1
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, et alAn FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Chen ZY, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding XY, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wei W, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yuan CZ, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Search for a Sub-eV Sterile Neutrino Using Daya Bay's Full Dataset. PHYSICAL REVIEW LETTERS 2024; 133:051801. [PMID: 39159085 DOI: 10.1103/physrevlett.133.051801] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/21/2024] [Indexed: 08/21/2024]
Abstract
This Letter presents results of a search for the mixing of a sub-eV sterile neutrino with three active neutrinos based on the full data sample of the Daya Bay Reactor Neutrino Experiment, collected during 3158 days of detector operation, which contains 5.55×10^{6} reactor ν[over ¯]_{e} candidates identified as inverse beta-decay interactions followed by neutron capture on gadolinium. The analysis benefits from a doubling of the statistics of our previous result and from improvements of several important systematic uncertainties. No significant oscillation due to mixing of a sub-eV sterile neutrino with active neutrinos was found. Exclusion limits are set by both Feldman-Cousins and CLs methods. Light sterile neutrino mixing with sin^{2}2θ_{14}≳0.01 can be excluded at 95% confidence level in the region of 0.01 eV^{2}≲|Δm_{41}^{2}|≲0.1 eV^{2}. This result represents the world-leading constraints in the region of 2×10^{-4} eV^{2}≲|Δm_{41}^{2}|≲0.2 eV^{2}.
Collapse
Affiliation(s)
| | | | | | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
- New Cornerstone Science Laboratory, Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - H Y Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - Y X Chen
- North China Electric Power University, Beijing
| | - Z Y Chen
- Institute of High Energy Physics, Beijing
- New Cornerstone Science Laboratory, Institute of High Energy Physics, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - Y-C Cheng
- Department of Physics, National Taiwan University, Taipei
| | | | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - F S Deng
- University of Science and Technology of China, Hefei
| | | | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - K V Dugas
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | | | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | | | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | | | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | | | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | | | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
- New Cornerstone Science Laboratory, Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No.100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
- New Cornerstone Science Laboratory, Institute of High Energy Physics, Beijing
| | - S Li
- Nanjing University, Nanjing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | | | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | | | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
- The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | | | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - B Russell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Y C Tung
- Department of Physics, National Taiwan University, Taipei
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | | | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | | | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - W Wei
- Shandong University, Jinan
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | | | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - C Z Yuan
- Institute of High Energy Physics, Beijing
- New Cornerstone Science Laboratory, Institute of High Energy Physics, Beijing
| | | | - V Zavadskyi
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | | | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | | | | | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | | | - X T Zhang
- Institute of High Energy Physics, Beijing
| | | | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
2
|
Andriamirado M, Balantekin AB, Bass CD, Bergeron DE, Bernard EP, Bowden NS, Bryan CD, Carr R, Classen T, Conant AJ, Deichert G, Delgado A, Diwan MV, Dolinski MJ, Erickson A, Foust BT, Gaison JK, Galindo-Uribari A, Gilbert CE, Gokhale S, Grant C, Hans S, Hansell AB, Heeger KM, Heffron B, Jaffe DE, Jayakumar S, Ji X, Jones DC, Koblanski J, Kunkle P, Kyzylova O, LaBelle D, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Maricic J, Mendenhall MP, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Nour S, Palomino Gallo JL, Pushin DA, Qian X, Roca C, Rosero R, Searles M, Surukuchi PT, Sutanto F, Tyra MA, Venegas-Vargas D, Weatherly PB, Wilhelmi J, Woolverton A, Yeh M, Zhang C, Zhang X. Final Measurement of the ^{235}U Antineutrino Energy Spectrum with the PROSPECT-I Detector at HFIR. PHYSICAL REVIEW LETTERS 2023; 131:021802. [PMID: 37505961 DOI: 10.1103/physrevlett.131.021802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/14/2023] [Accepted: 05/11/2023] [Indexed: 07/30/2023]
Abstract
This Letter reports one of the most precise measurements to date of the antineutrino spectrum from a purely ^{235}U-fueled reactor, made with the final dataset from the PROSPECT-I detector at the High Flux Isotope Reactor. By extracting information from previously unused detector segments, this analysis effectively doubles the statistics of the previous PROSPECT measurement. The reconstructed energy spectrum is unfolded into antineutrino energy and compared with both the Huber-Mueller model and a spectrum from a commercial reactor burning multiple fuel isotopes. A local excess over the model is observed in the 5-7 MeV energy region. Comparison of the PROSPECT results with those from commercial reactors provides new constraints on the origin of this excess, disfavoring at 2.0 and 3.7 standard deviations the hypotheses that antineutrinos from ^{235}U are solely responsible and noncontributors to the excess observed at commercial reactors, respectively.
Collapse
Affiliation(s)
- M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - E P Bernard
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - R Carr
- Department of Physics, United States Naval Academy, Annapolis, Maryland 21402, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribari
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S Gokhale
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Grant
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Susquehanna University, Selinsgrove, Pennsylvania 17870, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - J Koblanski
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P Kunkle
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - D LaBelle
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - J Maricic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A M Meyer
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - R Milincic
- Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics (035-08), Temple University, 1925 N 12th Street, Philadelphia, Pennsylvania 19122-1801, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J L Palomino Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Roca
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - F Sutanto
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia PA 19104-2875, Pennsylvania, USA
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics, University of Waterloo, Waterloo, ON N2L 3G1 Ontario, Canada
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
3
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, et alAn FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Cheng J, Cheng J, Cheng YC, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dugas KV, Duyang HY, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Han Y, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Russell B, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Tung YC, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Improved Measurement of the Evolution of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2023; 130:211801. [PMID: 37295075 DOI: 10.1103/physrevlett.130.211801] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 04/27/2023] [Indexed: 06/12/2023]
Abstract
Reactor neutrino experiments play a crucial role in advancing our knowledge of neutrinos. In this Letter, the evolution of the flux and spectrum as a function of the reactor isotopic content is reported in terms of the inverse-beta-decay yield at Daya Bay with 1958 days of data and improved systematic uncertainties. These measurements are compared with two signature model predictions: the Huber-Mueller model based on the conversion method and the SM2018 model based on the summation method. The measured average flux and spectrum, as well as the flux evolution with the ^{239}Pu isotopic fraction, are inconsistent with the predictions of the Huber-Mueller model. In contrast, the SM2018 model is shown to agree with the average flux and its evolution but fails to describe the energy spectrum. Altering the predicted inverse-beta-decay spectrum from ^{239}Pu fission does not improve the agreement with the measurement for either model. The models can be brought into better agreement with the measurements if either the predicted spectrum due to ^{235}U fission is changed or the predicted ^{235}U, ^{238}U, ^{239}Pu, and ^{241}Pu spectra are changed in equal measure.
