1
|
Lu R, Li J, Guo Z, Wang Z, Feng JJ, Sui Y. Transient flow-induced deformation of cancer cells in microchannels: a general computational model and experiments. Biomech Model Mechanobiol 2025; 24:489-506. [PMID: 39893594 PMCID: PMC12055957 DOI: 10.1007/s10237-024-01920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/13/2024] [Indexed: 02/04/2025]
Abstract
Recently, the present authors proposed a three-dimensional computational model for the transit of suspended cancer cells through a microchannel (Wang et al. in Biomech Model Mechanobiol 22: 1129-1143, 2023). The cell model takes into account the three major subcellular components: A viscoelastic membrane that represents the lipid bilayer supported by the underlying cell cortex, a viscous cytoplasm, and a nucleus modelled as a smaller microcapsule. The cell deformation and its interaction with the surrounding fluid were solved by an immersed boundary-lattice Boltzmann method. The computational model accurately recovered the transient flow-induced deformation of the human leukaemia HL-60 cells in a constricted channel. However, as a general modelling framework, its applicability to other cell types in different flow geometries remains unknown, due to the lack of quantitative experimental data. In this study, we conduct experiments of the transit of human prostate cancer (PC-3) and leukaemia (K-562) cells, which represent solid and liquid tumour cell lines, respectively, through two distinct microchannel geometries, each dominated by shear and extension flow. We find that the two cell lines have qualitatively similar flow-induced dynamics. Comparisons between experiments and numerical simulations suggest that our model can accurately predict the transient cell deformation in both geometries, and that it can serve as a general modelling framework for the dynamics of suspended cancer cells in microchannels.
Collapse
Affiliation(s)
- R Lu
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - J Li
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Z Guo
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Z Wang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - J J Feng
- Departments of Mathematics and Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Y Sui
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK.
| |
Collapse
|
2
|
Kumar R, Chakrabarti R, Thaokar RM. Compound giant unilamellar vesicles as a bio-mimetic model for electrohydrodynamics of a nucleate cell. SOFT MATTER 2024; 20:6995-7011. [PMID: 39171512 DOI: 10.1039/d4sm00633j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The understanding obtained by studies on the electrohydrodynamics (EHD) of single giant unilamellar vesicles (sGUVs) has contributed significantly towards a better comprehension of the response of biological cells to electric fields. This has subsequently helped in developing technologies such as cell dielectrophoresis and cell electroporation. For nucleate eukaryotic cells though, a vesicle-in-vesicle compound giant unilamellar vesicle (cGUV) is a more appropriate bio-mimic than a sGUV. In this work, we present an improvised method for the formation of cGUVs, wherein the electrical conductivities of the inner, annular and outer regions of the cGUVs can be modified. A comprehensive experimental study is presented on the EHD of these cGUVs under weak AC fields over a wide range of frequencies, and an encouraging agreement is observed between the experiments and earlier published theoretical studies on concentric cGUVs. The spherical, prolate or oblate spheroidal deformations of a cGUV under AC electric fields depend upon the membrane electromechanical properties as well as the magnitude and direction of the electric traction at the membrane produced by the Maxwell stress that varies with the relative timescales associated with the frequency of the applied AC electric field and that of the membrane charging time and the Maxwell-Wagner relaxation time. This work establishes cGUVs as appropriate bio-mimics for conducting EHD studies relevant to eukaryotic cells.
Collapse
Affiliation(s)
- Rupesh Kumar
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
3
|
Xiao W, Liu K, Lowengrub J, Li S, Zhao M. Three-dimensional numerical study on wrinkling of vesicles in elongation flow based on the immersed boundary method. Phys Rev E 2023; 107:035103. [PMID: 37072945 DOI: 10.1103/physreve.107.035103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 02/15/2023] [Indexed: 04/20/2023]
Abstract
We study the wrinkling dynamics of three-dimensional vesicles in a time-dependent elongation flow by utilizing an immersed boundary method. For a quasispherical vesicle, our numerical results well match the predictions of perturbation analysis, where similar exponential relationships between wrinkles' characteristic wavelength and the flow strength are observed. Using the same parameters as in the experiments by Kantsler et al. [V. Kantsler et al., Phys. Rev. Lett. 99, 178102 (2007)0031-900710.1103/PhysRevLett.99.178102], our simulations of an elongated vesicle are in good agreement with their results. In addition, we get rich three-dimensional morphological details, which are favorable to comprehend the two-dimensional snapshots. This morphological information helps identify wrinkle patterns. We analyze the morphological evolution of wrinkles using spherical harmonics. We find discrepancies in elongated vesicle dynamics between simulations and perturbation analysis, highlighting the importance of the nonlinear effects. Finally, we investigate the unevenly distributed local surface tension, which largely determines the position of wrinkles excited on the vesicle membrane.
