1
|
Lu YW, Li W, Wang XH. Quantum and Classical Exceptional Points at the Nanoscale: Properties and Applications. ACS NANO 2025. [PMID: 40326731 DOI: 10.1021/acsnano.4c15648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Exceptional points (EPs) are the spectral singularities and one of the central concepts of non-Hermitian physics, originating from the inevitable energy exchange with the surrounding environment. EPs exist in diverse physical systems and give rise to many counterintuitive effects, offering rich opportunities to control the dynamics and alter the properties of optical, electronic, acoustic, and mechanical states. The last two decades have witnessed the flourishing of non-Hermitian physics and associated applications related to coalesced eigenstates at EPs in a plethora of classical systems. While stemming from the quantum mechanism, the implementation of EPs in real quantum systems still faces challenges of tuning and stabilizing the systems at EPs, as well as the additional noises that hinder the observation of relevant phenomena. This review mainly focuses on summarizing the current efforts and opportunities offered by quantum EPs that result from or produce observable quantum effects. We introduce the concepts of Hamiltonian and Liouvillian EPs in the quantum regime and focus on their different properties in connection with quantum jumps and decoherence. We then provide a comprehensive discussion covering the theoretical and experimental advances in accessing EPs in diverse quantum systems and platforms. Special attention is paid to EP-based quantum-optics applications with state-of-art technologies. Finally, we present a discussion on the existing challenges of constructing quantum EPs at the nanoscale and an outlook on the fundamental science and applied technologies of quantum EPs, aiming to provide valuable insights for future research and building quantum devices with high performance and advanced functionalities.
Collapse
Affiliation(s)
- Yu-Wei Lu
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| | - Wei Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xue-Hua Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Husel L, Trapp J, Scherzer J, Wu X, Wang P, Fortner J, Nutz M, Hümmer T, Polovnikov B, Förg M, Hunger D, Wang Y, Högele A. Cavity-enhanced photon indistinguishability at room temperature and telecom wavelengths. Nat Commun 2024; 15:3989. [PMID: 38734738 PMCID: PMC11088649 DOI: 10.1038/s41467-024-48119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling. The efficiency of the coupled system outperforms spectral or temporal filtering, and the photon indistinguishability is increased by more than two orders of magnitude compared to the free-space limit. Our results highlight a promising strategy to attain optimized non-classical light sources.
Collapse
Affiliation(s)
- Lukas Husel
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Julian Trapp
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Johannes Scherzer
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Xiaojian Wu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Peng Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Jacob Fortner
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Manuel Nutz
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | | | - Borislav Polovnikov
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Michael Förg
- Qlibri GmbH, Maistr. 67, 80337, München, Germany
| | - David Hunger
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany.
- Institute for Quantum Materials and Technologies (IQMT), Karlsruhe Institute of Technology (KIT), Herrmann-von-Helmholtz Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - YuHuang Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA.
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, 80539, München, Germany.
- Munich Center for Quantum Science and Technology (MCQST), Schellingstr. 4, 80799, München, Germany.
| |
Collapse
|
3
|
Sortino L, Gale A, Kühner L, Li C, Biechteler J, Wendisch FJ, Kianinia M, Ren H, Toth M, Maier SA, Aharonovich I, Tittl A. Optically addressable spin defects coupled to bound states in the continuum metasurfaces. Nat Commun 2024; 15:2008. [PMID: 38443418 PMCID: PMC10914779 DOI: 10.1038/s41467-024-46272-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Van der Waals (vdW) materials, including hexagonal boron nitride (hBN), are layered crystalline solids with appealing properties for investigating light-matter interactions at the nanoscale. hBN has emerged as a versatile building block for nanophotonic structures, and the recent identification of native optically addressable spin defects has opened up exciting possibilities in quantum technologies. However, these defects exhibit relatively low quantum efficiencies and a broad emission spectrum, limiting potential applications. Optical metasurfaces present a novel approach to boost light emission efficiency, offering remarkable control over light-matter coupling at the sub-wavelength regime. Here, we propose and realise a monolithic scalable integration between intrinsic spin defects in hBN metasurfaces and high quality (Q) factor resonances, exceeding 102, leveraging quasi-bound states in the continuum (qBICs). Coupling between defect ensembles and qBIC resonances delivers a 25-fold increase in photoluminescence intensity, accompanied by spectral narrowing to below 4 nm linewidth and increased narrowband spin-readout efficiency. Our findings demonstrate a new class of metasurfaces for spin-defect-based technologies and pave the way towards vdW-based nanophotonic devices with enhanced efficiency and sensitivity for quantum applications in imaging, sensing, and light emission.