Collapse
Affiliation(s)
- F P An
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Bai
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - H Y Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- Shenzhen University, Shenzhen
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - Y-C Cheng
- Department of Physics, National Taiwan University, Taipei
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - K V Dugas
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | | | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - Y Han
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No. 100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
- The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - B Russell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Y C Tung
- Department of Physics, National Taiwan University, Taipei
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Brookhaven National Laboratory, Upton, New York 11973
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
4
|
Letourneau A, Savu V, Lhuillier D, Lasserre T, Materna T, Mention G, Mougeot X, Onillon A, Perisse L, Vivier M. Origin of the Reactor Antineutrino Anomalies in Light of a New Summation Model with Parametrized β^{-} Transitions. PHYSICAL REVIEW LETTERS 2023; 130:021801. [PMID: 36706416 DOI: 10.1103/physrevlett.130.021801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
We investigate the possible origins of the reactor antineutrino anomalies in norm and shape within the framework of a summation model where β^{-} transitions are simulated by a phenomenological model of Gamow-Teller decay strength. The general trends of divergence from the Huber-Mueller model on the antineutrino side can be reproduced in both norm and shape. From the exact electron-antineutrino correspondence of the summation model, we predict similar distortions in the electron spectra, suggesting that biases on the reference spectra of fission electrons could be the cause of the anomalies.
Collapse
Affiliation(s)
- A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - V Savu
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Lasserre
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G Mention
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - X Mougeot
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France
| | - A Onillon
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - L Perisse
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Vivier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
5
|
Almazán H, Bernard L, Blanchet A, Bonhomme A, Buck C, Chalil A, del Amo Sanchez P, El Atmani I, Labit L, Lamblin J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Materna T, Pessard H, Réal JS, Ricol JS, Roca C, Rogly R, Salagnac T, Savu V, Schoppmann S, Soldner T, Stutz A, Vialat M. STEREO neutrino spectrum of 235U fission rejects sterile neutrino hypothesis. Nature 2023; 613:257-261. [PMID: 36631644 DOI: 10.1038/s41586-022-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2023]
Abstract
Anomalies in past neutrino measurements have led to the discovery that these particles have non-zero mass and oscillate between their three flavours when they propagate. In the 2010s, similar anomalies observed in the antineutrino spectra emitted by nuclear reactors have triggered the hypothesis of the existence of a supplementary neutrino state that would be sterile, that is, not interacting by means of the weak interaction1. The STEREO experiment2-6 was designed to investigate this conjecture, which would potentially extend the standard model of particle physics. Here we present an analysis of the full set of data generated by STEREO, confirming observed anomalies while rejecting the hypothesis of a light sterile neutrino. Installed at the Institut Laue-Langevin (ILL) research reactor, STEREO accurately measures the antineutrino energy spectrum associated to the fission of 235U. The segmentation of the detector and its very short distance to the compact core are crucial properties of STEREO for our analysis. The measured antineutrino energy spectrum suggests that anomalies originate from biases in the nuclear experimental data used for the predictions7,8. Our result supports the neutrino content of the standard model and establishes a new reference for the 235U antineutrino energy spectrum. We anticipate that this result will allow progress towards finer tests of the fundamental properties of neutrinos but also to benchmark models and nuclear data of interest for reactor physics9,10 and for observations of astrophysical or geoneutrinos11,12.
Collapse
|
6
|
Marzec E, Spitz J. Neutrino decoherence and the mass hierarchy in the JUNO experiment. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.106.053007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Denton PB. Sterile Neutrino Search with MicroBooNE's Electron Neutrino Disappearance Data. PHYSICAL REVIEW LETTERS 2022; 129:061801. [PMID: 36018666 DOI: 10.1103/physrevlett.129.061801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/17/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
A sterile neutrino is a well motivated minimal new physics model that leaves an imprint in neutrino oscillations. Over the last two decades, a number of hints pointing to a sterile neutrino have emerged, many of which are pointing near m_{4}∼1 eV. Here, we show how MicroBooNE data can be used to search for electron neutrino disappearance using each of their four analysis channels. We find a hint for oscillations with the highest single channel significance of 2.4σ (using the Feldman-Cousins approach) coming from the Wire-Cell analysis and a simplified treatment of the experimental systematics. The preferred parameters are sin^{2}(2θ_{14})=0.35_{-0.16}^{+0.19} and Δm_{41}^{2}=1.25_{-0.39}^{+0.74} eV^{2}. This region of parameter space is in good agreement with existing hints from source experiments, is at a similar frequency but higher mixing than indicated by reactor antineutrinos, and is at the edge of the region allowed by solar neutrino data. Existing unanalyzed data from MicroBooNE could increase the sensitivity to the >3σ level.
Collapse
Affiliation(s)
- Peter B Denton
- High Energy Theory Group, Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
8
|
Argüelles CA, Esteban I, Hostert M, Kelly KJ, Kopp J, Machado PAN, Martinez-Soler I, Perez-Gonzalez YF. MicroBooNE and the ν_{e} Interpretation of the MiniBooNE Low-Energy Excess. PHYSICAL REVIEW LETTERS 2022; 128:241802. [PMID: 35776462 DOI: 10.1103/physrevlett.128.241802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
A new generation of neutrino experiments is testing the 4.7σ anomalous excess of electronlike events observed in MiniBooNE. This is of huge importance for particle physics, astrophysics, and cosmology, not only because of the potential discovery of physics beyond the standard model, but also because the lessons we will learn about neutrino-nucleus interactions will be crucial for the worldwide neutrino program. MicroBooNE has recently released results that appear to disfavor several explanations of the MiniBooNE anomaly. Here, we show quantitatively that MicroBooNE results, while a promising start, unquestionably do not probe the full parameter space of sterile neutrino models hinted at by MiniBooNE and other data, nor do they probe the ν_{e} interpretation of the MiniBooNE excess in a model-independent way.
Collapse
Affiliation(s)
- C A Argüelles
- Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - I Esteban
- Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - M Hostert
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2J 2W9, Canada
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
- William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - K J Kelly
- Theoretical Physics Department, CERN, Esplande des Particules, 1211 Geneva 23, Switzerland
| | - J Kopp
- Theoretical Physics Department, CERN, Esplande des Particules, 1211 Geneva 23, Switzerland
- PRISMA+ Cluster of Excellence & Mainz Institute for Theoretical Physics, Staudingerweg 7, 55128 Mainz, Germany
| | - P A N Machado
- Particle Theory Department, Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA
| | - I Martinez-Soler
- Department of Physics & Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Y F Perez-Gonzalez
- Institute for Particle Physics Phenomenology, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
9
|
Cogswell BK, Huber P. Cerium Ruthenium Low-Energy Antineutrino Measurements for Safeguarding Military Naval Reactors. PHYSICAL REVIEW LETTERS 2022; 128:241803. [PMID: 35776464 DOI: 10.1103/physrevlett.128.241803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/11/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
The recent agreement to transfer nuclear submarine reactors and technology from two nuclear-weapon states to a non-nuclear-weapon state (AUKUS deal) highlights an unsolved problem in international safeguards: how to safeguard naval reactor fuel while it is on board an operational nuclear submarine. Proposals to extend existing safeguards technologies and practices are complicated by the need for civilian international inspectors to gain access to the interior of the submarine and the reactor compartment, which raises national security concerns. In this Letter we show that implementing safeguards on submarine propulsion reactors using a low-energy antineutrino reactor-off method, between submarine patrols, can by-pass the need for onboard access all together. We find that, using inverse beta decay, detectors can achieve a timely and high level of assurance that a submarine's nuclear core has not been diverted (detector mass of around 100 kg) nor its enrichment level changed (detector mass of around 10 tons).