Collapse
Affiliation(s)
- Wang Xiao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kai Liu
- College of Education for the Future, Beijing Normal University, Zhuhai 519087, China
| | - John Lowengrub
- Department of Mathematics, University of California Irvine, Irvine, California 92697, USA
| | - Shuwang Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - Meng Zhao
- School of Mathematics and Statistics, Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
4
|
Kumarasamy S, Dudkowski D, Prasad A, Kapitaniak T. Ordered slow and fast dynamics of unsynchronized coupled phase oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:081102. [PMID: 34470238 DOI: 10.1063/5.0063513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Slow and fast dynamics of unsynchronized coupled nonlinear oscillators is hard to extract. In this paper, we use the concept of perpetual points to explain the short duration ordering in the unsynchronized motions of the phase oscillators. We show that the coupled unsynchronized system has ordered slow and fast dynamics when it passes through the perpetual point. Our simulations of single, two, three, and 50 coupled Kuramoto oscillators show the generic nature of perpetual points in the identification of slow and fast oscillations. We also exhibit that short-time synchronization of complex networks can be understood with the help of perpetual motion of the network.
Collapse
Affiliation(s)
- Suresh Kumarasamy
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Dawid Dudkowski
- Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Awadhesh Prasad
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| | - Tomasz Kapitaniak
- Division of Dynamics, Technical University of Lodz, Stefanowskiego 1/15, 90-924 Lodz, Poland
| |
Collapse
|
5
|
Bhatia T, Robinson T, Dimova R. Membrane permeability to water measured by microfluidic trapping of giant vesicles. SOFT MATTER 2020; 16:7359-7369. [PMID: 32696791 DOI: 10.1039/d0sm00155d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We use a microfluidic method to estimate the water permeability coefficient (p) of membranes. As model lipid membranes we employ giant unilamellar vesicles (GUVs) composed of palmitoyloleoyl phosphatidylcholine and cholesterol (10 mol%). We have developed a microfluidic device with multiple chambers to trap GUVs and allow controlled osmotic exchange. Each chamber has a ring-shaped pressure-controlled valve which upon closure allows isolation of the GUVs in a defined volume. Opening the valves leads to a rapid fluid exchange between the trapping region and the microchannel network outside, thus allowing precise control over solution concentration around the GUVs contrary to other experimental approaches for permeability measurements reported in the literature. The area and volume changes of individual vesicles are monitored with confocal microscopy. The solute concentration in the immediate vicinity of the GUVs, and thus the concentration gradient across the membrane, is independently assessed. The data are well fitted by a simple model for water permeability which assumes that the rate of change in volume of a GUV per unit area is linearly proportional to concentration difference with permeability as the proportionality constant. Experiments of GUV osmotic deflation with hypertonic solutions yield the permeability of POPC/cholesterol 9/1 membranes to be p = 15.7 ± 5.5 μm s-1. For comparison, we also show results using two other approaches, which either do not take into account local concentration changes and/or do not resolve the precise vesicle shape. We point out the errors associated with these limitations. Finally, we also demonstrate the applicability of the microfluidic device for studying the dynamics of vesicles under flow.
Collapse
Affiliation(s)
- Tripta Bhatia
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| | - Tom Robinson
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| | - Rumiana Dimova
- Theory & Biosystems, Max Planck Institute of Colloids and Interfaces (MPIKG), 14424 Potsdam, Germany.
| |
Collapse
|
6
|
Sinha KP, Thaokar RM. A theoretical study on the dynamics of a compound vesicle in shear flow. SOFT MATTER 2019; 15:6994-7017. [PMID: 31433433 DOI: 10.1039/c9sm01102a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The dynamics of nucleate cells in shear flow is of great relevance in cancer cells and circulatory tumor cells where they determine the flow properties of blood. Buoyed by the success of giant unilamellar vesicles in explaining the dynamics of anucleate cells such as red blood cells, compound vesicles have been suggested as a simple model for nucleate cells. A compound vesicle consists of two concentric unilamellar vesicles with the inner, annular and outer regions filled with aqueous Newtonian solvents. In this work, a theoretical model is presented to study the deformation and dynamics of a compound vesicle in linear shear flow using small deformation theory and spherical harmonics with higher order approximation to the membrane forces. A coupling of viscous and membrane stresses at the membrane interface of the two vesicles results in highly nonlinear shape evolution equations for the inner and the outer vesicles which are solved numerically. The results indicate that the size of the inner vesicle (χ) does not affect the tank-treading dynamics of the outer vesicle. The inner vesicle admits a greater inclination angle than the outer vesicle. However, the transition to trembling/swinging and tumbling is significantly affected. The inner and outer vesicles exhibit identical dynamics in the parameter space defined by the nondimensional rotational (Λan) and extensional (S) strength of the general shear flow. At moderate χ, a swinging mode is observed for the inner vesicle while the outer vesicle exhibits tumbling. The inner vesicle also exhibits modification of the TU mode to IUS (intermediate tumbling swinging) mode. Moreover, synchronization of the two vesicles at higher χ and a Capillary number sensitive motion at lower χ is observed in the tumbling regime. These results are in accordance with the few experimental observations reported by Levant and Steinberg. A reduction in the inclination angle is observed with an increase in χ when the inner vesicle is replaced by a solid inclusion. Additionally, a very elaborate phase diagram is presented in the Λan-S parameter space, which could be tested in future experiments or numerical simulations.