Collapse
Affiliation(s)
- Luca Sortino
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Angus Gale
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Lucca Kühner
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Chi Li
- School of Physics and Astronomy, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Jonas Biechteler
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Fedja J Wendisch
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Mehran Kianinia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Haoran Ren
- School of Physics and Astronomy, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
| | - Milos Toth
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Wellington Rd, Clayton, VIC 3800, Australia
- The Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Igor Aharonovich
- School of Mathematical and Physical Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- ARC Centre of Excellence for Transformative Meta-Optical Systems, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, Munich, Germany.
| |
Collapse
|
4
|
Guimbao J, Sanchis L, Weituschat LM, Llorens JM, Postigo PA. Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2800. [PMID: 36014665 PMCID: PMC9414413 DOI: 10.3390/nano12162800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Single photon sources (SPS) based on semiconductor quantum dot (QD) platforms are restricted to low temperature (T) operation due to the presence of strong dephasing processes. Although the integration of QD in optical cavities provides an enhancement of its emission properties, the technical requirements for maintaining high indistinguishability (I) at high T are still beyond the state of the art. Recently, new theoretical approaches have shown promising results by implementing two-dipole-coupled-emitter systems. Here, we propose a platform based on an optimized five-dipole-coupled-emitter system coupled to a cavity which enables perfect I at high T. Within our scheme the realization of perfect I single photon emission with dissipative QDs is possible using well established photonic platforms. For the optimization procedure we have developed a novel machine-learning approach which provides a significant computational-time reduction for high demanding optimization algorithms. Our strategy opens up interesting possibilities for the optimization of different photonic structures for quantum information applications, such as the reduction of quantum decoherence in clusters of coupled two-level quantum systems.
Collapse
Affiliation(s)
- Joaquin Guimbao
- Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain
| | - Lorenzo Sanchis
- Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain
| | - Lukas M. Weituschat
- Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain
| | - Jose M. Llorens
- Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain
| | - Pablo A. Postigo
- Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain
- The Institute of Optics, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
5
|
Guimbao J, Sanchis L, Weituschat L, Manuel Llorens J, Song M, Cardenas J, Aitor Postigo P. Numerical Optimization of a Nanophotonic Cavity by Machine Learning for Near-Unity Photon Indistinguishability at Room Temperature. ACS PHOTONICS 2022; 9:1926-1935. [PMID: 35726240 PMCID: PMC9205277 DOI: 10.1021/acsphotonics.1c01651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 05/25/2023]
Abstract
Room-temperature (RT), on-chip deterministic generation of indistinguishable photons coupled to photonic integrated circuits is key for quantum photonic applications. Nevertheless, high indistinguishability (I) at RT is difficult to obtain due to the intrinsic dephasing of most deterministic single-photon sources (SPS). Here, we present a numerical demonstration of the design and optimization of a hybrid slot-Bragg nanophotonic cavity that achieves a theoretical near-unity I and a high coupling efficiency (β) at RT for a variety of single-photon emitters. Our numerical simulations predict modal volumes in the order of 10-3(λ/2n)3, allowing for strong coupling of quantum photonic emitters that can be heterogeneously integrated. We show that high I and β should be possible by fine-tuning the quality factor (Q) depending on the intrinsic properties of the single-photon emitter. Furthermore, we perform a machine learning optimization based on the combination of a deep neural network and a genetic algorithm (GA) to further decrease the modal volume by almost 3 times while relaxing the tight dimensions of the slot width required for strong coupling. The optimized device has a slot width of 20 nm. The design requires fabrication resolution in the limit of the current state-of-the-art technology. Also, the condition for high I and β requires a positioning accuracy of the quantum emitter at the nanometer level. Although the proposal is not a scalable technology, it can be suitable for experimental demonstration of single-photon operation.