Collapse
Affiliation(s)
- Bernadette K Cogswell
- Center for Neutrino Physics, Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Patrick Huber
- Center for Neutrino Physics, Physics Department, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
10
|
Li YF, Xin Z. Model-independent determination of isotopic cross sections per fission for reactor antineutrinos. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.073003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
An FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, et alAn FP, Andriamirado M, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bishai M, Blyth S, Bowden NS, Bryan CD, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Classen T, Conant AJ, Cummings JP, Dalager O, Deichert G, Delgado A, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolinski MJ, Dolzhikov D, Dove J, Dvořák M, Dwyer DA, Erickson A, Foust BT, Gaison JK, Galindo-Uribarri A, Gallo JP, Gilbert CE, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, Hansell AB, He M, Heeger KM, Heffron B, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Koblanski J, Jaffe DE, Jayakumar S, Jen KL, Ji XL, Ji XP, Johnson RA, Jones DC, Kang L, Kettell SH, Kohn S, Kramer M, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Lu X, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Maricic J, Marshall C, McDonald KT, McKeown RD, Mendenhall MP, Meng Y, Meyer AM, Milincic R, Mueller PE, Mumm HP, Napolitano J, Naumov D, Naumova E, Neilson R, Nguyen TMT, Nikkel JA, Nour S, Ochoa-Ricoux JP, Olshevskiy A, Palomino JL, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Pushin DA, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Searles M, Steiner H, Sun JL, Surukuchi PT, Tmej T, Treskov K, Tse WH, Tull CE, Tyra MA, Varner RL, Venegas-Vargas D, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Weatherly PB, Wei HY, Wei LH, Wen LJ, Whisnant K, White C, Wilhelmi J, Wong HLH, Woolverton A, Worcester E, Wu DR, Wu FL, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang SQ, Zhang X, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. Joint Determination of Reactor Antineutrino Spectra from ^{235}U and ^{239}Pu Fission by Daya Bay and PROSPECT. PHYSICAL REVIEW LETTERS 2022; 128:081801. [PMID: 35275656 DOI: 10.1103/physrevlett.128.081801] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
A joint determination of the reactor antineutrino spectra resulting from the fission of ^{235}U and ^{239}Pu has been carried out by the Daya Bay and PROSPECT Collaborations. This Letter reports the level of consistency of ^{235}U spectrum measurements from the two experiments and presents new results from a joint analysis of both data sets. The measurements are found to be consistent. The combined analysis reduces the degeneracy between the dominant ^{235}U and ^{239}Pu isotopes and improves the uncertainty of the ^{235}U spectral shape to about 3%. The ^{235}U and ^{239}Pu antineutrino energy spectra are unfolded from the jointly deconvolved reactor spectra using the Wiener-SVD unfolding method, providing a data-based reference for other reactor antineutrino experiments and other applications. This is the first measurement of the ^{235}U and ^{239}Pu spectra based on the combination of experiments at low- and highly enriched uranium reactors.
Collapse
Affiliation(s)
- F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | - M Andriamirado
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- Institute of High Energy Physics, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J J Cherwinka
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin
| | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - A J Conant
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - A Delgado
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M Dvořák
- Institute of High Energy Physics, Beijing
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - M Grassi
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No.100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - J Koblanski
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York
| | - S Jayakumar
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | | | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - J Maricic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - A M Meyer
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - R Milincic
- Department of Physics & Astronomy, University of Hawaii, Honolulu, Hawaii
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - J L Palomino
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York
| | - B Roskovec
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - M Searles
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - P T Surukuchi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - D Venegas-Vargas
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee
| | - B Viren
- Brookhaven National Laboratory, Upton, New York
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - P B Weatherly
- Department of Physics, Drexel University, Philadelphia, Pennsylvania
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois
| | - J Wilhelmi
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - A Woolverton
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - F L Wu
- Nanjing University, Nanjing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X Zhang
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
12
|
Oscillations of Active Neutrinos at Short Baseline in the Model with Three Decaying Sterile Neutrinos. UNIVERSE 2022. [DOI: 10.3390/universe8020097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To study the oscillations of active neutrinos in the framework of the model with three active and three sterile neutrinos, the analytical expressions are obtained for the appearance and survival probabilities of different neutrino flavors taking into account the decaying sterile neutrinos contributions. In the framework of the considered phenomenological neutrino model, we make an interpretation of the experimentally detected XENON1T-excess of electronic recoil events in the energy range of 1–7 keV as a result of the radiative decay of a sterile neutrino with a mass of about 7 keV. Estimations of the decay parameters for the radiative decay of Majorana sterile neutrinos due to the magnetic dipole transitions into the active neutrino states are made. The value of the parameter of active and sterile neutrinos mixing has been derived from the Baksan Experiment on Sterile Transitions (BEST) experimental data. The graphical dependences for the probabilities of appearance and survival of muonic and electron neutrinos at short baseline (SBL) are presented with the use of that gained from the experimental data estimations of the model parameters.
Collapse
|
13
|
Berryman JM, Delgadillo LA, Huber P. Future searches for light sterile neutrinos at nuclear reactors. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.035002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Revealing Neutrino Oscillations Unknowns with Reactor and Long-Baseline Accelerator Experiments. UNIVERSE 2022. [DOI: 10.3390/universe8020081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactor and accelerator-based neutrino experiments have played a critical role in the understanding of neutrino oscillations and are currently dominating the high-precision measurements of neutrino oscillation parameters. The discovery of a non-zero θ13 by the reactor experiments has opened the possibility of observing CP violation in the lepton sector by long-baseline accelerator experiments. The current knowledge of the neutrino oscillation parameters will be expanded upon in the near future through more precise measurements, including the discovery of the neutrino mass ordering and the CP-violating phase. This review summarizes the distinct and complementary approach of reactor and accelerator-based neutrino experiments to measure neutrino oscillations. The main scientific achievements of the Double Chooz reactor neutrino experiment and the science program to be developed by the DUNE long-baseline neutrino experiment with the world’s most intense neutrino beam are presented in this article. Spain has strongly contributed to these results and will continue to play a prominent role in the neutrino oscillation program in the coming years.
