1
|
Mueller AJ, Lindsay AP, Lewis RM, Zhang Q, Narayanan S, Lodge TP, Mahanthappa MK, Bates FS. Particle Dynamics in a Diblock-Copolymer-Based Dodecagonal Quasicrystal and Its Periodic Approximant by X-Ray Photon Correlation Spectroscopy. PHYSICAL REVIEW LETTERS 2024; 132:158101. [PMID: 38682967 DOI: 10.1103/physrevlett.132.158101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 02/23/2024] [Indexed: 05/01/2024]
Abstract
Temperature-dependent x-ray photon correlation spectroscopy (XPCS) measurements are reported for a binary diblock-copolymer blend that self-assembles into an aperiodic dodecagonal quasicrystal and a periodic Frank-Kasper σ phase approximant. The measured structural relaxation times are Bragg scattering wavevector independent and are 5 times faster in the dodecagonal quasicrystal than the σ phase, with minimal temperature dependence. The underlying dynamical relaxations are ascribed to differences in particle motion at the grain boundaries within each of these tetrahedrally close-packed assemblies. These results identify unprecedented particle dynamics measurements of tetrahedrally coordinated micellar block polymers, thus expanding the application of XPCS to ordered soft materials.
Collapse
Affiliation(s)
- Andreas J Mueller
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Aaron P Lindsay
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60349, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60349, USA
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
2
|
Bhattacharyya S, Sayer T, Montoya-Castillo A. Anomalous Transport of Small Polarons Arises from Transient Lattice Relaxation or Immovable Boundaries. J Phys Chem Lett 2024; 15:1382-1389. [PMID: 38288689 DOI: 10.1021/acs.jpclett.3c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Elucidating transport mechanisms is crucial for advancing material design, yet state-of-the-art theory is restricted to exact simulations of small lattices with severe finite-size effects or approximate ones that assume the nature of transport. We leverage algorithmic advances to tame finite-size effects and exactly simulate small polaron formation and transport in the Holstein model. We further analyze the applicability of the ubiquitously used equilibrium-based Green-Kubo relations and nonequilibrium methods to predict charge mobility. We find that these methods can converge to different values and track this disparity to finite-size dependence and the sensitivity of Green-Kubo relations to the system's topology. Contrary to standard perturbative calculations, our results demonstrate that small polarons exhibit anomalous transport that manifests transiently due to nonequilibrium lattice relaxation or permanently as a signature of immovable boundaries. These findings can offer new interpretations of transport experiments on polymers and transition metal oxides.
Collapse
Affiliation(s)
- Srijan Bhattacharyya
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
3
|
Bordin JR. A DPD model of soft spheres with waterlike anomalies and poly(a)morphism. SOFT MATTER 2023; 19:7613-7624. [PMID: 37772324 DOI: 10.1039/d3sm00972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Core-softened approaches have been employed to understand the behavior of a large variety of systems in soft condensed matter, from biological molecules to colloidal crystals, glassy phases, and water-like anomalies. At the same time, dissipative particle dynamics (DPD) is a powerful tool suitable for studying larger length and time scales. In this sense, we propose a simple model of soft molecules that exhibits a wide range of interesting phenomena: polyamorphism, with three amorphous phases, polymorphysm, including a recently found gyroid phase and a cubic diamond structure, reentrant liquid phase, and density, diffusion, and structural water-like anomalies. Each molecule is constituted by two collapsing beads, representing a harder central core and a softer corona. This induces a competition between distinct conformations that leads to their unique behavior. This provides a basis for the development of more accurate water-like DPD models that can then be parameterized for specific systems and even used to model and understand the self-assembly of colloidal crystals.