Collapse
Affiliation(s)
- J. Guimbao
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - L. Sanchis
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - L. Weituschat
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - J. Manuel Llorens
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
| | - M. Song
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - J. Cardenas
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - P. Aitor Postigo
- Instituto
de Micro y Nanotecnología, IMN-CNM,
CSIC (CEI UAM+CSIC), Tres Cantos, Madrid E-28760, Spain
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
6
|
Alfieri A, Anantharaman SB, Zhang H, Jariwala D. Nanomaterials for Quantum Information Science and Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2109621. [PMID: 35139247 DOI: 10.1002/adma.202109621] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Quantum information science and engineering (QISE)-which entails the use of quantum mechanical states for information processing, communications, and sensing-and the area of nanoscience and nanotechnology have dominated condensed matter physics and materials science research in the 21st century. Solid-state devices for QISE have, to this point, predominantly been designed with bulk materials as their constituents. This review considers how nanomaterials (i.e., materials with intrinsic quantum confinement) may offer inherent advantages over conventional materials for QISE. The materials challenges for specific types of qubits, along with how emerging nanomaterials may overcome these challenges, are identified. Challenges for and progress toward nanomaterials-based quantum devices are condidered. The overall aim of the review is to help close the gap between the nanotechnology and quantum information communities and inspire research that will lead to next-generation quantum devices for scalable and practical quantum applications.
Collapse
Affiliation(s)
- Adam Alfieri
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Surendra B Anantharaman
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Huiqin Zhang
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Deep Jariwala
- Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
7
|
Guimbao J, Weituschat LM, Llorens Montolio JM, Postigo PA. Enhancement of the indistinguishability of single photon emitters coupled to photonic waveguides. OPTICS EXPRESS 2021; 29:21160-21173. [PMID: 34265908 DOI: 10.1364/oe.422023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
One of the main steps towards large-scale quantum photonics consists of the integration of single photon sources (SPS) with photonic integrated circuits (PICs). For that purpose, the PICs should offer an efficient light coupling and a high preservation of the indistinguishability of photons. Therefore, optimization of the indistinguishability through waveguide design is especially relevant. In this work we have developed an analytical model that uses the Green's Dyadic of a 3D unbounded rectangular waveguide to calculate the coupling and the indistinguishability of an ideal point-source quantum emitter coupled to a photonic waveguide depending on its orientation and position. The model has been numerically evaluated through finite-difference time-domain (FDTD) simulations showing consistent results. The maximum coupling is achieved when the emitter is embedded in the center of the waveguide but somewhat surprisingly the maximum indistinguishability appears when the emitter is placed at the edge of the waveguide where the electric field is stronger due to the surface discontinuity.
Collapse
|
8
|
Fournier C, Plaud A, Roux S, Pierret A, Rosticher M, Watanabe K, Taniguchi T, Buil S, Quélin X, Barjon J, Hermier JP, Delteil A. Position-controlled quantum emitters with reproducible emission wavelength in hexagonal boron nitride. Nat Commun 2021; 12:3779. [PMID: 34145254 PMCID: PMC8213715 DOI: 10.1038/s41467-021-24019-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization offered by this class of materials. However, accurate control of both the spatial location and the emission wavelength of the quantum emitters is essentially lacking to date, thus hindering further technological steps towards scalable quantum photonic devices. Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations. SPE ensembles are generated with a spatial accuracy better than the cubed emission wavelength, thus opening the way to integration in optical microstructures. Stable and bright single photon emission is subsequently observed in the visible range up to room temperature upon non-resonant laser excitation. Moreover, the low-temperature emission wavelength is reproducible, with an ensemble distribution of width 3 meV, a statistical dispersion that is more than one order of magnitude lower than the narrowest wavelength spreads obtained in epitaxial hBN samples. Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials. Accurate control of the spatial location and the emission wavelength of single photon emitters (SPEs) in van der Waals materials is a crucial yet challenging endeavour. Here, the authors use an electron beam to generate SPE ensembles in high purity synthetic hBN with enhanced spatial accuracy and emission reproducibility.