Collapse
|
15
|
Hagstotz S, de Salas PF, Gariazzo S, Pastor S, Gerbino M, Lattanzi M, Vagnozzi S, Freese K. Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches. Int J Clin Exp Med 2021. [DOI: 10.1103/physrevd.104.123524] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Novikova GY, Morgalyuk VP, Yanovich EA. Metal (Gd, In, Nd, Zr) β-Diketonates and Carboxylates for Designing Element-Containing Liquid Organic Scintillators. RUSS J INORG CHEM+ 2021. [DOI: 10.1134/s0036023621080180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Abstract
Borexino is a 280-ton liquid scintillator detector located at the Laboratori Nazionali del Gran Sasso in Italy. Since the start of its data-taking in May 2007, it has provided several measurements of low-energy neutrinos from various sources. At the base of its success lie unprecedented levels of radio-purity and extensive thermal stabilization, both resulting from a years-long effort of the collaboration. Solar neutrinos, emitted in the Hydrogen-to-Helium fusion in the solar core, are important for the understanding of our star, as well as neutrino properties. Borexino is the only experiment that has performed a complete spectroscopy of the pp chain solar neutrinos (with the exception of the hep neutrinos contributing to the total flux at 10−5 level), through the detection of pp, 7Be, pep, and 8B solar neutrinos and has experimentally confirmed the existence of the CNO fusion cycle in the Sun. Borexino has also detected geoneutrinos, antineutrinos from the decays of long-lived radioactive elements inside the Earth, that can be exploited as a new and unique tool to study our planet. This paper reviews the most recent Borexino results on solar and geoneutrinos, from highlighting the key elements of the analyses up to the discussion and interpretation of the results for neutrino, solar, and geophysics.
Collapse
|
18
|
Almazán H, Bernard L, Blanchet A, Bonhomme A, Buck C, Sanchez PDA, Atmani IE, Haser J, Labit L, Lamblin J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Materna T, Minotti A, Onillon A, Pessard H, Réal JS, Roca C, Rogly R, Salagnac T, Savu V, Schoppmann S, Sergeyeva V, Soldner T, Stutz A, Vialat M. Accurate Measurement of the Electron Antineutrino Yield of ^{235}U Fissions from the STEREO Experiment with 119 Days of Reactor-On Data. PHYSICAL REVIEW LETTERS 2020; 125:201801. [PMID: 33258621 DOI: 10.1103/physrevlett.125.201801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/06/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
We report a measurement of the antineutrino rate from the fission of ^{235}U with the STEREO detector using 119 days of reactor turned on. In our analysis, we perform several detailed corrections and achieve the most precise single measurement at reactors with highly enriched ^{235}U fuel. We measure an IBD cross section per fission of σ_{f}=(6.34±0.06[stat]±0.15[sys]±0.15[model])×10^{-43} cm^{2}/fission and observe a rate deficit of (5.2±0.8[stat]±2.3[sys]±2.3[model])% compared to the model, consistent with the deficit of the world average. Testing ^{235}U as the sole source of the deficit, we find a tension between the results of lowly and highly enriched ^{235}U fuel of 2.1 standard deviations.
Collapse
Affiliation(s)
- H Almazán
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Bernard
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Blanchet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Bonhomme
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C Buck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Del Amo Sanchez
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - I El Atmani
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - J Haser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Labit
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - J Lamblin
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Licciardi
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Lindner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Minotti
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Onillon
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - H Pessard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - J-S Réal
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - C Roca
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - R Rogly
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Salagnac
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - V Savu
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - S Schoppmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Sergeyeva
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - T Soldner
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - A Stutz
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - M Vialat
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| |
Collapse
|
19
|
Choi JH, Jang HI, Jang JS, Jeon SH, Joo KK, Ju K, Jung DE, Kim JG, Kim JH, Kim JY, Kim SB, Kim SY, Kim W, Kwon E, Lee DH, Lee HG, Lim IT, Moon DH, Pac MY, Seo H, Seo JW, Shin CD, Yang BS, Yoo J, Yoon SG, Yeo IS, Yu I. Search for Sub-eV Sterile Neutrinos at RENO. PHYSICAL REVIEW LETTERS 2020; 125:191801. [PMID: 33216576 DOI: 10.1103/physrevlett.125.191801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
We report a search result for a light sterile neutrino oscillation with roughly 2200 live days of data in the RENO experiment. The search is performed by electron antineutrino (ν[over ¯]_{e}) disappearance taking place between six 2.8 GW_{th} reactors and two identical detectors located at 294 m (near) and 1383 m (far) from the center of the reactor array. A spectral comparison between near and far detectors can explore reactor ν[over ¯]_{e} oscillations to a light sterile neutrino. An observed spectral difference is found to be consistent with that of the three-flavor oscillation model. This yields limits on sin^{2}2θ_{14} in the 10^{-4}≲|Δm_{41}^{2}|≲0.5 eV^{2} region, free from reactor ν[over ¯]_{e} flux and spectrum uncertainties. The RENO result provides the most stringent limits on sterile neutrino mixing at |Δm_{41}^{2}|≲0.002 eV^{2} using the ν[over ¯]_{e} disappearance channel.