Collapse
Affiliation(s)
- José Rafael Bordin
- Departamento de Física, Instituto de Física e Matemática, Universidade Federal de Pelotas, Caixa Postal 354, CEP 96001-970, Pelotas, RS, Brazil.
| |
Collapse
|
4
|
Milani M, Phou T, Ligoure C, Cipelletti L, Ramos L. A double rigidity transition rules the fate of drying colloidal drops. SOFT MATTER 2023; 19:6968-6977. [PMID: 37665265 DOI: 10.1039/d3sm00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing. To date, however, no measurements could directly test this scenario and assess whether it also applies to drops drying at lower evaporation rates, severely limiting our understanding of this phenomenon and the possibility of harnessing it in applications. Here, we combine macroscopic imaging and space- and time-resolved measurements of the microscopic dynamics of colloidal nanoparticles in drying drops sitting on a hydrophobic surface, measuring the evolution of the thickness of the shell and the spatial distribution and mobility of the nanoparticles. We find that, above a threshold evaporation rate, the drop undergoes successively two distinct shape instabilities, invagination and cracking. While permanent aggregation of nanoparticles accompanies the second instability, as hypothesized in previous works on fast-evaporating drops, we show that the first one results from a reversible glass transition of the shell, unreported so far. We rationalize our findings and discuss their implications in the framework of a unified state diagram for the drying of colloidal drops sitting on a hydrophobic surface.
Collapse
Affiliation(s)
- Matteo Milani
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Ty Phou
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Christian Ligoure
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
5
|
Bomont JM, Likos CN, Hansen JP. Glass quantization of the Gaussian core model. Phys Rev E 2022; 105:024607. [PMID: 35291117 DOI: 10.1103/physreve.105.024607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
We use the replica method to study the dynamical glass transition of the Gaussian core model, a system of ultrasoft repulsive spheres interacting via a Gaussian potential, focusing on low temperatures and low-to-moderate densities. At constant temperature, an amorphous glassy state is entered upon a first compression but this glass melts as the density is further increased. In addition to this reentrant transition, a second, smooth transition is discovered between a continuous and a discretized glass. The properties of the former are continuous functions of temperatures, whereas the latter exhibits a succession of stripes, characterized by discontinuous jumps of the glassiness parameters. The glass physics of ultrasoft particles is hence richer than that of impenetrable particles for reasons that can be attributed to the ability of the former to create and break out-of-equilibrium clusters of overlapping particles.
Collapse
Affiliation(s)
- Jean-Marc Bomont
- Université de Lorraine, LCP-A2MC, UR 3469, 1 Blvd. François Arago, Metz F-57078, France
| | - Christos N Likos
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
| | - Jean-Pierre Hansen
- PHENIX, Sorbonne Université, F-75005 Paris, France
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
6
|
Liu X, Utomo NW, Zhao Q, Zheng J, Zhang D, Archer LA. Effects of Geometric Confinement on Caging and Dynamics of Polymer-Tethered Nanoparticle Suspensions. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Choudhury S, Li G, Singh RR, Warren A, Liu X, Archer LA. Structure, Rheology, and Electrokinetics of Soft Colloidal Suspension Electrolytes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9047-9053. [PMID: 32659097 DOI: 10.1021/acs.langmuir.0c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When ion transport in a binary liquid electrolyte is driven at potentials above the thermal voltage, an extended space charge region forms at the electrolyte/electrode interface and triggers the hydrodynamic instability termed electroconvection. We experimentally show that this instability can be completely arrested in soft colloidal suspension electrolytes composed of low concentrations of polymer-grafted nanoparticles in a liquid host. The mechanism is revealed by means of X-ray scattering, Brownian dynamics calculations, and linear stability analysis to involve overlap of the soft particles at low particle fractions to create a jammed, nanoporous medium that resists convective flow by a Darcy-Brinkman like drag on the electrolyte solvent.
