1
|
Vilk O, Assaf M. Escape from a metastable state in non-Markovian population dynamics. Phys Rev E 2024; 110:044132. [PMID: 39562947 DOI: 10.1103/physreve.110.044132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 11/21/2024]
Abstract
We study the long-time dynamics in non-Markovian single-population stochastic models, where one or more reactions are modeled as a stochastic process with a fat-tailed nonexponential distribution of waiting times, mimicking long-term memory. We focus on three prototypical examples: genetic switching, population establishment, and population extinction, all with nonexponential production rates. The system is studied in two regimes. In the first, the distribution of waiting times has a finite mean. Here, the system approaches a (quasi)stationary steady state at long times, and we develop a general Wentzel-Kramers-Brillouin approach for these non-Markovian systems. We derive explicit results for the mean population size and mean escape time from the metastable state of the stochastic dynamics. In this realm, we reveal that for sufficiently strong memory, a memory-induced (meta)stable state can emerge in the system. In the second regime, the waiting time distribution is assumed to have an infinite mean. Here, for bistable systems we find two distinct scaling regimes, separated by an exponentially long time which may strongly depend on the initial conditions of the system.
Collapse
Affiliation(s)
- Ohad Vilk
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Movement Ecology Lab, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Minerva Center for Movement Ecology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
2
|
Zhang Q, Cao W, Wang J, Yin Y, Sun R, Tian Z, Hu Y, Tan Y, Zhang BG. Transcriptional bursting dynamics in gene expression. Front Genet 2024; 15:1451461. [PMID: 39346775 PMCID: PMC11437526 DOI: 10.3389/fgene.2024.1451461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Gene transcription is a stochastic process that occurs in all organisms. Transcriptional bursting, a critical molecular dynamics mechanism, creates significant heterogeneity in mRNA and protein levels. This heterogeneity drives cellular phenotypic diversity. Currently, the lack of a comprehensive quantitative model limits the research on transcriptional bursting. This review examines various gene expression models and compares their strengths and weaknesses to guide researchers in selecting the most suitable model for their research context. We also provide a detailed summary of the key metrics related to transcriptional bursting. We compared the temporal dynamics of transcriptional bursting across species and the molecular mechanisms influencing these bursts, and highlighted the spatiotemporal patterns of gene expression differences by utilizing metrics such as burst size and burst frequency. We summarized the strategies for modeling gene expression from both biostatistical and biochemical reaction network perspectives. Single-cell sequencing data and integrated multiomics approaches drive our exploration of cutting-edge trends in transcriptional bursting mechanisms. Moreover, we examined classical methods for parameter estimation that help capture dynamic parameters in gene expression data, assessing their merits and limitations to facilitate optimal parameter estimation. Our comprehensive summary and review of the current transcriptional burst dynamics theories provide deeper insights for promoting research on the nature of cell processes, cell fate determination, and cancer diagnosis.
Collapse
Affiliation(s)
- Qiuyu Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Wenjie Cao
- School of Mathematics, Sun Yat-sen University, Guangzhou, China
| | - Jiaqi Wang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yihao Yin
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Rui Sun
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Zunyi Tian
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yuhan Hu
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| | - Yalan Tan
- School of Bioengineering & Health, Wuhan Textile University, Wu Han, China
| | - Ben-Gong Zhang
- Research Center of Nonlinear Sciences, School of Mathematical & Physical Sciences, Wuhan Textile University, Wu Han, China
| |
Collapse
|
3
|
Guo X, Tang T, Duan M, Zhang L, Ge H. The nonequilibrium mechanism of noise-enhanced drug synergy in HIV latency reactivation. iScience 2022; 25:104358. [PMID: 35620426 PMCID: PMC9127169 DOI: 10.1016/j.isci.2022.104358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 03/04/2022] [Accepted: 04/29/2022] [Indexed: 11/29/2022] Open
Abstract
Noise-modulating chemicals can synergize with transcriptional activators in reactivating latent HIV to eliminate latent HIV reservoirs. To understand the underlying biomolecular mechanism, we investigate a previous two-gene-state model and identify two necessary conditions for the synergy: an assumption of the inhibition effect of transcription activators on noise enhancers; and frequent transitions to the gene non-transcription-permissive state. We then develop a loop-four-gene-state model with Tat transcription/translation and find that drug synergy is mainly determined by the magnitude and direction of energy input into the genetic regulatory kinetics of the HIV promoter. The inhibition effect of transcription activators is actually a phenomenon of energy dissipation in the nonequilibrium gene transition system. Overall, the loop-four-state model demonstrates that energy dissipation plays a crucial role in HIV latency reactivation, which might be useful for improving drug effects and identifying other synergies on lentivirus latency reactivation. The inhibition of Activator on Noise enhancer is necessary for their synergy in reactivating HIV The drug synergy is a nonequilibrium phenomenon in the gene regulatory system The magnitude and direction of energy input determine the drug synergy This nonequilibrium mechanism is general without regarding molecular details
Collapse
|
4
|
Chen L, Wang Y, Liu J, Wang H. Coloured noise induces phenotypic diversity with energy dissipation. Biosystems 2022; 214:104648. [PMID: 35218875 DOI: 10.1016/j.biosystems.2022.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 02/17/2022] [Accepted: 02/20/2022] [Indexed: 11/02/2022]
Abstract
Genes integrate many different sources of noise to adapt their survival strategy with energy costs, but how this noise impacts gene phenotype switching is not fully understood. Here, we refine a mechanistic model with multiplicative and additive coloured noise and analyse the influence of noise strength (NS) and autocorrelation time (AT) on gene phenotypic diversity. Different from white noise, we found that in the autocorrelation time-scale plane, increasing the multiplicative noise will broaden the bimodal region of the gene product, and additive noise will induce bimodal region drift from the lower level to the higher level, while the AT will promote this transition. Specifically, the effect of AT on gene expression is similar to a feedback loop; that is, the AT of multiplicative noise will elongate the mean first passage time (MFPT) from the low stable state to the high stable state, but it will reduce the MFPT from the high stable state to the low stable state, and the opposite is true for additive noise. Moreover, these transitions will violate the detailed equilibrium and then consume energy. By effective topology network reconstruction, we found that when the NS is small, the more obvious the bimodality is, the lower the energy dissipation; however, when the NS is large, it will consume more energy with a tendency for bimodality. The overall analysis implies that living organisms will utilize noise strength and its autocorrelation time for better survival in complex and fluctuating environments.
Collapse
Affiliation(s)
- Leiyan Chen
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yan Wang
- Department of Neurology, The First Affiliated Hospital, University of South China, HengYang, 421001, Hunan, People's Republic of China
| | - Jinrong Liu
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Haohua Wang
- School of Sciences, Hainan University, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Coll Forestry, Key Laboratory of Genetics & Germplasm Innovation Tropical Special Fo, Ministry of Education, Haikou, 570228, Hainan, People's Republic of China; Hainan University, Key Laboratory of Engineering Modeling and Statistical Computation of Hainan Province, Haikou, 570228, Hainan, People's Republic of China.
| |
Collapse
|
5
|
Wang W, Poe D, Yang Y, Hyatt T, Xing J. Epithelial-to-mesenchymal transition proceeds through directional destabilization of multidimensional attractor. eLife 2022; 11:74866. [PMID: 35188459 PMCID: PMC8920502 DOI: 10.7554/elife.74866] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/06/2022] [Indexed: 11/13/2022] Open
Abstract
How a cell changes from one stable phenotype to another one is a fundamental problem in developmental and cell biology. Mathematically, a stable phenotype corresponds to a stable attractor in a generally multi-dimensional state space, which needs to be destabilized so the cell relaxes to a new attractor. Two basic mechanisms for destabilizing a stable fixed point, pitchfork and saddle-node bifurcations, have been extensively studied theoretically; however, direct experimental investigation at the single-cell level remains scarce. Here, we performed live cell imaging studies and analyses in the framework of dynamical systems theories on epithelial-to-mesenchymal transition (EMT). While some mechanistic details remain controversial, EMT is a cell phenotypic transition (CPT) process central to development and pathology. Through time-lapse imaging we recorded single cell trajectories of human A549/Vim-RFP cells undergoing EMT induced by different concentrations of exogenous TGF-β in a multi-dimensional cell feature space. The trajectories clustered into two distinct groups, indicating that the transition dynamics proceeds through parallel paths. We then reconstructed the reaction coordinates and the corresponding quasi-potentials from the trajectories. The potentials revealed a plausible mechanism for the emergence of the two paths where the original stable epithelial attractor collides with two saddle points sequentially with increased TGF-β concentration, and relaxes to a new one. Functionally, the directional saddle-node bifurcation ensures a CPT proceeds towards a specific cell type, as a mechanistic realization of the canalization idea proposed by Waddington. Cells with the same genetic code can take on many different formss, or phenotypes, which have distinct roles and appearances. Sometimes cells switch from one phenotype to another as part of healthy growth or during disease. One such change is the epithelial-to-mesenchymal transition (EMT), which is involved in fetal development, wound healing and the spread of cancer cells. During EMT, closely connected epithelial cells detach from one another and change into mesenchymal cells that are able to migrate. Cells undergo a number of changes during this transition; however, the path they take to reach their new form is not entirely clear. For instance, do all cells follow the same route, or are there multiple ways that cells can shift from one state to the next? To address this question, Wang et al. studied individual lung cancer cells that had been treated with a protein that drives EMT. The cells were then imaged at regular intervals over the course of two to three days to see how they changed in response to different concentrations of protein. Using a mathematical analysis designed to study chemical reactions, Wang et al. showed that the cells transform into the mesenchymal phenotype through two main routes. This result suggests that attempts to prevent EMT, in cancer treatment for instance, would require blocking both paths taken by the cells. This information could be useful for biomedical researchers trying to regulate the EMT process. The quantitative approach of this study could also help physicists and mathematicians study other types of transition that occur in biology.