Collapse
Affiliation(s)
- Kumari Priti Sinha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | - Rochish M Thaokar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| |
Collapse
|
7
|
Wang C, Guo YK, Tian WD, Chen K. Shape transformation and manipulation of a vesicle by active particles. J Chem Phys 2019; 150:044907. [DOI: 10.1063/1.5078694] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chao Wang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Yong-kun Guo
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Wen-de Tian
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
| | - Kang Chen
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, People’s Republic of China
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
8
|
Borthakur MP, Biswas G, Bandyopadhyay D. Dynamics of deformation and pinch-off of a migrating compound droplet in a tube. Phys Rev E 2018; 97:043112. [PMID: 29758689 DOI: 10.1103/physreve.97.043112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Indexed: 06/08/2023]
Abstract
A computational fluid dynamic investigation has been carried out to study the dynamics of a moving compound droplet inside a tube. The motions associated with such a droplet is uncovered by solving the axisymmetric Navier-Stokes equations in which the spatiotemporal evolution of a pair of twin-deformable interfaces has been tracked employing the volume-of-fluid approach. The deformations at the interfaces and their subsequent dynamics are found to be stimulated by the subtle interplay between the capillary and viscous forces. The simulations uncover that when a compound drop composed of concentric inner and outer interfaces migrates inside a tube, initially in the unsteady domain of evolution, the inner drop shifts away from the concentric position to reach a morphology of constant eccentricity at the steady state. The coupled motions of the droplets in the unsteady regime causes a continuous deformation of the inner and outer interfaces to obtain a configuration with a (an) prolate (oblate) shaped outer (inner) interface. The magnitudes of capillary number and viscosity ratio are found to have significant influence on the temporal evolution of the interfacial deformations as well as the eccentricity of the droplets. Further, the simulations uncover that, following the asymmetric deformation of the interfaces, the migrating compound droplet can undergo an uncommon breakup stimulated by a rather irregular pinch-off of the outer shell. The breakup is found to initiate with the thinning of the outer shell followed by the pinch-off. Interestingly, the kinetics of the thinning of outer shell is found to follow two distinct power-law regimes-a swiftly thinning stage at the onset followed by a rate limiting stage before pinch-off, which eventually leads to the uncommon breakup of the migrating compound droplets.
Collapse
Affiliation(s)
- Manash Pratim Borthakur
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gautam Biswas
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Dipankar Bandyopadhyay
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
9
|
Electroformation of double vesicles using an amplitude modulated electric field. Colloids Surf B Biointerfaces 2017; 160:697-703. [PMID: 29035817 DOI: 10.1016/j.colsurfb.2017.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/04/2017] [Accepted: 10/07/2017] [Indexed: 01/06/2023]
Abstract
Double vesicles are a promising model to mimic eukaryotic cells, yet effective preparation methods with high yields and stable double vesicles are scarce. Previously reported electroformation methods were mainly based on sinusoidal AC fields. Using a combination of sinusoidal and amplitude modulated (AM) electric fields lipid double vesicles could be produced for the first time by a simple electroformation process. First lipid domes formed in a sinusoidal AC field. The domes grew into tubes during the subsequent application of an AM field. These tubes deformed into double vesicles to minimize their free energy in accordance with the area-difference-elasticity model. Two forces are involved to explain the mechanism behind tube formation. The pulling force (F) is responsible to drag the domes into tubular vesicles, but has to overcome a critical force (Fc). The most important parameters of the electrical field were explored systematically. In our work, a maximum yield for double vesicles of 63% was achieved. These vesicles proved to be stable for one week at least. Hence our method could provide a way to fabricate novel cell models.
