, which we show scales with diffusivity and the adsorption site reactivity.
Collapse
Affiliation(s)
- Guillaume Dumazer
- Porous Media Laboratory, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway
| | - Eirik Flekkøy
- Porous Media Laboratory, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway
| | - François Renard
- Department of Geosciences, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway
| | - Luiza Angheluta
- Porous Media Laboratory, Department of Physics, University of Oslo, P.O. Box 1048, Blindern, 0316 Oslo, Norway
| |
Collapse
|
49
|
Nath P, Mangal R, Kohle F, Choudhury S, Narayanan S, Wiesner U, Archer LA. Dynamics of Nanoparticles in Entangled Polymer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:241-249. [PMID: 29192503 DOI: 10.1021/acs.langmuir.7b03418] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The mean square displacement ⟨r2⟩ of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (Rg), are investigated. In simple fluids and for polymer solutions in which d ≫ Rg, long-time particle dynamics obey random-walk statistics ⟨r2⟩:t, with the bulk zero-shear viscosity of the polymer solution determining the frictional resistance to particle motion. In contrast, in polymer solutions with d < Rg, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes-Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. We analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.
Collapse
Affiliation(s)
| | - Rahul Mangal
- Department of Chemical Engineering, Indian Institute of Technology Kanpur , Kanpur, Uttar Pradesh 208016, India
| | | | | | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60349, United States
| | | | | |
Collapse
|
50
|
Chen A, Zhao N, Hou Z. The effect of hydrodynamic interactions on nanoparticle diffusion in polymer solutions: a multiparticle collision dynamics study. SOFT MATTER 2017; 13:8625-8635. [PMID: 29115361 DOI: 10.1039/c7sm01854a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The diffusion of nanoparticles (NPs) in polymer solutions is studied by a combination of a mesoscale simulation method, multiparticle collision dynamics (MPCD), and molecular dynamics (MD) simulations. We investigate the long-time diffusion coefficient D as well as the subdiffusive behavior in the intermediate time region. The dependencies of both D and subdiffusion factor α on NP size and polymer concentration, respectively, are explicitly calculated. Particular attention is paid to the role of hydrodynamic interaction (HI) in the NP diffusion dynamics. Our simulation results show that the long-time diffusion coefficients satisfy perfectly the scaling relation found by experimental observations. Meanwhile, the subdiffusive factor decreases with the increase in polymer concentration but is of little relevance to the NP size. By parallel simulations with and without HI, we reveal that HI will generally enhance D, while the enhancement effect is non-monotonous with increasing polymer concentration, and it becomes most pronounced at semidilute concentrations. With the aid of a scaling law based on the diffusive activation energy model, we understand that HI affects diffusion through decreasing the diffusive activation energy on the one hand while increasing the effective diffusion size on the other. In addition, HI will certainly influence the subdiffusive behavior of the NP, leading to a larger subdiffusion exponent.
Collapse
Affiliation(s)
- Anpu Chen
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | | | | |
Collapse
|