Collapse
Affiliation(s)
- Weikang Wang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Dante Poe
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Yaxuan Yang
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| | - Thomas Hyatt
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
| | - Jianhua Xing
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
6
|
Switching off: The phenotypic transition to the uninduced state of the lactose uptake pathway. Biophys J 2022; 121:183-192. [PMID: 34953812 PMCID: PMC8790241 DOI: 10.1016/j.bpj.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/10/2021] [Accepted: 12/17/2021] [Indexed: 01/21/2023] Open
Abstract
The lactose uptake pathway of E. coli is a paradigmatic example of multistability in gene regulatory circuits. In the induced state of the lac pathway, the genes comprising the lac operon are transcribed, leading to the production of proteins that import and metabolize lactose. In the uninduced state, a stable repressor-DNA loop frequently blocks the transcription of the lac genes. Transitions from one phenotypic state to the other are driven by fluctuations, which arise from the random timing of the binding of ligands and proteins. This stochasticity affects transcription and translation, and ultimately molecular copy numbers. Our aim is to understand the transition from the induced to the uninduced state of the lac operon. We use a detailed computational model to show that repressor-operator binding and unbinding, fluctuations in the total number of repressors, and inducer-repressor binding and unbinding all play a role in this transition. Based on the timescales on which these processes operate, we construct a minimal model of the transition to the uninduced state and compare the results with simulations and experimental observations. The induced state turns out to be very stable, with a transition rate to the uninduced state lower than 2×10-9 per minute. In contrast to the transition to the induced state, the transition to the uninduced state is well described in terms of a 2D diffusive system crossing a barrier, with the diffusion rates emerging from a model of repressor unbinding.
Collapse
|
7
|
Yang X, Luo S, Zhang Z, Wang Z, Zhou T, Zhang J. Silent transcription intervals and translational bursting lead to diverse phenotypic switching. Phys Chem Chem Phys 2022; 24:26600-26608. [DOI: 10.1039/d2cp03703c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
For complex process of gene expression, we use theoretical analysis and stochastic simulations to study the phenotypic diversity induced by silent transcription intervals and translational bursting.
Collapse
Affiliation(s)
- Xiyan Yang
- School of Financial Mathematics and Statistics, Guangdong University of Finance, Guangzhou 510521, P. R. China
| | - Songhao Luo
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zhenquan Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Zihao Wang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Tianshou Zhou
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| | - Jiajun Zhang
- School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, P. R. China
- Guangdong Province Key Laboratory of Computational Science, Guangzhou 510275, P. R. China
| |
Collapse
|
8
|
Zhou W, Kang L, Duan H, Qiao S, Tao L, Chen Z, Huang Y. A virtual sequencer reveals the dephasing patterns in error-correction code DNA sequencing. Natl Sci Rev 2021; 8:nwaa227. [PMID: 34691637 PMCID: PMC8288425 DOI: 10.1093/nsr/nwaa227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/16/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
An error-correction code (ECC) sequencing approach has recently been reported to effectively reduce sequencing errors by interrogating a DNA fragment with three orthogonal degenerate sequencing-by-synthesis (SBS) reactions. However, similar to other non-single-molecule SBS methods, the reaction will gradually lose its synchronization within a molecular colony in ECC sequencing. This phenomenon, called dephasing, causes sequencing error, and in ECC sequencing, induces distinctive dephasing patterns. To understand the characteristic dephasing patterns of the dual-base flowgram in ECC sequencing and to generate a correction algorithm, we built a virtual sequencer in silico. Starting from first principles and based on sequencing chemical reactions, we simulated ECC sequencing results, identified the key factors of dephasing in ECC sequencing chemistry and designed an effective dephasing algorithm. The results show that our dephasing algorithm is applicable to sequencing signals with at least 500 cycles, or 1000-bp average read length, with acceptably low error rate for further parity checks and ECC deduction. Our virtual sequencer with our dephasing algorithm can further be extended to a dichromatic form of ECC sequencing, allowing for a potentially much more accurate sequencing approach.
Collapse
Affiliation(s)
- Wenxiong Zhou
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Li Kang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Haifeng Duan
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shuo Qiao
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Louis Tao
- Center for Bioinformatics, State Key Laboratory of Protein Engineering and Plant Genetic Engineering, Peking University, Beijing 100871, China
| | - Zitian Chen
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Noise distorts the epigenetic landscape and shapes cell-fate decisions. Cell Syst 2021; 13:83-102.e6. [PMID: 34626539 DOI: 10.1016/j.cels.2021.09.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022]
Abstract
The Waddington epigenetic landscape has become an iconic representation of the cellular differentiation process. Recent single-cell transcriptomic data provide new opportunities for quantifying this originally conceptual tool, offering insight into the gene regulatory networks underlying cellular development. While many methods for constructing the landscape have been proposed, by far the most commonly employed approach is based on computing the landscape as the negative logarithm of the steady-state probability distribution. Here, we use simple models to highlight the complexities and limitations that arise when reconstructing the potential landscape in the presence of stochastic fluctuations. We consider how the landscape changes in accordance with different stochastic systems and show that it is the subtle interplay between the deterministic and stochastic components of the system that ultimately shapes the landscape. We further discuss how the presence of noise has important implications for the identifiability of the regulatory dynamics from experimental data. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
|
10
|
Assaf M, Be'er S, Roberts E. Reconstructing an epigenetic landscape using a genetic pulling approach. Phys Rev E 2021; 103:062404. [PMID: 34271627 DOI: 10.1103/physreve.103.062404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
Cells use genetic switches to shift between alternate stable gene expression states, e.g., to adapt to new environments or to follow a developmental pathway. Conceptually, these stable phenotypes can be considered as attractive states on an epigenetic landscape with phenotypic changes being transitions between states. Measuring these transitions is challenging because they are both very rare in the absence of appropriate signals and very fast. As such, it has proved difficult to experimentally map the epigenetic landscapes that are widely believed to underly developmental networks. Here, we introduce a nonequilibrium perturbation method to help reconstruct a regulatory network's epigenetic landscape. We derive the mathematical theory needed and then use the method on simulated data to reconstruct the landscapes. Our results show that with a relatively small number of perturbation experiments it is possible to recover an accurate representation of the true epigenetic landscape. We propose that our theory provides a general method by which epigenetic landscapes can be studied. Finally, our theory suggests that the total perturbation impulse required to induce a switch between metastable states is a fundamental quantity in developmental dynamics.
Collapse
Affiliation(s)
- Michael Assaf
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Shay Be'er
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Elijah Roberts
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
11
|
Theoretical study of the impact of adaptation on cell-fate heterogeneity and fractional killing. Sci Rep 2020; 10:17429. [PMID: 33060729 PMCID: PMC7562916 DOI: 10.1038/s41598-020-74238-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
Fractional killing illustrates the cell propensity to display a heterogeneous fate response over a wide range of stimuli. The interplay between the nonlinear and stochastic dynamics of biochemical networks plays a fundamental role in shaping this probabilistic response and in reconciling requirements for heterogeneity and controllability of cell-fate decisions. The stress-induced fate choice between life and death depends on an early adaptation response which may contribute to fractional killing by amplifying small differences between cells. To test this hypothesis, we consider a stochastic modeling framework suited for comprehensive sensitivity analysis of dose response curve through the computation of a fractionality index. Combining bifurcation analysis and Langevin simulation, we show that adaptation dynamics enhances noise-induced cell-fate heterogeneity by shifting from a saddle-node to a saddle-collision transition scenario. The generality of this result is further assessed by a computational analysis of a detailed regulatory network model of apoptosis initiation and by a theoretical analysis of stochastic bifurcation mechanisms. Overall, the present study identifies a cooperative interplay between stochastic, adaptation and decision intracellular processes that could promote cell-fate heterogeneity in many contexts.
Collapse
|
12
|
Abstract
A Freidlin–Wentzell type large deviation principle is established for stochastic partial differential equations with slow and fast time-scales, where the slow component is a one-dimensional stochastic Burgers equation with small noise and the fast component is a stochastic reaction-diffusion equation. Our approach is via the weak convergence criterion developed in [A. Budhiraja and P. Dupuis, A variational representation for positive functionals of infinite dimensional Brownian motion, Probab. Math. Statist. 20 (2000) 39–61].