Collapse
|
10
|
Zhu L, Gallaire F. Bifurcation Dynamics of a Particle-Encapsulating Droplet in Shear Flow. PHYSICAL REVIEW LETTERS 2017; 119:064502. [PMID: 28949616 DOI: 10.1103/physrevlett.119.064502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 06/07/2023]
Abstract
To understand the behavior of composite fluid particles such as nucleated cells and double emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimension-two point. We adopt a dynamic system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
Collapse
Affiliation(s)
- Lailai Zhu
- Laboratory of Fluid Mechanics and Instabilities, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08540, USA
- Linné Flow Centre and Swedish e-Science Research Centre (SeRC), KTH Mechanics, Stockholm SE-10044, Sweden
| | - François Gallaire
- Laboratory of Fluid Mechanics and Instabilities, Ecole Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
| |
Collapse
|
11
|
Sinha KP, Thaokar RM. Electrohydrodynamics of a compound vesicle under an AC electric field. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:275101. [PMID: 28488597 DOI: 10.1088/1361-648x/aa7210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compound vesicles are relevant as simplified models for biological cells as well as in technological applications such as drug delivery. Characterization of these compound vesicles, especially the inner vesicle, remains a challenge. Similarly their response to electric field assumes importance in light of biomedical applications such as electroporation. Fields lower than that required for electroporation cause electrodeformation in vesicles and can be used to characterize their mechanical and electrical properties. A theoretical analysis of the electrohydrodynamics of a compound vesicle with outer vesicle of radius R o and an inner vesicle of radius [Formula: see text], is presented. A phase diagram for the compound vesicle is presented and elucidated using detailed plots of electric fields, free charges and electric stresses. The electrohydrodynamics of the outer vesicle in a compound vesicle shows a prolate-sphere and prolate-oblate-sphere shape transitions when the conductivity of the annular fluid is greater than the outer fluid, and vice-versa respectively, akin to single vesicle electrohydrodynamics reported in the literature. The inner vesicle in contrast shows sphere-prolate-sphere and sphere-prolate-oblate-sphere transitions when the inner fluid conductivity is greater and smaller than the annular fluid, respectively. Equations and methodology are provided to determine the bending modulus and capacitance of the outer as well as the inner membrane, thereby providing an easy way to characterize compound vesicles and possibly biological cells.
Collapse
Affiliation(s)
- Kumari Priti Sinha
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India
| | | |
Collapse
|
12
|
Selective flow-induced vesicle rupture to sort by membrane mechanical properties. Sci Rep 2015; 5:13163. [PMID: 26302783 PMCID: PMC4548244 DOI: 10.1038/srep13163] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 07/10/2015] [Indexed: 01/01/2023] Open
Abstract
Vesicle and cell rupture caused by large viscous stresses in ultrasonication is central to biomedical and bioprocessing applications. The flow-induced opening of lipid membranes can be exploited to deliver drugs into cells, or to recover products from cells, provided that it can be obtained in a controlled fashion. Here we demonstrate that differences in lipid membrane and vesicle properties can enable selective flow-induced vesicle break-up. We obtained vesicle populations with different membrane properties by using different lipids (SOPC, DOPC, or POPC) and lipid:cholesterol mixtures (SOPC:chol and DOPC:chol). We subjected vesicles to large deformations in the acoustic microstreaming flow generated by ultrasound-driven microbubbles. By simultaneously deforming vesicles with different properties in the same flow, we determined the conditions in which rupture is selective with respect to the membrane stretching elasticity. We also investigated the effect of vesicle radius and excess area on the threshold for rupture, and identified conditions for robust selectivity based solely on the mechanical properties of the membrane. Our work should enable new sorting mechanisms based on the difference in membrane composition and mechanical properties between different vesicles, capsules, or cells.
Collapse
|
13
|
Abreu D, Levant M, Steinberg V, Seifert U. Fluid vesicles in flow. Adv Colloid Interface Sci 2014; 208:129-41. [PMID: 24630339 DOI: 10.1016/j.cis.2014.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 12/20/2022]
Abstract
We review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models. At the transition between these two regimes, strong shape deformations and amplification of thermal fluctuations generate a new regime called trembling. In this regime, the vesicle orientation oscillates quasi-periodically around the flow direction while asymmetric deformations occur. For strong enough flows, small-wavelength deformations like wrinkles are observed, similar to what happens in a suddenly reversed elongational flow. In steady elongational flow, vesicles with large excess areas deform into dumbbells at large flow rates and pearling occurs for even stronger flows. In capillary flows with parabolic flow profile, single vesicles migrate towards the center of the channel, where they adopt symmetric shapes, for two reasons. First, walls exert a hydrodynamic lift force which pushes them away. Second, shear stresses are minimal at the tip of the flow. However, symmetry is broken for vesicles with large excess areas, which flow off-center and deform asymmetrically. In suspensions, hydrodynamic interactions between vesicles add up to these two effects, making it challenging to deduce rheological properties from the dynamics of individual vesicles. Further investigations of vesicles and similar objects and their suspensions in steady or time-dependent flow will shed light on phenomena such as blood flow.
Collapse
|