Collapse
Affiliation(s)
- J H Choi
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - H I Jang
- Department of Fire Safety, Seoyeong University, Gwangju 61268, Korea
| | - J S Jang
- GIST College, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - S H Jeon
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - K K Joo
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - K Ju
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - D E Jung
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J G Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J H Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J Y Kim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - S B Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - S Y Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - W Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - E Kwon
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - D H Lee
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - H G Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - I T Lim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - D H Moon
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - M Y Pac
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J W Seo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - C D Shin
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - B S Yang
- Institute for Basic Science, Daejeon 34047, Korea
| | - J Yoo
- Department of Physics, KAIST, Daejeon 34141, Korea
- Institute for Basic Science, Daejeon 34047, Korea
| | - S G Yoon
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - I S Yeo
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - I Yu
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
20
|
Aartsen MG, Abbasi R, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Alispach C, Amin NM, Andeen K, Anderson T, Ansseau I, Anton G, Argüelles C, Auffenberg J, Axani S, Bagherpour H, Bai X, Balagopal A, Barbano A, Barwick SW, Bastian B, Basu V, Baum V, Baur S, Bay R, Beatty JJ, Becker KH, Becker Tjus J, BenZvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bohm C, Böser S, Botner O, Böttcher J, Bourbeau E, Bourbeau J, Bradascio F, Braun J, Bron S, Brostean-Kaiser J, Burgman A, Buscher J, Busse RS, Carver T, Chen C, Cheung E, Chirkin D, Choi S, Clark BA, Clark K, Classen L, Coleman A, Collin GH, Conrad JM, Coppin P, Correa P, Cowen DF, Cross R, Dave P, De Clercq C, DeLaunay JJ, Dembinski H, Deoskar K, De Ridder S, Desai A, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Dharani S, Diaz A, Díaz-Vélez JC, Dujmovic H, Dunkman M, DuVernois MA, Dvorak E, Ehrhardt T, Eller P, Engel R, Evenson PA, Fahey S, Fazely AR, Fedynitch A, Felde J, Fienberg AT, Filimonov K, Finley C, Fox D, Franckowiak A, Friedman E, Fritz A, Gaisser TK, et alAartsen MG, Abbasi R, Ackermann M, Adams J, Aguilar JA, Ahlers M, Ahrens M, Alispach C, Amin NM, Andeen K, Anderson T, Ansseau I, Anton G, Argüelles C, Auffenberg J, Axani S, Bagherpour H, Bai X, Balagopal A, Barbano A, Barwick SW, Bastian B, Basu V, Baum V, Baur S, Bay R, Beatty JJ, Becker KH, Becker Tjus J, BenZvi S, Berley D, Bernardini E, Besson DZ, Binder G, Bindig D, Blaufuss E, Blot S, Bohm C, Böser S, Botner O, Böttcher J, Bourbeau E, Bourbeau J, Bradascio F, Braun J, Bron S, Brostean-Kaiser J, Burgman A, Buscher J, Busse RS, Carver T, Chen C, Cheung E, Chirkin D, Choi S, Clark BA, Clark K, Classen L, Coleman A, Collin GH, Conrad JM, Coppin P, Correa P, Cowen DF, Cross R, Dave P, De Clercq C, DeLaunay JJ, Dembinski H, Deoskar K, De Ridder S, Desai A, Desiati P, de Vries KD, de Wasseige G, de With M, DeYoung T, Dharani S, Diaz A, Díaz-Vélez JC, Dujmovic H, Dunkman M, DuVernois MA, Dvorak E, Ehrhardt T, Eller P, Engel R, Evenson PA, Fahey S, Fazely AR, Fedynitch A, Felde J, Fienberg AT, Filimonov K, Finley C, Fox D, Franckowiak A, Friedman E, Fritz A, Gaisser TK, Gallagher J, Ganster E, Garrappa S, Gerhardt L, Glauch T, Glüsenkamp T, Goldschmidt A, Gonzalez JG, Grant D, Grégoire T, Griffith Z, Griswold S, Günder M, Gündüz M, Haack C, Hallgren A, Halliday R, Halve L, Halzen F, Hanson K, Hardin J, Haungs A, Hauser S, Hebecker D, Heereman D, Heix P, Helbing K, Hellauer R, Henningsen F, Hickford S, Hignight J, Hill GC, Hoffman KD, Hoffmann R, Hoinka T, Hokanson-Fasig B, Hoshina K, Huang F, Huber M, Huber T, Hultqvist K, Hünnefeld M, Hussain R, In S, Iovine N, Ishihara A, Jansson M, Japaridze GS, Jeong M, Jones BJP, Jonske F, Joppe R, Kang D, Kang W, Kappes A, Kappesser D, Karg T, Karl M, Karle A, Katz U, Kauer M, Kellermann M, Kelley JL, Kheirandish A, Kim J, Kintscher T, Kiryluk J, Kittler T, Klein SR, Koirala R, Kolanoski H, Köpke L, Kopper C, Kopper S, Koskinen DJ, Koundal P, Kowalski M, Krings K, Krückl G, Kulacz N, Kurahashi N, Kyriacou A, Lanfranchi JL, Larson MJ, Lauber F, Lazar JP, Leonard K, Leszczyńska A, Li Y, Liu QR, Lohfink E, Lozano Mariscal CJ, Lu L, Lucarelli F, Ludwig A, Lünemann J, Luszczak W, Lyu Y, Ma WY, Madsen J, Maggi G, Mahn KBM, Makino Y, Mallik P, Mancina S, Mariş IC, Maruyama R, Mase K, Maunu R, McNally F, Meagher K, Medici M, Medina A, Meier M, Meighen-Berger S, Merz J, Meures T, Micallef J, Mockler D, Momenté G, Montaruli T, Moore RW, Morse R, Moulai M, Muth P, Nagai R, Naumann U, Neer G, Nguyen LV, Niederhausen H, Nisa MU, Nowicki SC, Nygren DR, Obertacke Pollmann A, Oehler M, Olivas A, O'Murchadha A, O'Sullivan E, Palczewski T, Pandya H, Pankova DV, Park N, Parker GK, Paudel EN, Peiffer P, Pérez de Los Heros C, Philippen S, Pieloth D, Pieper S, Pinat E, Pizzuto A, Plum M, Popovych Y, Porcelli A, Prado Rodriguez M, Price PB, Przybylski GT, Raab C, Raissi A, Rameez M, Rauch L, Rawlins K, Rea IC, Rehman A, Reimann R, Relethford B, Renschler M, Renzi G, Resconi E, Rhode W, Richman M, Riedel B, Robertson S, Rongen M, Rott C, Ruhe T, Ryckbosch D, Rysewyk Cantu D, Safa I, Sanchez Herrera SE, Sandrock A, Sandroos J, Santander M, Sarkar S, Sarkar S, Satalecka K, Scharf M, Schaufel M, Schieler H, Schlunder P, Schmidt T, Schneider A, Schneider J, Schröder FG, Schumacher L, Sclafani S, Seckel D, Seunarine S, Shefali S, Silva M, Smithers B, Snihur R, Soedingrekso J, Soldin D, Song M, Spiczak GM, Spiering C, Stachurska J, Stamatikos M, Stanev T, Stein R, Stettner J, Steuer A, Stezelberger T, Stokstad RG, Stößl A, Strotjohann NL, Stürwald T, Stuttard T, Sullivan GW, Taboada I, Tenholt F, Ter-Antonyan S, Terliuk A, Tilav S, Tollefson K, Tomankova L, Tönnis C, Toscano S, Tosi D, Trettin A, Tselengidou M, Tung CF, Turcati A, Turcotte R, Turley CF, Ty B, Unger E, Unland Elorrieta MA, Usner M, Vandenbroucke J, Van Driessche W, van Eijk D, van Eijndhoven N, Vannerom D, van Santen J, Verpoest S, Vraeghe M, Walck C, Wallace A, Wallraff M, Watson TB, Weaver C, Weindl A, Weiss MJ, Weldert J, Wendt C, Werthebach J, Whelan BJ, Whitehorn N, Wiebe K, Wiebusch CH, Williams DR, Wills L, Wolf M, Wood TR, Woschnagg K, Wrede G, Wulff J, Xu XW, Xu Y, Yanez JP, Yodh G, Yoshida S, Yuan T, Zhang Z, Zöcklein M. eV-Scale Sterile Neutrino Search Using Eight Years of Atmospheric Muon Neutrino Data from the IceCube Neutrino Observatory. PHYSICAL REVIEW LETTERS 2020; 125:141801. [PMID: 33064514 DOI: 10.1103/physrevlett.125.141801] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
The results of a 3+1 sterile neutrino search using eight years of data from the IceCube Neutrino Observatory are presented. A total of 305 735 muon neutrino events are analyzed in reconstructed energy-zenith space to test for signatures of a matter-enhanced oscillation that would occur given a sterile neutrino state with a mass-squared differences between 0.01 and 100 eV^{2}. The best-fit point is found to be at sin^{2}(2θ_{24})=0.10 and Δm_{41}^{2}=4.5 eV^{2}, which is consistent with the no sterile neutrino hypothesis with a p value of 8.0%.