Collapse
Affiliation(s)
- Xiaobin Sun
- School of Mathematics and Statistics, Research Institute of Mathematical Sciences (RIMS), Jiangsu Normal University, Xuzhou 221116, P. R. China
| | - Ran Wang
- School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China
| | - Lihu Xu
- Department of Mathematics, Faculty of Science and Technology, University of Macau, E11 Avenida da Universidade, Taipa, Macau, P. R. China
- UM Zhuhai Research Institute, Zhuhai, P. R. China
| | - Xue Yang
- School of Mathematics, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
13
|
Wang Z, Zhang Z, Zhou T. Analytical results for non-Markovian models of bursty gene expression. Phys Rev E 2020; 101:052406. [PMID: 32575237 DOI: 10.1103/physreve.101.052406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 03/24/2020] [Indexed: 11/07/2022]
Abstract
Modeling stochastic gene expression has long relied on Markovian hypothesis. In recent years, however, this hypothesis is challenged by the increasing availability of time-resolved data. Correspondingly, there is considerable interest in understanding how non-Markovian reaction kinetics of gene expression impact protein variations across a population of genetically identical cells. Here, we analyze a stochastic model of gene expression with arbitrary waiting-time distributions, which includes existing gene models as its special cases. We find that stationary probabilistic behavior of this non-Markovian system is exactly the same as that of an equivalent Markovian system with the same substrates. Based on this fact, we derive analytical results, which provide insight into the roles of feedback regulation and molecular memory in controlling the protein noise and properties of the steady states, which are inaccessible via existing methodology. Our results also provide quantitative insight into diverse cellular processes involving stochastic sources of gene expression and molecular memory.
Collapse
Affiliation(s)
- Zihao Wang
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenquan Zhang
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science School of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Kim J, Enciso G. Absolutely robust controllers for chemical reaction networks. J R Soc Interface 2020; 17:20200031. [PMID: 32396809 DOI: 10.1098/rsif.2020.0031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In this work, we design a type of controller that consists of adding a specific set of reactions to an existing mass-action chemical reaction network in order to control a target species. This set of reactions is effective for both deterministic and stochastic networks, in the latter case controlling the mean as well as the variance of the target species. We employ a type of network property called absolute concentration robustness (ACR). We provide applications to the control of a multisite phosphorylation model as well as a receptor-ligand signalling system. For this framework, we use the so-called deficiency zero theorem from chemical reaction network theory as well as multiscaling model reduction methods. We show that the target species has approximately Poisson distribution with the desired mean. We further show that ACR controllers can bring robust perfect adaptation to a target species and are complementary to a recently introduced antithetic feedback controller used for stochastic chemical reactions.
Collapse
Affiliation(s)
- Jinsu Kim
- Department of Mathematics, University of California Irvine, Irvine, CA 92614, USA
| | - German Enciso
- Department of Mathematics, University of California Irvine, Irvine, CA 92614, USA
| |
Collapse
|
15
|
Holehouse J, Cao Z, Grima R. Stochastic Modeling of Autoregulatory Genetic Feedback Loops: A Review and Comparative Study. Biophys J 2020; 118:1517-1525. [PMID: 32155410 PMCID: PMC7136347 DOI: 10.1016/j.bpj.2020.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/27/2020] [Accepted: 02/11/2020] [Indexed: 02/08/2023] Open
Abstract
Autoregulatory feedback loops are one of the most common network motifs. A wide variety of stochastic models have been constructed to understand how the fluctuations in protein numbers in these loops are influenced by the kinetic parameters of the main biochemical steps. These models differ according to 1) which subcellular processes are explicitly modeled, 2) the modeling methodology employed (discrete, continuous, or hybrid), and 3) whether they can be analytically solved for the steady-state distribution of protein numbers. We discuss the assumptions and properties of the main models in the literature, summarize our current understanding of the relationship between them, and highlight some of the insights gained through modeling.
Collapse
Affiliation(s)
- James Holehouse
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhixing Cao
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; The Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
16
|
Jia C, Grima R. Small protein number effects in stochastic models of autoregulated bursty gene expression. J Chem Phys 2020; 152:084115. [DOI: 10.1063/1.5144578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chen Jia
- Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
17
|
Markovian approaches to modeling intracellular reaction processes with molecular memory. Proc Natl Acad Sci U S A 2019; 116:23542-23550. [PMID: 31685609 PMCID: PMC6876203 DOI: 10.1073/pnas.1913926116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Many cellular processes are governed by stochastic reaction events. These events do not necessarily occur in single steps of individual molecules, and, conversely, each birth or death of a macromolecule (e.g., protein) could involve several small reaction steps, creating a memory between individual events and thus leading to nonmarkovian reaction kinetics. Characterizing this kinetics is challenging. Here, we develop a systematic approach for a general reaction network with arbitrary intrinsic waiting-time distributions, which includes the stationary generalized chemical-master equation (sgCME), the stationary generalized Fokker-Planck equation, and the generalized linear-noise approximation. The first formulation converts a nonmarkovian issue into a markovian one by introducing effective transition rates (that explicitly decode the effect of molecular memory) for the reactions in an equivalent reaction network with the same substrates but without molecular memory. Nonmarkovian features of the reaction kinetics can be revealed by solving the sgCME. The latter 2 formulations can be used in the fast evaluation of fluctuations. These formulations can have broad applications, and, in particular, they may help us discover new biological knowledge underlying memory effects. When they are applied to generalized stochastic models of gene-expression regulation, we find that molecular memory is in effect equivalent to a feedback and can induce bimodality, fine-tune the expression noise, and induce switch.
Collapse
|
18
|
Jia C, Wang LY, Yin GG, Zhang MQ. Single-cell stochastic gene expression kinetics with coupled positive-plus-negative feedback. Phys Rev E 2019; 100:052406. [PMID: 31869986 DOI: 10.1103/physreve.100.052406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 06/10/2023]
Abstract
Here we investigate single-cell stochastic gene expression kinetics in a minimal coupled gene circuit with positive-plus-negative feedback. A triphasic stochastic bifurcation is observed upon increasing the ratio of the positive and negative feedback strengths, which reveals a strong synergistic interaction between positive and negative feedback loops. We discover that coupled positive-plus-negative feedback amplifies gene expression mean but reduces gene expression noise over a wide range of feedback strengths when promoter switching is relatively slow, stabilizing gene expression around a relatively high level. In addition, we study two types of macroscopic limits of the discrete chemical master equation model: the Kurtz limit applies to proteins with large burst frequencies and the Lévy limit applies to proteins with large burst sizes. We derive the analytic steady-state distributions of the protein abundance in a coupled gene circuit for both the discrete model and its two macroscopic limits, generalizing the results obtained by Liu et al. [Chaos 26, 043108 (2016)CHAOEH1054-150010.1063/1.4947202]. We also obtain the analytic time-dependent protein distribution for the classical Friedman-Cai-Xie random bursting model [Friedman, Cai, and Xie, Phys. Rev. Lett. 97, 168302 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.168302]. Our analytic results are further applied to study the structure of gene expression noise in a coupled gene circuit, and a complete decomposition of noise in terms of five different biophysical origins is provided.
Collapse
Affiliation(s)
- Chen Jia
- Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
| | - Le Yi Wang
- Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, USA
| | - George G Yin
- Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
19
|
Holehouse J, Grima R. Revisiting the Reduction of Stochastic Models of Genetic Feedback Loops with Fast Promoter Switching. Biophys J 2019; 117:1311-1330. [PMID: 31540707 PMCID: PMC6818172 DOI: 10.1016/j.bpj.2019.08.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022] Open
Abstract
Propensity functions of the Hill type are commonly used to model transcriptional regulation in stochastic models of gene expression. This leads to an effective reduced master equation for the mRNA and protein dynamics only. Based on deterministic considerations, it is often stated or tacitly assumed that such models are valid in the limit of rapid promoter switching. Here, starting from the chemical master equation describing promoter-protein interactions, mRNA transcription, protein translation, and decay, we prove that in the limit of fast promoter switching, the distribution of protein numbers is different than that given by standard stochastic models with Hill-type propensities. We show the differences are pronounced whenever the protein-DNA binding rate is much larger than the unbinding rate, a special case of fast promoter switching. Furthermore, we show using both theory and simulations that use of the standard stochastic models leads to drastically incorrect predictions for the switching properties of positive feedback loops and that these differences decrease with increasing mean protein burst size. Our results confirm that commonly used stochastic models of gene regulatory networks are only accurate in a subset of the parameter space consistent with rapid promoter switching.
Collapse
Affiliation(s)
- James Holehouse
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ramon Grima
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
20
|
Li JH, Ye FXF, Qian H, Huang S. Time-dependent saddle-node bifurcation: Breaking time and the point of no return in a non-autonomous model of critical transitions. PHYSICA D. NONLINEAR PHENOMENA 2019; 395:7-14. [PMID: 31700198 PMCID: PMC6836434 DOI: 10.1016/j.physd.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a growing awareness that catastrophic phenomena in biology and medicine can be mathematically represented in terms of saddle-node bifurcations. In particular, the term "tipping", or critical transition has in recent years entered the discourse of the general public in relation to ecology, medicine, and public health. The saddle-node bifurcation and its associated theory of catastrophe as put forth by Thom and Zeeman has seen applications in a wide range of fields including molecular biophysics, mesoscopic physics, and climate science. In this paper, we investigate a simple model of a non-autonomous system with a time-dependent parameter p(τ) and its corresponding "dynamic" (time-dependent) saddle-node bifurcation by the modern theory of non-autonomous dynamical systems. We show that the actual point of no return for a system undergoing tipping can be significantly delayed in comparison to the breaking time τ ^ at which the corresponding autonomous system with a time-independent parameter p a = p ( τ ^ ) undergoes a bifurcation. A dimensionless parameter α = λ p 0 3 V - 2 is introduced, in which λ is the curvature of the autonomous saddle-node bifurcation according to parameter p(τ), which has an initial value of p 0 and a constant rate of change V. We find that the breaking time τ ^ is always less than the actual point of no return τ ∗ after which the critical transition is irreversible; specifically, the relation τ * - τ ^ ≃ 2.338 ( λ V ) - 1 3 is analytically obtained. For a system with a small λV, there exists a significant window of opportunity ( τ ^ , τ ∗) during which rapid reversal of the environment can save the system from catastrophe.