Collapse
Affiliation(s)
- Snehashis Choudhury
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Gaojin Li
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rohit R Singh
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Alexander Warren
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Xiaotun Liu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lynden A Archer
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: A review. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101242] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
9
|
Lewis RM, Beech HK, Jackson GL, Maher MJ, Kim K, Narayanan S, Lodge TP, Mahanthappa MK, Bates FS. Dynamics of a Supercooled Disordered Sphere-Forming Diblock Copolymer as Determined by X-ray Photon Correlation and Dynamic Mechanical Spectroscopies. ACS Macro Lett 2018; 7:1486-1491. [PMID: 35651236 DOI: 10.1021/acsmacrolett.8b00740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the dynamic behavior of a sphere-forming poly(styrene)-block-poly(1,4-butadiene) (PS-PB) diblock copolymer comprising 20 vol % PB below the order-disorder transition temperature (TODT = 153 °C) using dynamic mechanical spectroscopy (DMS) and X-ray photon correlation spectroscopy (XPCS). A time-temperature transformation diagram was constructed by monitoring the elasticity of the sample as a function of time following rapid quenches of the disordered melt to various temperatures T < TODT. Isothermal frequency spectra acquired prior to nucleation of the ordered BCC phase were time-temperature superposed, and the shift factors were fit using the Williams-Landel-Ferry (WLF) equation. For comparison, XPCS measurements were used to extract relaxation times from the supercooled liquid as a function of the quench temperature. Alignment of the temperature dependence of the XPCS-based relaxation times with that of the WLF shift factors in the range T = 125-140 °C indicates that both techniques probe the fluctuating mesomorphic micelle dynamics mediated by the relaxation modes of individual chains, including interparticle chain exchange. For deeper quench temperatures, TODT - T ≥ 28 °C, departure of the XPCS time constant from WLF behavior is consistent with a jamming transition, analogous to that encountered in concentrated colloidal systems. We postulate that the dominant relaxation mode in the supercooled disordered liquid transitions from ergodic dynamics governed by chain exchange to a nonergodic regime dominated by local rearrangement of micellar particles at T ≈ Terg, where Terg denotes the ergodicity temperature.
Collapse
Affiliation(s)
- Ronald M. Lewis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haley K. Beech
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Grayson L. Jackson
- Department of Chemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Michael J. Maher
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kyungtae Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60349, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Lewis RM, Jackson GL, Maher MJ, Kim K, Lodge TP, Mahanthappa MK, Narayanan S, Bates FS. A new framework for X-ray photon correlation spectroscopy analysis from polycrystalline materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:123902. [PMID: 30599637 DOI: 10.1063/1.5051451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/02/2018] [Indexed: 06/09/2023]
Abstract
We report a new analytical framework for interpreting data from X-ray photon correlation spectroscopy measurements on polycrystalline materials characterized by strong scattering intensity variations at fixed wavevector magnitude (i.e., anisotropic scattering). Currently, no analytical method exists for the interpretation of the time-dependent anisotropic scattering from such materials. The framework is applied to interrogate the dynamics of a spherical micelle-forming diblock copolymer melt below the order-disorder transition, wherein finite size grains of a micellar body-centered cubic structure produce anisotropic scattering. A wealth of analytical information is recovered from a simple measurement, including distributions of relaxation times and speeds associated with micelles within grains. The findings of this study demonstrate the efficacy of this new analytical method, which may be readily adapted for application to a variety of materials and systems.
Collapse
Affiliation(s)
- Ronald M Lewis
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Grayson L Jackson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michael J Maher
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Kyungtae Kim
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Timothy P Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mahesh K Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60349, USA
| | - Frank S Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
11
|
Philippe AM, Truzzolillo D, Galvan-Myoshi J, Dieudonné-George P, Trappe V, Berthier L, Cipelletti L. Glass transition of soft colloids. Phys Rev E 2018; 97:040601. [PMID: 29758608 DOI: 10.1103/physreve.97.040601] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Indexed: 11/07/2022]
Abstract
We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τ_{α} of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τ_{α} on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τ_{α} depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.