Collapse
Affiliation(s)
- M G Aartsen
- Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - R Abbasi
- Department of Physics, Loyola University Chicago, Chicago, Illinois 60660, USA
| | | | - J Adams
- Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - J A Aguilar
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - M Ahlers
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - M Ahrens
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - C Alispach
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | - N M Amin
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - K Andeen
- Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - T Anderson
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - I Ansseau
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - G Anton
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - C Argüelles
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J Auffenberg
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - S Axani
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - H Bagherpour
- Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - X Bai
- Physics Department, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - A Balagopal
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - A Barbano
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | - S W Barwick
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | | | - V Basu
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - V Baum
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - S Baur
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - R Bay
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - J J Beatty
- Department of Astronomy, Ohio State University, Columbus, Ohio 43210, USA
- Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - K-H Becker
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - J Becker Tjus
- Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - S BenZvi
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - D Berley
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | | | - D Z Besson
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - G Binder
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - D Bindig
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - E Blaufuss
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - S Blot
- DESY, D-15738 Zeuthen, Germany
| | - C Bohm
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - S Böser
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - O Botner
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - J Böttcher
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - E Bourbeau
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - J Bourbeau
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | - J Braun
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S Bron
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | | | - A Burgman
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - J Buscher
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - R S Busse
- Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - T Carver
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | - C Chen
- School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - E Cheung
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - D Chirkin
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S Choi
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - B A Clark
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - K Clark
- SNOLAB, 1039 Regional Road 24, Creighton Mine 9, Lively, Ontario P3Y 1N2, Canada
| | - L Classen
- Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - A Coleman
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - G H Collin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J M Conrad
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - P Coppin
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - P Correa
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - D F Cowen
- Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - R Cross
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - P Dave
- School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - C De Clercq
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - J J DeLaunay
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - H Dembinski
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - K Deoskar
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - S De Ridder
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - A Desai
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - P Desiati
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - K D de Vries
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - G de Wasseige
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - M de With
- Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| | - T DeYoung
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Dharani
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - A Diaz
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - J C Díaz-Vélez
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - H Dujmovic
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - M Dunkman
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M A DuVernois
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - E Dvorak
- Physics Department, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - T Ehrhardt
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - P Eller
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - R Engel
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - P A Evenson
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - S Fahey
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - A R Fazely
- Department of Physics, Southern University, Baton Rouge, Lousiana 70813, USA
| | - A Fedynitch
- Institute for Cosmic Ray Research, the University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8582, Japan
| | - J Felde
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - A T Fienberg
- Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - K Filimonov
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - C Finley
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - D Fox
- Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | - E Friedman
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - A Fritz
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - T K Gaisser
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - J Gallagher
- Department of Astronomy, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - E Ganster
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | | | - L Gerhardt
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - T Glauch
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - T Glüsenkamp
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - A Goldschmidt
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - J G Gonzalez
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - D Grant
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - T Grégoire
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Z Griffith
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S Griswold
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
| | - M Günder
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - M Gündüz
- Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - C Haack
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - A Hallgren
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - R Halliday
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - L Halve
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - F Halzen
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - K Hanson
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J Hardin
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - A Haungs
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - S Hauser
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - D Hebecker
- Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| | - D Heereman
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - P Heix
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - K Helbing
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - R Hellauer
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - F Henningsen
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - S Hickford
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - J Hignight
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - G C Hill
- Department of Physics, University of Adelaide, Adelaide 5005, Australia
| | - K D Hoffman
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - R Hoffmann
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - T Hoinka
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - B Hokanson-Fasig
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - K Hoshina
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - F Huang
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M Huber
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - T Huber
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
- DESY, D-15738 Zeuthen, Germany
| | - K Hultqvist
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - M Hünnefeld
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - R Hussain
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S In
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - N Iovine
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - A Ishihara
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - M Jansson
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - G S Japaridze
- CTSPS, Clark-Atlanta University, Atlanta, Georgia 30314, USA
| | - M Jeong
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - B J P Jones
- Department of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, Texas 76019, USA
| | - F Jonske
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - R Joppe
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - D Kang
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - W Kang
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - A Kappes
- Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - D Kappesser
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - T Karg
- DESY, D-15738 Zeuthen, Germany
| | - M Karl
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - A Karle
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - U Katz
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - M Kauer
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - M Kellermann
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - J L Kelley
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - A Kheirandish
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | | | - J Kiryluk
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - T Kittler
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - S R Klein
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - R Koirala
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - H Kolanoski
- Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
| | - L Köpke
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - C Kopper
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - S Kopper
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - D J Koskinen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - P Koundal
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - M Kowalski
- Institut für Physik, Humboldt-Universität zu Berlin, D-12489 Berlin, Germany
- DESY, D-15738 Zeuthen, Germany
| | - K Krings
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - G Krückl
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - N Kulacz
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - N Kurahashi
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - A Kyriacou
- Department of Physics, University of Adelaide, Adelaide 5005, Australia
| | - J L Lanfranchi
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - M J Larson
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - F Lauber
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - J P Lazar
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - K Leonard
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - A Leszczyńska
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - Y Li
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Q R Liu
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - E Lohfink
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - C J Lozano Mariscal
- Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - L Lu
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - F Lucarelli
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | - A Ludwig
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - J Lünemann
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - W Luszczak
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Y Lyu
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - W Y Ma
- DESY, D-15738 Zeuthen, Germany
| | - J Madsen
- Department of Physics, University of Wisconsin, River Falls, Wisconsin 54022, USA
| | - G Maggi
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - K B M Mahn
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Y Makino
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - P Mallik
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - S Mancina
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - I C Mariş
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - R Maruyama
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - K Mase
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - R Maunu
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - F McNally
- Department of Physics, Mercer University, Macon, Georgia 31207-0001, USA
| | - K Meagher
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - M Medici
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - A Medina
- Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - M Meier
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - S Meighen-Berger
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - J Merz
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - T Meures
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - J Micallef
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - D Mockler