Collapse
Affiliation(s)
- Jeremiah H Li
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| | - Felix X-F Ye
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA
| |
Collapse
|
21
|
Qiu Y, Chen W, Nie Q. STOCHASTIC DYNAMICS OF CELL LINEAGE IN TISSUE HOMEOSTASIS. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B 2019; 24:3971-3994. [PMID: 32269502 PMCID: PMC7141575 DOI: 10.3934/dcdsb.2018339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During epithelium tissue maintenance, lineages of cells differentiate and proliferate in a coordinated way to provide the desirable size and spatial organization of different types of cells. While mathematical models through deterministic description have been used to dissect role of feedback regulations on tissue layer size and stratification, how the stochastic effects influence tissue maintenance remains largely unknown. Here we present a stochastic continuum model for cell lineages to investigate how both layer thickness and layer stratification are affected by noise. We find that the cell-intrinsic noise often causes reduction and oscillation of layer size whereas the cell-extrinsic noise increases the thickness, and sometimes, leads to uncontrollable growth of the tissue layer. The layer stratification usually deteriorates as the noise level increases in the cell lineage systems. Interestingly, the morphogen noise, which mixes both cell-intrinsic noise and cell-extrinsic noise, can lead to larger size of layer with little impact on the layer stratification. By investigating different combinations of the three types of noise, we find the layer thickness variability is reduced when cell-extrinsic noise level is high or morphogen noise level is low. Interestingly, there exists a tradeoff between low thickness variability and strong layer stratification due to competition among the three types of noise, suggesting robust layer homeostasis requires balanced levels of different types of noise in the cell lineage systems.
Collapse
Affiliation(s)
- Yuchi Qiu
- Department of Mathematics, University of California, Irvine Irvine, CA 92697, USA
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside Riverside, CA 92507, USA
| | | |
Collapse
|
22
|
Lin YT, Buchler NE. Efficient analysis of stochastic gene dynamics in the non-adiabatic regime using piecewise deterministic Markov processes. J R Soc Interface 2019; 15:rsif.2017.0804. [PMID: 29386401 PMCID: PMC5805981 DOI: 10.1098/rsif.2017.0804] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/08/2018] [Indexed: 11/12/2022] Open
Abstract
Single-cell experiments show that gene expression is stochastic and bursty, a feature that can emerge from slow switching between promoter states with different activities. In addition to slow chromatin and/or DNA looping dynamics, one source of long-lived promoter states is the slow binding and unbinding kinetics of transcription factors to promoters, i.e. the non-adiabatic binding regime. Here, we introduce a simple analytical framework, known as a piecewise deterministic Markov process (PDMP), that accurately describes the stochastic dynamics of gene expression in the non-adiabatic regime. We illustrate the utility of the PDMP on a non-trivial dynamical system by analysing the properties of a titration-based oscillator in the non-adiabatic limit. We first show how to transform the underlying chemical master equation into a PDMP where the slow transitions between promoter states are stochastic, but whose rates depend upon the faster deterministic dynamics of the transcription factors regulated by these promoters. We show that the PDMP accurately describes the observed periods of stochastic cycles in activator and repressor-based titration oscillators. We then generalize our PDMP analysis to more complicated versions of titration-based oscillators to explain how multiple binding sites lengthen the period and improve coherence. Last, we show how noise-induced oscillation previously observed in a titration-based oscillator arises from non-adiabatic and discrete binding events at the promoter site.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA .,School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK
| | - Nicolas E Buchler
- Department of Physics, Duke University, Durham, NC 27708, USA.,Department of Biology, Duke University, Durham, NC 27708, USA.,Center for Genomic and Computational Biology, Durham, NC 27710, USA
| |
Collapse
|
23
|
Folguera-Blasco N, Pérez-Carrasco R, Cuyàs E, Menendez JA, Alarcón T. A multiscale model of epigenetic heterogeneity-driven cell fate decision-making. PLoS Comput Biol 2019; 15:e1006592. [PMID: 31039148 PMCID: PMC6510448 DOI: 10.1371/journal.pcbi.1006592] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/10/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023] Open
Abstract
The inherent capacity of somatic cells to switch their phenotypic status in response to damage stimuli in vivo might have a pivotal role in ageing and cancer. However, how the entry-exit mechanisms of phenotype reprogramming are established remains poorly understood. In an attempt to elucidate such mechanisms, we herein introduce a stochastic model of combined epigenetic regulation (ER)-gene regulatory network (GRN) to study the plastic phenotypic behaviours driven by ER heterogeneity. To deal with such complex system, we additionally formulate a multiscale asymptotic method for stochastic model reduction, from which we derive an efficient hybrid simulation scheme. Our analysis of the coupled system reveals a regime of tristability in which pluripotent stem-like and differentiated steady-states coexist with a third indecisive state, with ER driving transitions between these states. Crucially, ER heterogeneity of differentiation genes is for the most part responsible for conferring abnormal robustness to pluripotent stem-like states. We formulate epigenetic heterogeneity-based strategies capable of unlocking and facilitating the transit from differentiation-refractory (stem-like) to differentiation-primed epistates. The application of the hybrid numerical method validates the likelihood of such switching involving solely kinetic changes in epigenetic factors. Our results suggest that epigenetic heterogeneity regulates the mechanisms and kinetics of phenotypic robustness of cell fate reprogramming. The occurrence of tunable switches capable of modifying the nature of cell fate reprogramming might pave the way for new therapeutic strategies to regulate reparative reprogramming in ageing and cancer. Certain modifications of the structure and functioning of the protein/DNA complex called chromatin can allow adult, fully differentiated, cells to adopt a stem cell-like pluripotent state in a purely epigenetic manner, not involving changes in the underlying DNA sequence. Such reprogramming-like phenomena may constitute an innate reparative route through which human tissues respond to injury and could also serve as a novel regenerative strategy in human pathological situations in which tissue or organ repair is impaired. However, it should be noted that in vivo reprogramming would be capable of maintaining tissue homeostasis provided the acquisition of pluripotency features is strictly transient and accompanied by an accurate replenishment of the specific cell types being lost. Crucially, an excessive reprogramming in the absence of controlled re-differentiation would impair the repair or the replacement of damaged cells, thereby promoting pathological alterations of cell fate. A mechanistic understanding of how the degree of chromatin plasticity dictates the reparative versus pathological behaviour of in vivo reprogramming to rejuvenate aged tissues while preventing tumorigenesis is urgently needed, including especially the intrinsic epigenetic heterogeneity of the tissue resident cells being reprogrammed. We here introduce a novel method that mathematically captures how epigenetic heterogeneity is actually the driving force that governs the routes and kinetics to entry into and exit from a pathological stem-like state. Moreover, our approach computationally validates the likelihood of unlocking chronic, unrestrained plastic states and drive their differentiation down the correct path by solely manipulating the intensity and direction of few epigenetic control switches. Our approach could inspire new therapeutic approaches based on in vivo cell reprogramming for efficient tissue regeneration and rejuvenation and cancer treatment.
Collapse
Affiliation(s)
- Núria Folguera-Blasco
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- * E-mail:
| | - Rubén Pérez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Elisabet Cuyàs
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Javier A. Menendez
- ProCURE (Program Against Cancer Therapeutic Resistance), Metabolism and Cancer Group, Catalan Institute of Oncology, Girona, Spain
- Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica, Edifici C, Campus de Bellaterra, 08193 Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Barcelona Graduate School of Mathematics (BGSMath), Barcelona, Spain
| |
Collapse
|
24
|
Hufton PG, Lin YT, Galla T. Model reduction methods for population dynamics with fast-switching environments: Reduced master equations, stochastic differential equations, and applications. Phys Rev E 2019; 99:032122. [PMID: 30999395 DOI: 10.1103/physreve.99.032122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/07/2022]
Abstract
We study stochastic population dynamics coupled to fast external environments and combine expansions in the inverse switching rate of the environment and a Kramers-Moyal expansion in the inverse size of the population. This leads to a series of approximation schemes, capturing both intrinsic and environmental noise. These methods provide a means of efficient simulation and we show how they can be used to obtain analytical results for the fluctuations of population dynamics in switching environments. We place the approximations in relation to existing work on piecewise-deterministic and piecewise-diffusive Markov processes. Finally, we demonstrate the accuracy and efficiency of these model-reduction methods in different research fields, including systems in biology and a model of crack propagation.
Collapse
Affiliation(s)
- Peter G Hufton
- Theoretical Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Yen Ting Lin
- Theoretical Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom.,Center for Nonlinear Studies and Theoretical and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Tobias Galla
- Theoretical Physics, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
25
|
Ali Al-Radhawi M, Del Vecchio D, Sontag ED. Multi-modality in gene regulatory networks with slow promoter kinetics. PLoS Comput Biol 2019; 15:e1006784. [PMID: 30779734 PMCID: PMC6396950 DOI: 10.1371/journal.pcbi.1006784] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/01/2019] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Phenotypical variability in the absence of genetic variation often reflects complex energetic landscapes associated with underlying gene regulatory networks (GRNs). In this view, different phenotypes are associated with alternative states of complex nonlinear systems: stable attractors in deterministic models or modes of stationary distributions in stochastic descriptions. We provide theoretical and practical characterizations of these landscapes, specifically focusing on stochastic Slow Promoter Kinetics (SPK), a time scale relevant when transcription factor binding and unbinding are affected by epigenetic processes like DNA methylation and chromatin remodeling. In this case, largely unexplored except for numerical simulations, adiabatic approximations of promoter kinetics are not appropriate. In contrast to the existing literature, we provide rigorous analytic characterizations of multiple modes. A general formal approach gives insight into the influence of parameters and the prediction of how changes in GRN wiring, for example through mutations or artificial interventions, impact the possible number, location, and likelihood of alternative states. We adapt tools from the mathematical field of singular perturbation theory to represent stationary distributions of Chemical Master Equations for GRNs as mixtures of Poisson distributions and obtain explicit formulas for the locations and probabilities of metastable states as a function of the parameters describing the system. As illustrations, the theory is used to tease out the role of cooperative binding in stochastic models in comparison to deterministic models, and applications are given to various model systems, such as toggle switches in isolation or in communicating populations, a synthetic oscillator, and a trans-differentiation network.