Collapse
Affiliation(s)
| | - Alexandre Plaud
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France
| | - Sébastien Roux
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France
| | - Aurélie Pierret
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Michael Rosticher
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Stéphanie Buil
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France
| | - Xavier Quélin
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France
| | - Julien Barjon
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France
| | | | - Aymeric Delteil
- Université Paris-Saclay, UVSQ, CNRS, GEMaC, Versailles, France.
| |
Collapse
|
9
|
Schrinner PPJ, Olthaus J, Reiter DE, Schuck C. Integration of Diamond-Based Quantum Emitters with Nanophotonic Circuits. NANO LETTERS 2020; 20:8170-8177. [PMID: 33136413 DOI: 10.1021/acs.nanolett.0c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanophotonics provides a promising approach to advance quantum technology by replicating fundamental building blocks of nanoscale quantum optic systems in large numbers with high reproducibility on monolithic chips. While photonic integrated circuit components and single-photon detectors offer attractive performance on silicon chips, the large-scale integration of individually accessible quantum emitters has remained a challenge. Here, we demonstrate simultaneous optical access to several integrated solid-state spin systems with Purcell-enhanced coupling of single photons with high modal purity from lithographically positioned nitrogen vacancy centers into photonic integrated circuits. Photonic crystal cavities embedded in networks of tantalum pentoxide-on-insulator waveguides provide efficient interfaces to quantum emitters that allow us to optically detect magnetic resonances (ODMR) as desired in quantum sensing. Nanophotonic networks that provide configurable optical interfaces to nanoscale quantum emitters via many independent channels will allow for novel functionality in photonic quantum information processors and quantum sensing schemes.
Collapse
Affiliation(s)
- Philip P J Schrinner
- Institute of Physics, University of Münster, 48149 Münster, Germany
- Center for NanoTechnology - CeNTech, 48149 Münster, Germany
- Center for Soft Nanoscience - SoN, 48149 Münster, Germany
| | - Jan Olthaus
- Institut für Festkörpertheorie, University of Münster, 48149 Münster, Germany
| | - Doris E Reiter
- Institut für Festkörpertheorie, University of Münster, 48149 Münster, Germany
| | - Carsten Schuck
- Institute of Physics, University of Münster, 48149 Münster, Germany
- Center for NanoTechnology - CeNTech, 48149 Münster, Germany
- Center for Soft Nanoscience - SoN, 48149 Münster, Germany
| |
Collapse
|
10
|
Integration of single photon emitters in 2D layered materials with a silicon nitride photonic chip. Nat Commun 2019; 10:4435. [PMID: 31570712 PMCID: PMC6768863 DOI: 10.1038/s41467-019-12421-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Photonic integrated circuits (PICs) enable the miniaturization of optical quantum circuits because several optic and electronic functionalities can be added on the same chip. Integrated single photon emitters (SPEs) are central building blocks for such quantum photonic circuits. SPEs embedded in 2D transition metal dichalcogenides have some unique properties that make them particularly appealing for large-scale integration. Here we report on the integration of a WSe2 monolayer onto a Silicon Nitride (SiN) chip. We demonstrate the coupling of SPEs with the guided mode of a SiN waveguide and study how the on-chip single photon extraction can be maximized by interfacing the 2D-SPE with an integrated dielectric cavity. Our approach allows the use of optimized PIC platforms without the need for additional processing in the SPE host material. In combination with improved wafer-scale CVD growth of 2D materials, this approach provides a promising route towards scalable quantum photonic chips. Integration of photonic circuits with single photon emitters provides a promising route towards scalable quantum photonic chips. Here, the authors integrate a WSe2 monolayer onto a SiN chip and demonstrate the coupling of single photon emitters in WSe2 with the guided mode of a SiN waveguide.
Collapse
|
11
|
Choi H, Zhu D, Yoon Y, Englund D. Cascaded Cavities Boost the Indistinguishability of Imperfect Quantum Emitters. PHYSICAL REVIEW LETTERS 2019; 122:183602. [PMID: 31144870 DOI: 10.1103/physrevlett.122.183602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Recently, Grange et al. [Phys. Rev. Lett. 114, 193601 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.193601] showed the possibility of single-photon generation with a high indistinguishability from a quantum emitter despite strong pure dephasing, by "funneling" emission into a photonic cavity. Here, we show that a cascaded two-cavity system can further improve the photon characteristics and greatly reduce the Q factor requirement to levels achievable with present-day technology. Our approach leverages recent advances in nanocavities with an ultrasmall mode volume and does not require ultrafast excitation of the emitter. These results were obtained by numerical and closed-form analytical models with strong emitter dephasing, representing room-temperature quantum emitters.