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - G Momenté
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - T Montaruli
- Département de physique nucléaire et corpusculaire, Université de Genève, CH-1211 Genève, Switzerland
| | - R W Moore
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - R Morse
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - M Moulai
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - P Muth
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - R Nagai
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - U Naumann
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - G Neer
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - L V Nguyen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - H Niederhausen
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - M U Nisa
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - S C Nowicki
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - D R Nygren
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | - M Oehler
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - A Olivas
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - A O'Murchadha
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - E O'Sullivan
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - T Palczewski
- Department of Physics, University of California, Berkeley, California 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - H Pandya
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - D V Pankova
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - N Park
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - G K Parker
- Department of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, Texas 76019, USA
| | - E N Paudel
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - P Peiffer
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - C Pérez de Los Heros
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - S Philippen
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - D Pieloth
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - S Pieper
- Department of Physics, University of Wuppertal, D-42119 Wuppertal, Germany
| | - E Pinat
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - A Pizzuto
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - M Plum
- Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, USA
| | - Y Popovych
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - A Porcelli
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - M Prado Rodriguez
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - P B Price
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - G T Przybylski
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - C Raab
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - A Raissi
- Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - M Rameez
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - L Rauch
- DESY, D-15738 Zeuthen, Germany
| | - K Rawlins
- Department of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508, USA
| | - I C Rea
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - A Rehman
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - R Reimann
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - B Relethford
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - M Renschler
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - G Renzi
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - E Resconi
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - W Rhode
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - M Richman
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - B Riedel
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S Robertson
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - M Rongen
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - C Rott
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - T Ruhe
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - D Ryckbosch
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - D Rysewyk Cantu
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - I Safa
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - S E Sanchez Herrera
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - A Sandrock
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - J Sandroos
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - M Santander
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - S Sarkar
- Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - S Sarkar
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | | | - M Scharf
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - M Schaufel
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - H Schieler
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - P Schlunder
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - T Schmidt
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - A Schneider
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J Schneider
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - F G Schröder
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - L Schumacher
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - S Sclafani
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - D Seckel
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - S Seunarine
- Department of Physics, University of Wisconsin, River Falls, Wisconsin 54022, USA
| | - S Shefali
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - M Silva
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - B Smithers
- Department of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, Texas 76019, USA
| | - R Snihur
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J Soedingrekso
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - D Soldin
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - M Song
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - G M Spiczak
- Department of Physics, University of Wisconsin, River Falls, Wisconsin 54022, USA
| | | | | | - M Stamatikos
- Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - T Stanev
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - R Stein
- DESY, D-15738 Zeuthen, Germany
| | - J Stettner
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - A Steuer
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - T Stezelberger
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - R G Stokstad
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - A Stößl
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | | | - T Stürwald
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - T Stuttard
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - G W Sullivan
- Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - I Taboada
- School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - F Tenholt
- Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - S Ter-Antonyan
- Department of Physics, Southern University, Baton Rouge, Lousiana 70813, USA
| | | | - S Tilav
- Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - K Tollefson
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - L Tomankova
- Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - C Tönnis
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, Korea
| | - S Toscano
- Université Libre de Bruxelles, Science Faculty CP230, B-1050 Brussels, Belgium
| | - D Tosi
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | - M Tselengidou
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - C F Tung
- School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A Turcati
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - R Turcotte
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - C F Turley
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - B Ty
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - E Unger
- Department of Physics and Astronomy, Uppsala University, Box 516, S-75120 Uppsala, Sweden
| | - M A Unland Elorrieta
- Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - M Usner
- DESY, D-15738 Zeuthen, Germany
| | - J Vandenbroucke
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - W Van Driessche
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - D van Eijk
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - N van Eijndhoven
- Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
| | - D Vannerom
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | - S Verpoest
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - M Vraeghe
- Department of Physics and Astronomy, University of Gent, B-9000 Gent, Belgium
| | - C Walck
- Oskar Klein Centre and Department of Physics, Stockholm University, SE-10691 Stockholm, Sweden
| | - A Wallace
- Department of Physics, University of Adelaide, Adelaide 5005, Australia
| | - M Wallraff
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - T B Watson
- Department of Physics, University of Texas at Arlington, 502 Yates Street, Science Hall Room 108, Box 19059, Arlington, Texas 76019, USA
| | - C Weaver
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - A Weindl
- Karlsruhe Institute of Technology, Institut für Kernphysik, D-76021 Karlsruhe, Germany
| | - M J Weiss
- Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - J Weldert
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - C Wendt
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - J Werthebach
- Department of Physics, TU Dortmund University, D-44221 Dortmund, Germany
| | - B J Whelan
- Department of Physics, University of Adelaide, Adelaide 5005, Australia
| | - N Whitehorn
- Department of Physics and Astronomy, UCLA, Los Angeles, California 90095, USA
| | - K Wiebe
- Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz, Germany
| | - C H Wiebusch
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| | - D R Williams
- Department of Physics and Astronomy, University of Alabama, Tuscaloosa, Alabama 35487, USA
| | - L Wills
- Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, USA
| | - M Wolf
- Physik-department, Technische Universität München, D-85748 Garching, Germany
| | - T R Wood
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - K Woschnagg
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - G Wrede
- Erlangen Centre for Astroparticle Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - J Wulff
- Fakultät für Physik & Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - X W Xu
- Department of Physics, Southern University, Baton Rouge, Lousiana 70813, USA
| | - Y Xu
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - J P Yanez
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - G Yodh
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - S Yoshida
- Department of Physics and Institute for Global Prominent Research, Chiba University, Chiba 263-8522, Japan
| | - T Yuan
- Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Z Zhang
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA
| | - M Zöcklein
- III. Physikalisches Institut, RWTH Aachen University, D-52056 Aachen, Germany
| |
Collapse
|
21
|
Almazán H, Bernard L, Blanchet A, Bonhomme A, Buck C, del Amo Sanchez P, El Atmani I, Haser J, Kandzia F, Kox S, Labit L, Lamblin J, Letourneau A, Lhuillier D, Licciardi M, Lindner M, Materna T, Minotti A, Pessard H, Réal JS, Roca C, Rogly R, Salagnac T, Savu V, Schoppmann S, Sergeyeva V, Soldner T, Stutz A, Vialat M. Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.052002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
22
|
Improving the energy resolution of the reactor antineutrino energy reconstruction with positron direction. RADIATION DETECTION TECHNOLOGY AND METHODS 2020. [DOI: 10.1007/s41605-020-00191-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Behera S, Mishra D, Pant L. Active-sterile neutrino mixing constraints using reactor antineutrinos with the ISMRAN setup. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.102.013002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Cui Y, Yu J, de Roeck A, Sousa A, de Gouvea A, Denton P, Machado PAN. New Opportunities at the Next-Generation Neutrino Experiments (Part 1: BSM Neutrino Physics and Dark Matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:124201. [PMID: 32541096 DOI: 10.1088/1361-6633/ab9d12] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
With the advent of a new generation of neutrino experiments which leverage high-intensity neutrino beams for precision neutrino oscillation parameter and for CP violation phase measurements, it is timely to explore physics topics beyond the standard neutrino-related physics. Given that beyond the standard model (BSM) physics phenomena have been mostly sought at high-energy regimes, such as the LHC at CERN, the exploration of BSM physics in neutrino experiments will enable complementary measurements at the energy regimes that balance that of the LHC. This is in concert with new ideas for high-intensity beams for fixed target and beam-dump experiments world-wide. The combination of the high intensity beam facilities and large mass detectors with highly precise track and energy measurements, excellent timing resolution, and low energy thresholds will help make BSM physics reachable even in low energy regimes in accelerator-based experiments and searches for BSM phenomena from cosmogenic origin. Therefore, it is conceivable that BSM topics could be the dominant physics topics in the foreseeable future. In this spirit, this paper provides a review of the current theory landscape theory in neutrino experiments in two selected areas of the BSM topics - dark matter and neutrino related BSM - and summarizes the current results from existing neutrino experiments for benchmark. This paper then provides a review of upcoming neutrino experiments and their capabilities to set the foundation for potential reach in BSM physics in the two themes. One of the most important outcomes of this paper is to ensure theoretical and simulation tools exist to perform studies of these new areas of physics from the first day of the experiments, such as DUNE and Hyper-K. Tasks to accomplish this goal, and the time line for them to be completed and tested to become reliable tools in a timely fashion are also discussed.