Collapse
Affiliation(s)
- M. Ali Al-Radhawi
- Departments of Electrical and Computer Engineering and of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Domitilla Del Vecchio
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Eduardo D. Sontag
- Departments of Electrical and Computer Engineering and of Bioengineering, Northeastern University, Boston, Massachusetts, United States of America
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Huang GR, Saakian DB, Hu CK. Accurate analytic solution of chemical master equations for gene regulation networks in a single cell. Phys Rev E 2018; 97:012412. [PMID: 29448337 DOI: 10.1103/physreve.97.012412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Indexed: 12/21/2022]
Abstract
Studying gene regulation networks in a single cell is an important, interesting, and hot research topic of molecular biology. Such process can be described by chemical master equations (CMEs). We propose a Hamilton-Jacobi equation method with finite-size corrections to solve such CMEs accurately at the intermediate region of switching, where switching rate is comparable to fast protein production rate. We applied this approach to a model of self-regulating proteins [H. Ge et al., Phys. Rev. Lett. 114, 078101 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.078101] and found that as a parameter related to inducer concentration increases the probability of protein production changes from unimodal to bimodal, then to unimodal, consistent with phenotype switching observed in a single cell.
Collapse
Affiliation(s)
- Guan-Rong Huang
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| | - David B Saakian
- Theoretical Physics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Chin-Kun Hu
- Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan.,Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan.,Department of Systems Science, University of Shanghai for Science and Technology, Shanghai 200093, China.,Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan
| |
Collapse
|
27
|
Jing X, Loskot P, Yu J. How does supercoiling regulation on a battery of RNA polymerases impact on bacterial transcription bursting? Phys Biol 2018; 15:066007. [PMID: 30091721 DOI: 10.1088/1478-3975/aad933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Transcription plays an essential role in gene expression. The transcription bursting in bacteria has been suggested to be regulated by positive supercoiling accumulation in front of a transcribing RNA polymerase (RNAP) together with gyrase binding on DNA to release the supercoiling. In this work, we study the supercoiling regulation in the case of a battery of RNAPs working together on DNA by constructing a multi-state quantitative model, which allows gradual and stepwise supercoiling accumulation and release in the RNAP transcription. We solved for transcription characteristics under the multi-state bursting model for a single RNAP transcription, and then simulated for a battery of RNAPs on DNA with T7 and Escherichia coli RNAP types of traffic, respectively, probing both the average and fluctuation impacts of the supercoiling regulation. Our studies show that due to the supercoiling accumulation and release, the number of RNAP molecules loaded onto the DNA vary significantly along time in the traffic condition. Though multiple RNAPs in transcription promote the mRNA production, they also enhance the supercoiling accumulation to suppress the production. In particular, the fluctuations of the mRNA transcripts become highly pronounced for a battery of RNAPs transcribing together under the supercoiling regulation, especially for a long process of transcription elongation. In such an elongation process, though a single RNAP can work at a high duty ratio, multiple RNAPs are hardly able to do so. Our multi-state model thus provides a systematical characterization of the quantitative features of the bacterial transcription bursting; it also supports improved physical examinations on top of this general modeling framework.
Collapse
Affiliation(s)
- Xiaobo Jing
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
| | - Pavel Loskot
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
- Systems and Process Engineering Centre, Swansea University, Swansea, SA28PP, United Kingdom
| | - Jin Yu
- Beijing Computational Science Research Center, 100193, Beijing, People's Republic of China
| |
Collapse
|
28
|
Brackston RD, Lakatos E, Stumpf MPH. Transition state characteristics during cell differentiation. PLoS Comput Biol 2018; 14:e1006405. [PMID: 30235202 PMCID: PMC6168170 DOI: 10.1371/journal.pcbi.1006405] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/02/2018] [Accepted: 07/27/2018] [Indexed: 12/11/2022] Open
Abstract
Models describing the process of stem-cell differentiation are plentiful, and may offer insights into the underlying mechanisms and experimentally observed behaviour. Waddington's epigenetic landscape has been providing a conceptual framework for differentiation processes since its inception. It also allows, however, for detailed mathematical and quantitative analyses, as the landscape can, at least in principle, be related to mathematical models of dynamical systems. Here we focus on a set of dynamical systems features that are intimately linked to cell differentiation, by considering exemplar dynamical models that capture important aspects of stem cell differentiation dynamics. These models allow us to map the paths that cells take through gene expression space as they move from one fate to another, e.g. from a stem-cell to a more specialized cell type. Our analysis highlights the role of the transition state (TS) that separates distinct cell fates, and how the nature of the TS changes as the underlying landscape changes-change that can be induced by e.g. cellular signaling. We demonstrate that models for stem cell differentiation may be interpreted in terms of either a static or transitory landscape. For the static case the TS represents a particular transcriptional profile that all cells approach during differentiation. Alternatively, the TS may refer to the commonly observed period of heterogeneity as cells undergo stochastic transitions.
Collapse
Affiliation(s)
- Rowan D. Brackston
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Eszter Lakatos
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Michael P. H. Stumpf
- Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, London, United Kingdom
- School of BioScience and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
29
|
Tse MJ, Chu BK, Gallivan CP, Read EL. Rare-event sampling of epigenetic landscapes and phenotype transitions. PLoS Comput Biol 2018; 14:e1006336. [PMID: 30074987 PMCID: PMC6093701 DOI: 10.1371/journal.pcbi.1006336] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 08/15/2018] [Accepted: 06/29/2018] [Indexed: 12/16/2022] Open
Abstract
Stochastic simulation has been a powerful tool for studying the dynamics of gene regulatory networks, particularly in terms of understanding how cell-phenotype stability and fate-transitions are impacted by noisy gene expression. However, gene networks often have dynamics characterized by multiple attractors. Stochastic simulation is often inefficient for such systems, because most of the simulation time is spent waiting for rare, barrier-crossing events to occur. We present a rare-event simulation-based method for computing epigenetic landscapes and phenotype-transitions in metastable gene networks. Our computational pipeline was inspired by studies of metastability and barrier-crossing in protein folding, and provides an automated means of computing and visualizing essential stationary and dynamic information that is generally inaccessible to conventional simulation. Applied to a network model of pluripotency in Embryonic Stem Cells, our simulations revealed rare phenotypes and approximately Markovian transitions among phenotype-states, occurring with a broad range of timescales. The relative probabilities of phenotypes and the transition paths linking pluripotency and differentiation are sensitive to global kinetic parameters governing transcription factor-DNA binding kinetics. Our approach significantly expands the capability of stochastic simulation to investigate gene regulatory network dynamics, which may help guide rational cell reprogramming strategies. Our approach is also generalizable to other types of molecular networks and stochastic dynamics frameworks.
Collapse
Affiliation(s)
- Margaret J. Tse
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Brian K. Chu
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Cameron P. Gallivan
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
| | - Elizabeth L. Read
- Department of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, California, United States of America
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Brackston RD, Wynn A, Stumpf MPH. Construction of quasipotentials for stochastic dynamical systems: An optimization approach. Phys Rev E 2018; 98:022136. [PMID: 30253467 DOI: 10.1103/physreve.98.022136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Indexed: 06/08/2023]
Abstract
The construction of effective and informative landscapes for stochastic dynamical systems has proven a long-standing and complex problem. In many situations, the dynamics may be described by a Langevin equation while constructing a landscape comes down to obtaining the quasipotential, a scalar function that quantifies the likelihood of reaching each point in the state space. In this work we provide a novel method for constructing such landscapes by extending a tool from control theory: the sum-of-squares method for generating Lyapunov functions. Applicable to any system described by polynomials, this method provides an analytical polynomial expression for the potential landscape, in which the coefficients of the polynomial are obtained via a convex optimization problem. The resulting landscapes are based on a decomposition of the deterministic dynamics of the original system, formed in terms of the gradient of the potential and a remaining "curl" component. By satisfying the condition that the inner product of the gradient of the potential and the remaining dynamics is everywhere negative, our derived landscapes provide both upper and lower bounds on the true quasipotential; these bounds becoming tight if the decomposition is orthogonal. The method is demonstrated to correctly compute the quasipotential for high-dimensional linear systems and also for a number of nonlinear examples.