Collapse
Affiliation(s)
- Hyeongrak Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Di Zhu
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yoseob Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dirk Englund
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Lu Q, Chen X, Zou CL, Xie S. Extreme terahertz electric-field enhancement in high-Q photonic crystal slab cavity with nanoholes. OPTICS EXPRESS 2018; 26:30851-30861. [PMID: 30469977 DOI: 10.1364/oe.26.030851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 10/17/2018] [Indexed: 06/09/2023]
Abstract
A one-dimensional photonic-crystal (PC) cavity with nanoholes is proposed for extreme enhancement of terahertz (THz) electric fields using the electromagnetic (EM) boundary conditions. Both slot (for the perpendicular component of the electric displacement field) and anti-slot (for the parallel component of the electric field) effects contribute to the considerable field enhancement. The EM energy density can be enhanced by a factor of (εh/εl)2 in the high-refractive-index material, where εh and εl are the permittivities of the high- and low-refractive-index materials, respectively. Correspondingly, the mode volume can be reduced by a factor of 288, compared with a conventional THz PC cavity, and is three orders of magnitude smaller than the diffraction limitation. Further, the proposed THz cavity design also supports modes with high quality factors (Q) > 104, which induces strong Purcell enhancement by a factor exceeding 106. Our THz cavity design is feasible and attractive for experimental demonstrations, because the semiconductor layer in which the EM is maximized can naturally be filled with quantum-engineered active materials. Thus, the proposed design can possibly be used to develop room-temperature coherent THz radiation sources.
Collapse
|
13
|
He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F, Krupke R, Jeantet A, Chassagneux Y, Voisin C. Carbon nanotubes as emerging quantum-light sources. NATURE MATERIALS 2018; 17:663-670. [PMID: 29915427 DOI: 10.1038/s41563-018-0109-2] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/14/2018] [Indexed: 05/18/2023]
Abstract
Progress in quantum computing and quantum cryptography requires efficient, electrically triggered, single-photon sources at room temperature in the telecom wavelengths. It has been long known that semiconducting single-wall carbon nanotubes (SWCNTs) display strong excitonic binding and emit light over a broad range of wavelengths, but their use has been hampered by a low quantum yield and a high sensitivity to spectral diffusion and blinking. In this Perspective, we discuss recent advances in the mastering of SWCNT optical properties by chemistry, electrical contacting and resonator coupling towards advancing their use as quantum light sources. We describe the latest results in terms of single-photon purity, generation efficiency and indistinguishability. Finally, we consider the main fundamental challenges stemming from the unique properties of SWCNTs and the most promising roads for SWCNT-based chip integrated quantum photonic sources.
Collapse
Affiliation(s)
- X He
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - H Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - S K Doorn
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - W H P Pernice
- Institute of Physics, University of Münster, Münster, Germany
| | - F Pyatkov
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - R Krupke
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - A Jeantet
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France
| | - Y Chassagneux
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France
| | - C Voisin
- Laboratoire Pierre Aigrain, École Normale Supérieure, PSL University, Université Paris Diderot, Sorbonne Paris Cité, Sorbonne Université, CNRS, Paris, France.