Collapse
Affiliation(s)
- Adrian-Marie Philippe
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | | | | | - Véronique Trappe
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| | - Luca Cipelletti
- Laboratoire Charles Coulomb (L2C), University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
12
|
Chen F, Takatsuji K, Zhao D, Yu X, Kumar SK, Tsui OKC. Unexpected thermal annealing effects on the viscosity of polymer nanocomposites. SOFT MATTER 2017; 13:5341-5354. [PMID: 28702673 DOI: 10.1039/c7sm00280g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of thermal annealing, 12-50 K above the glass transition temperature, on the zero-shear viscosity, η, of polymer nanocomposites (PNCs) and the corresponding host polymers were studied. For all specimens, including neat and 4 wt% dioctyl phthalate (DOP)-plasticized polystyrene (PS), neat poly(methyl methacrylate) (PMMA), and PNCs containing bare and grafted silica nanoparticles in neat and DOP-plasticized PS, the η increased with time initially, and only asymptotically approached a steady-state value after thermal annealing for ∼100 to ∼200 h. We found that this phenomenon occurred regardless of the solvent used to prepare the sample although the fractional changes in η (δη/η) are visibly bigger for tetrahydrofuran (THF). Moreover, the PNCs not plasticized by DOP showed bigger δη/η than their host polymers while the plasticized ones behave essentially the same as the neat hosts. Interestingly, some unplasticized PNCs prepared from THF exhibited smaller viscosities than the host polymer, but this anomaly disappeared on thermal annealing. By correlating the viscosity measurements with the evolution of the solvent content, average NP aggregate size and the amount of adsorbed PS on silica for samples prepared from different solvents, we infer that the temporal viscosity evolution originates from out-of-equilibrium chain conformations produced during sample preparation. Because these relaxations are limited by the rearrangement of the polymer chains adsorbed on the NP or sample substrate surface, the timescales over which η changes can be much longer than the polymer reptation time, as observed.
Collapse
Affiliation(s)
- Fei Chen
- Department of Physics, Boston University, Boston, MA 02215, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
14
|
Agrawal A, Yu HY, Sagar A, Choudhury S, Archer LA. Molecular Origins of Temperature-Induced Jamming in Self-Suspended Hairy Nanoparticles. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01280] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Akanksha Agrawal
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York-14853, United States
| | - Hsiu-Yu Yu
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Adithya Sagar
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York-14853, United States
| | - Snehashis Choudhury
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York-14853, United States
| | - Lynden A. Archer
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York-14853, United States
| |
Collapse
|
15
|
Srivastava S, Agarwal P, Mangal R, Koch DL, Narayanan S, Archer LA. Hyperdiffusive Dynamics in Newtonian Nanoparticle Fluids. ACS Macro Lett 2015; 4:1149-1153. [PMID: 35614796 DOI: 10.1021/acsmacrolett.5b00319] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyperdiffusive relaxations in soft glassy materials are typically associated with out-of-equilibrium states, and nonequilibrium physics and aging are often invoked in explaining their origins. Here, we report on hyperdiffusive motion in model soft materials comprised of single-component polymer-tethered nanoparticles, which exhibit a readily accessible Newtonian flow regime. In these materials, polymer-mediated interactions lead to strong nanoparticle correlations, hyperdiffusive relaxations, and unusual variations of properties with temperature. We propose that hyperdiffusive relaxations in such materials can arise naturally from nonequilibrium or non-Brownian volume fluctuations forced by equilibrium thermal rearrangements of the particle pair orientations corresponding to equilibrated shear modes.
Collapse
Affiliation(s)
- Samanvaya Srivastava
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Praveen Agarwal
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rahul Mangal
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Donald L. Koch
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Suresh Narayanan
- Advanced
Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Lynden A. Archer
- School
of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
16
|
Affiliation(s)
- Sung A Kim
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rahul Mangal
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lynden A. Archer
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
17
|
Agrawal A, Yu HY, Srivastava S, Choudhury S, Narayanan S, Archer LA. Dynamics and yielding of binary self-suspended nanoparticle fluids. SOFT MATTER 2015; 11:5224-5234. [PMID: 26053059 DOI: 10.1039/c5sm00639b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Yielding and flow transitions in bi-disperse suspensions of particles are studied using a model system comprised of self-suspended spherical nanoparticles. An important feature of the materials is that the nanoparticles are uniformly dispersed in the absence of a solvent. Addition of larger particles to a suspension of smaller ones is found to soften the suspensions, and in the limit of large size disparities, completely fluidizes the material. We show that these behaviors coincide with a speeding-up of de-correlation dynamics of all particles in the suspensions and are accompanied by a reduction in the energy dissipated at the yielding transition. We discuss our findings in terms of ligand-mediated jamming and un-jamming of hairy particle suspensions.