Collapse
Affiliation(s)
- R D Brackston
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - A Wynn
- Department of Aeronautics, Imperial College London, London SW7 2AZ, United Kingdom
| | - M P H Stumpf
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
- School of BioScience and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
31
|
Peng L, Zhu Y, Hong L. Generalized Onsager's reciprocal relations for the master and Fokker-Planck equations. Phys Rev E 2018; 97:062123. [PMID: 30011589 DOI: 10.1103/physreve.97.062123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 11/07/2022]
Abstract
The Onsager's reciprocal relation plays a fundamental role in the nonequilibrium thermodynamics. However, unfortunately, its classical version is valid only within a narrow region near equilibrium due to the linear regression hypothesis, which largely restricts its usage. In this paper, based on the conservation-dissipation formalism, a generalized version of Onsager's relations for the master equations and Fokker-Planck equations was derived. Nonlinear constitutive relations with nonsymmetric and positively stable operators, which become symmetric under the detailed balance condition, constitute key features of this new generalization. Similar conclusions also hold for many other classical models in physics and chemistry, which in turn make the current study as a benchmark for the application of generalized Onsager's relations in nonequilibrium thermodynamics.
Collapse
Affiliation(s)
- Liangrong Peng
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China, 100084
| | - Yi Zhu
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China, 100084
| | - Liu Hong
- Zhou Pei-Yuan Center for Applied Mathematics, Tsinghua University, Beijing, China, 100084
| |
Collapse
|
32
|
Rodrigo G. Post-transcriptional bursting in genes regulated by small RNA molecules. Phys Rev E 2018; 97:032401. [PMID: 29776125 DOI: 10.1103/physreve.97.032401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 11/07/2022]
Abstract
Gene expression programs in living cells are highly dynamic due to spatiotemporal molecular signaling and inherent biochemical stochasticity. Here we study a mechanism based on molecule-to-molecule variability at the RNA level for the generation of bursts of protein production, which can lead to heterogeneity in a cell population. We develop a mathematical framework to show numerically and analytically that genes regulated post transcriptionally by small RNA molecules can exhibit such bursts due to different states of translation activity (on or off), mostly revealed in a regime of few molecules. We exploit this framework to compare transcriptional and post-transcriptional bursting and also to illustrate how to tune the resulting protein distribution with additional post-transcriptional regulations. Moreover, because RNA-RNA interactions are predictable with an energy model, we define the kinetic constants of on-off switching as functions of the two characteristic free-energy differences of the system, activation and formation, with a nonequilibrium scheme. Overall, post-transcriptional bursting represents a distinctive principle linking gene regulation to gene expression noise, which highlights the importance of the RNA layer beyond the simple information transfer paradigm and significantly contributes to the understanding of the intracellular processes from a first-principles perspective.
Collapse
Affiliation(s)
- Guillermo Rodrigo
- Institute for Integrative Systems Biology, CSIC, Universidad de Valencia, 46980 Paterna, Spain
| |
Collapse
|
33
|
Neural network control of focal position during time-lapse microscopy of cells. Sci Rep 2018; 8:7313. [PMID: 29743647 PMCID: PMC5943362 DOI: 10.1038/s41598-018-25458-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
Live-cell microscopy is quickly becoming an indispensable technique for studying the dynamics of cellular processes. Maintaining the specimen in focus during image acquisition is crucial for high-throughput applications, especially for long experiments or when a large sample is being continuously scanned. Automated focus control methods are often expensive, imperfect, or ill-adapted to a specific application and are a bottleneck for widespread adoption of high-throughput, live-cell imaging. Here, we demonstrate a neural network approach for automatically maintaining focus during bright-field microscopy. Z-stacks of yeast cells growing in a microfluidic device were collected and used to train a convolutional neural network to classify images according to their z-position. We studied the effect on prediction accuracy of the various hyperparameters of the neural network, including downsampling, batch size, and z-bin resolution. The network was able to predict the z-position of an image with ±1 μm accuracy, outperforming human annotators. Finally, we used our neural network to control microscope focus in real-time during a 24 hour growth experiment. The method robustly maintained the correct focal position compensating for 40 μm of focal drift and was insensitive to changes in the field of view. About ~100 annotated z-stacks were required to train the network making our method quite practical for custom autofocus applications.
Collapse
|
34
|
Ge H, Wu P, Qian H, Xie XS. Relatively slow stochastic gene-state switching in the presence of positive feedback significantly broadens the region of bimodality through stabilizing the uninduced phenotypic state. PLoS Comput Biol 2018. [PMID: 29529037 PMCID: PMC5864076 DOI: 10.1371/journal.pcbi.1006051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Within an isogenic population, even in the same extracellular environment, individual cells can exhibit various phenotypic states. The exact role of stochastic gene-state switching regulating the transition among these phenotypic states in a single cell is not fully understood, especially in the presence of positive feedback. Recent high-precision single-cell measurements showed that, at least in bacteria, switching in gene states is slow relative to the typical rates of active transcription and translation. Hence using the lac operon as an archetype, in such a region of operon-state switching, we present a fluctuating-rate model for this classical gene regulation module, incorporating the more realistic operon-state switching mechanism that was recently elucidated. We found that the positive feedback mechanism induces bistability (referred to as deterministic bistability), and that the parameter range for its occurrence is significantly broadened by stochastic operon-state switching. We further show that in the absence of positive feedback, operon-state switching must be extremely slow to trigger bistability by itself. However, in the presence of positive feedback, which stabilizes the induced state, the relatively slow operon-state switching kinetics within the physiological region are sufficient to stabilize the uninduced state, together generating a broadened parameter region of bistability (referred to as stochastic bistability). We illustrate the opposite phenotype-transition rate dependence upon the operon-state switching rates in the two types of bistability, with the aid of a recently proposed rate formula for fluctuating-rate models. The rate formula also predicts a maximal transition rate in the intermediate region of operon-state switching, which is validated by numerical simulations in our model. Overall, our findings suggest a biological function of transcriptional “variations” among genetically identical cells, for the emergence of bistability and transition between phenotypic states. Identifying the mechanism underlying the coexistence of multiple stable phenotypic states has been a challenging scientific problem for more than half a century, and an appropriate mathematical model at the single-cell level is also in high demand. Single-cell measurements conducted in the past ten years have shown that gene-state switching is slow relative to the typical rates of active transcription and translation; hence the recently proposed fluctuating-rate model is a good candidate for describing the single-cell dynamics. We use the classic gene regulation module of the lac operon as an archetype and build a specific fluctuating-rate model based on the recently identified operon-state switching mechanism. This model is analyzed to dissect the interplay between positive feedback and the stochastic switching of gene states in the emergence of bistability/multistablity and the transition between phenotypic states. We show that relatively slow operon-state switching stabilizes the uninduced state and that the positive feedback stabilizes the induced state. Thus, the parameter range for bistability is significantly broadened. In addition, recently proposed landscape theory and rate formula predict opposite phenotype-transition rate dependence on operon-state switching rates for the two types of bistability.
Collapse
Affiliation(s)
- Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R.China
- Beijing International Center for Mathematical Research (BICMR), Peking University, Beijing, P.R.China
- * E-mail: (HG); (XSX)
| | - Pingping Wu
- School of Mathematical Sciences and Centre for Computational Systems Biology, Fudan University, Shanghai, P.R.China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington, United States of America
| | - Xiaoliang Sunney Xie
- Biodynamic Optical Imaging Center (BIOPIC), Peking University, Beijing, P.R.China
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (HG); (XSX)
| |
Collapse
|
35
|
Jia C, Qian H, Chen M, Zhang MQ. Relaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks. J Chem Phys 2018. [DOI: 10.1063/1.5009749] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Chen Jia
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael Q. Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
- MOE Key Lab and Division of Bioinformatics, CSSB, TNLIST, Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Lin YT, Hufton PG, Lee EJ, Potoyan DA. A stochastic and dynamical view of pluripotency in mouse embryonic stem cells. PLoS Comput Biol 2018; 14:e1006000. [PMID: 29451874 PMCID: PMC5833290 DOI: 10.1371/journal.pcbi.1006000] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/01/2018] [Accepted: 01/19/2018] [Indexed: 12/26/2022] Open
Abstract
Pluripotent embryonic stem cells are of paramount importance for biomedical sciences because of their innate ability for self-renewal and differentiation into all major cell lines. The fateful decision to exit or remain in the pluripotent state is regulated by complex genetic regulatory networks. The rapid growth of single-cell sequencing data has greatly stimulated applications of statistical and machine learning methods for inferring topologies of pluripotency regulating genetic networks. The inferred network topologies, however, often only encode Boolean information while remaining silent about the roles of dynamics and molecular stochasticity inherent in gene expression. Herein we develop a framework for systematically extending Boolean-level network topologies into higher resolution models of networks which explicitly account for the promoter architectures and gene state switching dynamics. We show the framework to be useful for disentangling the various contributions that gene switching, external signaling, and network topology make to the global heterogeneity and dynamics of transcription factor populations. We find the pluripotent state of the network to be a steady state which is robust to global variations of gene switching rates which we argue are a good proxy for epigenetic states of individual promoters. The temporal dynamics of exiting the pluripotent state, on the other hand, is significantly influenced by the rates of genetic switching which makes cells more responsive to changes in extracellular signals.