| |
Collapse
|
14
|
Grange T, Somaschi N, Antón C, De Santis L, Coppola G, Giesz V, Lemaître A, Sagnes I, Auffèves A, Senellart P. Reducing Phonon-Induced Decoherence in Solid-State Single-Photon Sources with Cavity Quantum Electrodynamics. PHYSICAL REVIEW LETTERS 2017; 118:253602. [PMID: 28696749 DOI: 10.1103/physrevlett.118.253602] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Indexed: 06/07/2023]
Abstract
Solid-state emitters are excellent candidates for developing integrated sources of single photons. Yet, phonons degrade the photon indistinguishability both through pure dephasing of the zero-phonon line and through phonon-assisted emission. Here, we study theoretically and experimentally the indistinguishability of photons emitted by a semiconductor quantum dot in a microcavity as a function of temperature. We show that a large coupling to a high quality factor cavity can simultaneously reduce the effect of both phonon-induced sources of decoherence. It first limits the effect of pure dephasing on the zero-phonon line with indistinguishabilities above 97% up to 18 K. Moreover, it efficiently redirects the phonon sidebands into the zero-phonon line and brings the indistinguishability of the full emission spectrum from 87% (24%) without cavity effect to more than 99% (76%) at 0K (20K). We provide guidelines for optimal cavity designs that further minimize the phonon-induced decoherence.
Collapse
Affiliation(s)
- T Grange
- Université Grenoble Alpes, F-38000 Grenoble, France
- Centre National de la Recherche Scientifique, Institut Néel, Nanophysique et Semiconducteurs Group, F-38000 Grenoble, France
| | - N Somaschi
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - C Antón
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - L De Santis
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
- Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - G Coppola
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - V Giesz
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - A Lemaître
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - I Sagnes
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| | - A Auffèves
- Université Grenoble Alpes, F-38000 Grenoble, France
- Centre National de la Recherche Scientifique, Institut Néel, Nanophysique et Semiconducteurs Group, F-38000 Grenoble, France
| | - P Senellart
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, UMR 9001, Université Paris-Saclay, C2N-Marcoussis, 91460 Marcoussis, France
| |
Collapse
|
15
|
Brachmann JFS, Kaupp H, Hänsch TW, Hunger D. Photothermal effects in ultra-precisely stabilized tunable microcavities. OPTICS EXPRESS 2016; 24:21205-21215. [PMID: 27607722 DOI: 10.1364/oe.24.021205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 kHz and a noise level of 1.1 × 10-13 m rms.
Collapse
|
16
|
Portalupi SL, Hornecker G, Giesz V, Grange T, Lemaître A, Demory J, Sagnes I, Lanzillotti-Kimura ND, Lanco L, Auffèves A, Senellart P. Bright Phonon-Tuned Single-Photon Source. NANO LETTERS 2015; 15:6290-6294. [PMID: 26325603 DOI: 10.1021/acs.nanolett.5b00876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Bright single photon sources have recently been obtained by inserting solid-state emitters in microcavities. Accelerating the spontaneous emission via the Purcell effect allows both high brightness and increased operation frequency. However, achieving Purcell enhancement is technologically demanding because the emitter resonance must match the cavity resonance. Here, we show that this spectral matching requirement is strongly lifted by the phononic environment of the emitter. We study a single InGaAs quantum dot coupled to a micropillar cavity. The phonon assisted emission, which hardly represents a few percent of the dot emission at a given frequency in the absence of cavity, can become the main emission channel by use of the Purcell effect. A phonon-tuned single photon source with a brightness greater than 50% is demonstrated over a detuning range covering 10 cavity line widths (0.8 nm). The same concepts applied to defects in diamonds pave the way toward ultrabright single photon sources operating at room temperature.
Collapse
Affiliation(s)
- Simone Luca Portalupi
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
| | - Gaston Hornecker
- CEA/CNRS/UJF joint team "Nanophysics and Semiconductors", Institut Néel-CNRS, BP 166, 25 rue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Valérian Giesz
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
| | - Thomas Grange
- CEA/CNRS/UJF joint team "Nanophysics and Semiconductors", Institut Néel-CNRS, BP 166, 25 rue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Aristide Lemaître
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
| | - Justin Demory
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
| | - Isabelle Sagnes
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
| | | | - Loïc Lanco
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
- Département de Physique, Université Paris Diderot , 4 rue Elsa Morante, 75013 Paris, France
| | - Alexia Auffèves
- CEA/CNRS/UJF joint team "Nanophysics and Semiconductors", Institut Néel-CNRS, BP 166, 25 rue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Pascale Senellart
- CNRS-LPN Laboratoire de Photonique et de Nanostructures, Route de Nozay , 91460 Marcoussis, France
- Département de Physique, Ecole Polytechnique , F-91128 Palaiseau, France
| |
Collapse
|