Collapse
Affiliation(s)
- Akanksha Agrawal
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Ranka M, Varkey N, Ramakrishnan S, Zukoski CF. Impact of small changes in particle surface chemistry for unentangled polymer nanocomposites. SOFT MATTER 2015; 11:1634-1645. [PMID: 25600762 DOI: 10.1039/c4sm01598c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report microstructural and rheological consequences of altering silica particle surface chemistry when the particles are suspended in unentangled polyethylene glycol with a molecular weight of 400. The particle surfaces are altered by reacting them with isobutyltrimethyoxysilane. Levels of silanization are chosen so that the particles remain dispersed in the polymer at all volume fractions studied. Our studies indicate that at the levels studied, silanization does not alter the hydrodynamic thickness of the absorbed polymer layer thickness. Rheological properties are not sensitive to levels of silanization up to particle volume fractions where the average particle separation h ∼ 6Rg (4.8 nm). At these volume fractions, composite microstructure undergoes changes associated with jamming of soft particles (decorrelations in the first peak of the particle structure factor and the onset of a non-diffusive mechanism that dominates particle density fluctuations at short times.) In the region of volume fractions where h/Rg < 6, the zero-shear rate viscosity of the composites is extremely sensitive to level of silanization with a decrease in the zero-shear rate viscosity by four orders of magnitude observed for the highest levels of silanization studied in comparison to the bare particles.
Collapse
Affiliation(s)
- Moulik Ranka
- University of Illinois, Urbana-Champaign - Department of Chemical and Biomolecular Engineering, Urbana, Illinois, USA
| | | | | | | |
Collapse
|
19
|
Wen YH, Schaefer JL, Archer LA. Dynamics and Rheology of Soft Colloidal Glasses. ACS Macro Lett 2015; 4:119-123. [PMID: 35596383 DOI: 10.1021/mz5006662] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satisfies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.
Collapse
Affiliation(s)
- Yu Ho Wen
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jennifer L. Schaefer
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Lynden A. Archer
- School
of Chemical and Biomolecular
Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
20
|
Dudukovic NA, Zukoski CF. Nanoscale dynamics and aging of fibrous peptide-based gels. J Chem Phys 2014; 141:164905. [DOI: 10.1063/1.4899905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nikola A. Dudukovic
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles F. Zukoski
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York 14222, USA
| |
Collapse
|
21
|
Srivastava S, Schaefer JL, Yang Z, Tu Z, Archer LA. 25th anniversary article: polymer-particle composites: phase stability and applications in electrochemical energy storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:201-234. [PMID: 24323839 DOI: 10.1002/adma.201303070] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 08/24/2013] [Indexed: 06/03/2023]
Abstract
Polymer-particle composites are used in virtually every field of technology. When the particles approach nanometer dimensions, large interfacial regions are created. In favorable situations, the spatial distribution of these interfaces can be controlled to create new hybrid materials with physical and transport properties inaccessible in their constituents or poorly prepared mixtures. This review surveys progress in the last decade in understanding phase behavior, structure, and properties of nanoparticle-polymer composites. The review takes a decidedly polymers perspective and explores how physical and chemical approaches may be employed to create hybrids with controlled distribution of particles. Applications are studied in two contexts of contemporary interest: battery electrolytes and electrodes. In the former, the role of dispersed and aggregated particles on ion-transport is considered. In the latter, the polymer is employed in such small quantities that it has been historically given titles such as binder and carbon precursor that underscore its perceived secondary role. Considering the myriad functions the binder plays in an electrode, it is surprising that highly filled composites have not received more attention. Opportunities in this and related areas are highlighted where recent advances in synthesis and polymer science are inspiring new approaches, and where newcomers to the field could make important contributions.
Collapse
Affiliation(s)
- Samanvaya Srivastava
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | | | | | | | | |
Collapse
|