Collapse
Affiliation(s)
- Yen Ting Lin
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Peter G. Hufton
- School of Physics and Astronomy, The University of Manchester, Manchester, United Kingdom
| | - Esther J. Lee
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa, United States of America
| |
Collapse
|
37
|
Jia C, Zhang MQ, Qian H. Emergent Lévy behavior in single-cell stochastic gene expression. Phys Rev E 2018; 96:040402. [PMID: 29347590 DOI: 10.1103/physreve.96.040402] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 11/07/2022]
Abstract
Single-cell gene expression is inherently stochastic; its emergent behavior can be defined in terms of the chemical master equation describing the evolution of the mRNA and protein copy numbers as the latter tends to infinity. We establish two types of "macroscopic limits": the Kurtz limit is consistent with the classical chemical kinetics, while the Lévy limit provides a theoretical foundation for an empirical equation proposed in N. Friedman et al., Phys. Rev. Lett. 97, 168302 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.168302. Furthermore, we clarify the biochemical implications and ranges of applicability for various macroscopic limits and calculate a comprehensive analytic expression for the protein concentration distribution in autoregulatory gene networks. The relationship between our work and modern population genetics is discussed.
Collapse
Affiliation(s)
- Chen Jia
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael Q Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA.,MOE Key Lab and Division of Bioinformatics, CSSB, TNLIST, Tsinghua University, Beijing 100084, China
| | - Hong Qian
- Department of Applied Mathematics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
38
|
Wang H, Cheng X, Duan J, Kurths J, Li X. Likelihood for transcriptions in a genetic regulatory system under asymmetric stable Lévy noise. CHAOS (WOODBURY, N.Y.) 2018; 28:013121. [PMID: 29390613 DOI: 10.1063/1.5010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work is devoted to investigating the evolution of concentration in a genetic regulation system, when the synthesis reaction rate is under additive and multiplicative asymmetric stable Lévy fluctuations. By focusing on the impact of skewness (i.e., non-symmetry) in the probability distributions of noise, we find that via examining the mean first exit time (MFET) and the first escape probability (FEP), the asymmetric fluctuations, interacting with nonlinearity in the system, lead to peculiar likelihood for transcription. This includes, in the additive noise case, realizing higher likelihood of transcription for larger positive skewness (i.e., asymmetry) index β, causing a stochastic bifurcation at the non-Gaussianity index value α = 1 (i.e., it is a separating point or line for the likelihood for transcription), and achieving a turning point at the threshold value β≈-0.5 (i.e., beyond which the likelihood for transcription suddenly reversed for α values). The stochastic bifurcation and turning point phenomena do not occur in the symmetric noise case (β = 0). While in the multiplicative noise case, non-Gaussianity index value α = 1 is a separating point or line for both the MFET and the FEP. We also investigate the noise enhanced stability phenomenon. Additionally, we are able to specify the regions in the whole parameter space for the asymmetric noise, in which we attain desired likelihood for transcription. We have conducted a series of numerical experiments in "regulating" the likelihood of gene transcription by tuning asymmetric stable Lévy noise indexes. This work offers insights for possible ways of achieving gene regulation in experimental research.
Collapse
Affiliation(s)
- Hui Wang
- Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiujun Cheng
- Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinqiao Duan
- Center for Mathematical Sciences and School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jürgen Kurths
- Department of Physics, Humboldt University of Berlin, Newtonstrate 15, 12489 Berlin, Germany
| | - Xiaofan Li
- Department of Applied Mathematics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
39
|
Chen X, Kang YM, Fu YX. Switches in a genetic regulatory system under multiplicative non-Gaussian noise. J Theor Biol 2017; 435:134-144. [PMID: 28916451 DOI: 10.1016/j.jtbi.2017.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/12/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
The non-Gaussian noise is multiplicatively introduced to model the universal fluctuation in the gene regulation of the bacteriophage λ. To investigate the key effect of non-Gaussian noise on the genetic on/off switch dynamics from the viewpoint of quantitative analysis, we employ the high-order perturbation expansion to deduce the stationary probability density of repressor concentration and the mean first passage time from low concentration to high concentration and vice versa. The occupation probability of different concentration states can be estimated from the height and shape of the peaks of the stationary probability density, which could be used to determine the overall expression level. A further concern is the mean first passage time, also referred to as the mean switching time, which can be adopted as an important measure to characterize the adaptability of gene expression to the environmental variation. Through our investigation, it is observed that the non-Gaussian heavy-tailed noise can better induce the switches between distinct genetic expression states and additionally, it accelerates the switching process more evidently compared to the Gaussian noise and the bounded noise.
Collapse
Affiliation(s)
- Xi Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yan-Mei Kang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yu-Xuan Fu
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
40
|
Jia C, Xie P, Chen M, Zhang MQ. Stochastic fluctuations can reveal the feedback signs of gene regulatory networks at the single-molecule level. Sci Rep 2017; 7:16037. [PMID: 29167445 PMCID: PMC5700158 DOI: 10.1038/s41598-017-15464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 01/17/2023] Open
Abstract
Understanding the relationship between spontaneous stochastic fluctuations and the topology of the underlying gene regulatory network is of fundamental importance for the study of single-cell stochastic gene expression. Here by solving the analytical steady-state distribution of the protein copy number in a general kinetic model of stochastic gene expression with nonlinear feedback regulation, we reveal the relationship between stochastic fluctuations and feedback topology at the single-molecule level, which provides novel insights into how and to what extent a feedback loop can enhance or suppress molecular fluctuations. Based on such relationship, we also develop an effective method to extract the topological information of a gene regulatory network from single-cell gene expression data. The theory is demonstrated by numerical simulations and, more importantly, validated quantitatively by single-cell data analysis of a synthetic gene circuit integrated in human kidney cells.
Collapse
Affiliation(s)
- Chen Jia
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Peng Xie
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Michael Q Zhang
- Department of Biological Sciences, Center for Systems Biology, University of Texas at Dallas, Richardson, TX 75080, USA.
- MOE Key Lab and Division of Bioinformatics, CSSB, TNLIST, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
41
|
Saakian DB. Kinetics of biochemical sensing by single cells and populations of cells. Phys Rev E 2017; 96:042413. [PMID: 29347567 DOI: 10.1103/physreve.96.042413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 11/07/2022]
Abstract
We investigate the collective stationary sensing using N communicative cells, which involves surface receptors, diffusive signaling molecules, and cell-cell communication messengers. We restrict the scenarios to the signal-to-noise ratios (SNRs) for both strong communication and extrinsic noise only. We modified a previous model [Bialek and Setayeshgar, Proc. Natl. Acad. Sci. USA 102, 10040 (2005)PNASA60027-842410.1073/pnas.0504321102] to eliminate the singularities in the fluctuation correlations by considering a uniform receptor distribution over the surface of each cell with a finite radius a. The modified model enables a simple and rigorous mathematical treatment of the collective sensing phenomenon. We then derive the scaling of the SNR for both juxtacrine and autocrine cases in all dimensions. For the optimal locations of the cells in the autocrine case, we find identical scaling for both two and three dimensions.
Collapse
Affiliation(s)
- David B Saakian
- Theoretical Physics Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam; and A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, 2 Alikhanian Brothers St., Yerevan 375036, Armenia
| |
Collapse
|
42
|
A kinetic model of multiple phenotypic states for breast cancer cells. Sci Rep 2017; 7:9890. [PMID: 28852133 PMCID: PMC5574983 DOI: 10.1038/s41598-017-10321-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Quantitative modeling of microscopic genes regulatory mechanisms in an individual cell is a crucial step towards understanding various macroscopic physiological phenomena of cell populations. Based on the regulatory mechanisms of genes zeb1 and cdh1 in the growth and development of breast cancer cells, we propose a kinetic model at the level of single cell. By constructing the effective landscape of underlying stationary probability for the genes expressions, it is found that (i) each breast cancer cell has three phenotypic states (i.e., the stem-like, basal, and luminal states) which correspond to three attractions of the probability landscape. (ii) The interconversions between phenotypic states can be induced by the noise intensity and the property of phenotypic switching is quantified by the mean first-passage time. (iii) Under certain conditions, the probabilities of each cancer cell appearing in the three states are consistent with the macroscopic phenotypic equilibrium proportions in the breast cancer SUM159 cell line. (iv) Our kinetic model involving the TGF-β signal can also qualitatively explain several macroscopic physiological phenomena of breast cancer cells, such as the "TGF-β paradox" in tumor therapy, the five clinical subtypes of breast cancer cells, and the effects of transient TGF-β on breast cancer metastasis.
Collapse
|
43
|
Huang B, Lu M, Jia D, Ben-Jacob E, Levine H, Onuchic JN. Interrogating the topological robustness of gene regulatory circuits by randomization. PLoS Comput Biol 2017; 13:e1005456. [PMID: 28362798 PMCID: PMC5391964 DOI: 10.1371/journal.pcbi.1005456] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/14/2017] [Accepted: 03/15/2017] [Indexed: 01/06/2023] Open
Abstract
One of the most important roles of cells is performing their cellular tasks properly for survival. Cells usually achieve robust functionality, for example, cell-fate decision-making and signal transduction, through multiple layers of regulation involving many genes. Despite the combinatorial complexity of gene regulation, its quantitative behavior has been typically studied on the basis of experimentally verified core gene regulatory circuitry, composed of a small set of important elements. It is still unclear how such a core circuit operates in the presence of many other regulatory molecules and in a crowded and noisy cellular environment. Here we report a new computational method, named random circuit perturbation (RACIPE), for interrogating the robust dynamical behavior of a gene regulatory circuit even without accurate measurements of circuit kinetic parameters. RACIPE generates an ensemble of random kinetic models corresponding to a fixed circuit topology, and utilizes statistical tools to identify generic properties of the circuit. By applying RACIPE to simple toggle-switch-like motifs, we observed that the stable states of all models converge to experimentally observed gene state clusters even when the parameters are strongly perturbed. RACIPE was further applied to a proposed 22-gene network of the Epithelial-to-Mesenchymal Transition (EMT), from which we identified four experimentally observed gene states, including the states that are associated with two different types of hybrid Epithelial/Mesenchymal phenotypes. Our results suggest that dynamics of a gene circuit is mainly determined by its topology, not by detailed circuit parameters. Our work provides a theoretical foundation for circuit-based systems biology modeling. We anticipate RACIPE to be a powerful tool to predict and decode circuit design principles in an unbiased manner, and to quantitatively evaluate the robustness and heterogeneity of gene expression. Cells are able to robustly carry out their essential biological functions, possibly because of multiple layers of tight regulation via complex, yet well-designed, gene regulatory networks involving a substantial number of genes. State-of-the-art genomics technology has enabled the mapping of these large gene networks, yet it remains a tremendous challenge to elucidate their design principles and the regulatory mechanisms underlying their biological functions such as signal processing and decision-making. One of the key barriers is the absence of accurate kinetics for the regulatory interactions, especially from in vivo experiments. To this end, we have developed a new computational modeling method, Random Circuit Perturbation (RACIPE), to explore the dynamic behaviors of gene regulatory circuits without the requirement of detailed kinetic parameters. RACIPE takes a network topology as the input, and generates an unbiased ensemble of models with varying kinetic parameters. Each model is subjected to simulation, followed by statistical analysis for the ensemble. We tested RACIPE on several gene circuits, and found that the predicted gene expression patterns from all of the models converge to experimentally observed gene state clusters. We expect RACIPE to be a powerful method to identify the role of network topology in determining network operating principles.
Collapse
Affiliation(s)
- Bin Huang
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Chemistry, Rice University, Houston, TX, United States of America
| | - Mingyang Lu
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, United States of America
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- School of Physics and Astronomy, and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Bioengineering, Rice University, Houston, TX, United States of America
- Department of Biosciences, Rice University, Houston, TX, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX, United States of America
- * E-mail: (HL); (JNO)
| | - Jose N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States of America
- Department of Chemistry, Rice University, Houston, TX, United States of America
- Department of Biosciences, Rice University, Houston, TX, United States of America
- Department of Physics and Astronomy, Rice University, Houston, TX, United States of America
- * E-mail: (HL); (JNO)
| |
Collapse
|
44
|
Huang B, Tian X, Liu F, Wang W. Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops. Phys Rev E 2016; 94:052413. [PMID: 27967134 DOI: 10.1103/physreve.94.052413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 06/06/2023]
Abstract
Interlinking a positive feedback loop (PFL) with a negative feedback loop (NFL) constitutes a typical motif in genetic networks, performing various functions in cell signaling. How time delay in feedback regulation affects the dynamics of such systems still remains unclear. Here, we investigate three systems of interlinked PFL and NFL with time delays: a synthetic genetic oscillator, a three-node circuit, and a simplified single-node model. The stability of steady states and the routes to oscillation in the single-node model are analyzed in detail. The amplitude and period of oscillations vary with a pointwise periodicity over a range of time delay. Larger-amplitude oscillations can be induced when the PFL has an appropriately long delay, in comparison with the PFL with no delay or short delay; this conclusion holds true for all the three systems. We unravel the underlying mechanism for the above effects via analytical derivation under a limiting condition. We also develop a stochastic algorithm for simulating a single reaction with two delays and show that robust oscillations can be maintained by the PFL with a properly long delay in the single-node system. This work presents an effective method for constructing robust large-amplitude oscillators and interprets why similar circuit architectures are engaged in timekeeping systems such as circadian clocks.
Collapse
Affiliation(s)
- Bo Huang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xinyu Tian
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feng Liu
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
45
|
Abstract
Molecular noise in gene regulatory networks has two intrinsic components, one part being due to fluctuations caused by the birth and death of protein or mRNA molecules which are often present in small numbers and the other part arising from gene state switching, a single molecule event. Stochastic dynamics of gene regulatory circuits appears to be largely responsible for bifurcations into a set of multi-attractor states that encode different cell phenotypes. The interplay of dichotomous single molecule gene noise with the nonlinear architecture of genetic networks generates rich and complex phenomena. In this paper, we elaborate on an approximate framework that leads to simple hybrid multi-scale schemes well suited for the quantitative exploration of the steady state properties of large-scale cellular genetic circuits. Through a path sum based analysis of trajectory statistics, we elucidate the connection of these hybrid schemes to the underlying master equation and provide a rigorous justification for using dichotomous noise based models to study genetic networks. Numerical simulations of circuit models reveal that the contribution of the genetic noise of single molecule origin to the total noise is significant for a wide range of kinetic regimes.
Collapse
Affiliation(s)
- Davit A Potoyan
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Peter G Wolynes
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
46
|
Liu P, Yuan Z, Wang H, Zhou T. Decomposition and tunability of expression noise in the presence of coupled feedbacks. CHAOS (WOODBURY, N.Y.) 2016; 26:043108. [PMID: 27131487 DOI: 10.1063/1.4947202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Expression noise results in cell-to-cell variability in expression levels, and feedback regulation may complicate the tracing of sources of this noise. Using a representative model of gene expression with feedbacks, we analytically show that the expression noise (or the total noise) is decomposed into three parts: feedback-dependent promoter noise determined by a continuous approximation, birth-death noise determined by a simple Poisson process, and correlation noise induced by feedbacks. We clarify confused relationships between feedback and noise in previous studies, by showing that feedback-regulated noisy sources have different contributions to the total noise in different cases of promoter switching (it is an essential reason resulting in confusions). More importantly, we find that there is a tradeoff between response time and expression noise. In addition, we show that in contrast to single feedbacks, coupled positive and negative feedbacks can perform better in tuning expression noise, controlling expression levels, and maintaining response time. The overall analysis implies that living organisms would utilize coupled positive and negative feedbacks for better survival in complex and fluctuating environments.
Collapse
Affiliation(s)
- Peijiang Liu
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Zhanjiang Yuan
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Haohua Wang
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Tianshou Zhou
- Guangdong Province Key Laboratory of Computational Science, School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
47
|
Besya AB, Grönlund A. Intrinsic phenotypic stability of a bi-stable auto regulatory gene. Sci Rep 2016; 6:22951. [PMID: 26961811 PMCID: PMC4785359 DOI: 10.1038/srep22951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/24/2016] [Indexed: 11/12/2022] Open
Abstract
Even under homogenous conditions clonal cells can assume different distinct states for generations to follow, also known as epigenetic inheritance. Such long periods of different phenotypic states can be formed due to the existence of more than one stable state in the molecule concentration, where the different states are explored through molecular fluctuations. By formulating a single reaction variable representing the birth and death of molecules, including transcription, translation and decay, we calculate the escape time from the phenotypic states attained from autocatalytic synthesis through a Fokker- Planck formulation and integration of an effective pseudo-potential. We calculate the stability of the phenotypic states both for cooperative binding feedback and dimer binding feedback, resulting in non-linear decay.
Collapse
Affiliation(s)
- Azim-Berdy Besya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Andreas Grönlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
48
|
Zhou P, Li T. Construction of the landscape for multi-stable systems: Potential landscape, quasi-potential, A-type integral and beyond. J Chem Phys 2016; 144:094109. [DOI: 10.1063/1.4943096] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Peijie Zhou
- LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Tiejun Li
- LMAM and School of Mathematical Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
49
|
Tse MJ, Chu BK, Roy M, Read EL. DNA-Binding Kinetics Determines the Mechanism of Noise-Induced Switching in Gene Networks. Biophys J 2015; 109:1746-57. [PMID: 26488666 PMCID: PMC4624158 DOI: 10.1016/j.bpj.2015.08.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/28/2015] [Accepted: 08/24/2015] [Indexed: 12/18/2022] Open
Abstract
Gene regulatory networks are multistable dynamical systems in which attractor states represent cell phenotypes. Spontaneous, noise-induced transitions between these states are thought to underlie critical cellular processes, including cell developmental fate decisions, phenotypic plasticity in fluctuating environments, and carcinogenesis. As such, there is increasing interest in the development of theoretical and computational approaches that can shed light on the dynamics of these stochastic state transitions in multistable gene networks. We applied a numerical rare-event sampling algorithm to study transition paths of spontaneous noise-induced switching for a ubiquitous gene regulatory network motif, the bistable toggle switch, in which two mutually repressive genes compete for dominant expression. We find that the method can efficiently uncover detailed switching mechanisms that involve fluctuations both in occupancies of DNA regulatory sites and copy numbers of protein products. In addition, we show that the rate parameters governing binding and unbinding of regulatory proteins to DNA strongly influence the switching mechanism. In a regime of slow DNA-binding/unbinding kinetics, spontaneous switching occurs relatively frequently and is driven primarily by fluctuations in DNA-site occupancies. In contrast, in a regime of fast DNA-binding/unbinding kinetics, switching occurs rarely and is driven by fluctuations in levels of expressed protein. Our results demonstrate how spontaneous cell phenotype transitions involve collective behavior of both regulatory proteins and DNA. Computational approaches capable of simulating dynamics over many system variables are thus well suited to exploring dynamic mechanisms in gene networks.
Collapse
Affiliation(s)
- Margaret J Tse
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California
| | - Brian K Chu
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California
| | - Mahua Roy
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California
| | - Elizabeth L Read
- Department of Chemical Engineering and Materials Science, University of California Irvine, Irvine, California; Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California.
| |
Collapse
|