Collapse
Affiliation(s)
- Yanou Cui
- Physics and Astronomy, University of California Riverside, 900 University Ave, Riverside, California, 92521-9800, UNITED STATES
| | - Jaehoon Yu
- University of Texas at Arlington, Arlington, Texas, UNITED STATES
| | - Albert de Roeck
- Physics Division, European Organization for Nuclear Research, CH-1211 Geneva 23, CERN, Geneva 23, Zwitserland, 1211, SWITZERLAND
| | - Alex Sousa
- University of Cincinnati, Cincinnati, Ohio, UNITED STATES
| | - Andre de Gouvea
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3112, USA, Evanston, Illinois, UNITED STATES
| | - Peter Denton
- Brookhaven National Laboratory, Upton, New York, UNITED STATES
| | - Pedro A N Machado
- Fermi National Accelerator Laboratory, Batavia, Illinois, UNITED STATES
| |
Collapse
|
25
|
Present and Future Contributions of Reactor Experiments to Mass Ordering and Neutrino Oscillation Studies. UNIVERSE 2020. [DOI: 10.3390/universe6040052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
After a long a glorious history, marked by the first direct proofs of neutrino existence and of the mixing between the first and third neutrino generations, the reactor antineutrino experiments are still well alive and will continue to give important contributions to the development of elementary particle physics and astrophysics. In parallel to the SBL (short baseline) experiments, that will be dedicated mainly to the search for sterile neutrinos, a new kind of experiments will start playing an important role: reactor experiments with a “medium” value, around 50 km, of the baseline, somehow in the middle between the SBL and the LBL (long baselines), like KamLAND, which in the recent past gave essential contributions to the developments of neutrino physics. These new medium baseline reactor experiments can be very important, mainly for the study of neutrino mass ordering. The first example of this kind, the liquid scintillator JUNO experiment, characterized by a very high mass and an unprecedented energy resolution, will soon start data collecting in China. Its main aspects are discussed here, together with its potentialities for what concerns the mass ordering investigation and also the other issues that can be studied with this detector, spanning from the accurate oscillation parameter determination to the study of solar neutrinos, geoneutrinos, atmospheric neutrinos and neutrinos emitted by supernovas and to the search for signals of potential Lorentz invariance violation.
Collapse
|
26
|
Abstract
Several anomalies observed in short-baseline neutrino experiments suggest the existence of new light sterile neutrino species. In this review, we describe the potential role of long-baseline experiments in the searches of sterile neutrino properties and, in particular, the new CP-violation phases that appear in the enlarged 3 + 1 scheme. We also assess the impact of light sterile states on the discovery potential of long-baseline experiments of important targets such as the standard 3-flavor CP violation, the neutrino mass hierarchy, and the octant of θ 23 .
Collapse
|
27
|
Berryman JM, Huber P. Reevaluating reactor antineutrino anomalies with updated flux predictions. Int J Clin Exp Med 2020. [DOI: 10.1103/physrevd.101.015008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Adey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Dash N, Deng FS, Ding YY, Diwan MV, Dohnal T, Dove J, Dvořák M, Dwyer DA, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Lu C, Lu HQ, Lu JS, Luk KB, Ma XB, et alAdey D, An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Cao D, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Chukanov A, Cummings JP, Dash N, Deng FS, Ding YY, Diwan MV, Dohnal T, Dove J, Dvořák M, Dwyer DA, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Koerner LW, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li C, Li F, Li HL, Li QJ, Li S, Li SC, Li SJ, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu Y, Liu YH, Lu C, Lu HQ, Lu JS, Luk KB, Ma XB, Ma XY, Ma YQ, Marshall C, Martinez Caicedo DA, McDonald KT, McKeown RD, Mitchell I, Mora Lepin L, Napolitano J, Naumov D, Naumova E, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Pec V, Peng JC, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun JL, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Wong SCF, Worcester E, Wu Q, Wu WJ, Xia DM, Xing ZZ, Xu JL, Xue T, Yang CG, Yang L, Yang MS, Yang YZ, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang CC, Zhang FY, Zhang HH, Zhang JW, Zhang QM, Zhang R, Zhang XF, Zhang XT, Zhang YM, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhou L, Zhuang HL, Zou JH. Extraction of the ^{235}U and ^{239}Pu Antineutrino Spectra at Daya Bay. PHYSICAL REVIEW LETTERS 2019; 123:111801. [PMID: 31573238 DOI: 10.1103/physrevlett.123.111801] [Show More Authors] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 08/04/2019] [Indexed: 06/10/2023]
Abstract
This Letter reports the first extraction of individual antineutrino spectra from ^{235}U and ^{239}Pu fission and an improved measurement of the prompt energy spectrum of reactor antineutrinos at Daya Bay. The analysis uses 3.5×10^{6} inverse beta-decay candidates in four near antineutrino detectors in 1958 days. The individual antineutrino spectra of the two dominant isotopes, ^{235}U and ^{239}Pu, are extracted using the evolution of the prompt spectrum as a function of the isotope fission fractions. In the energy window of 4-6 MeV, a 7% (9%) excess of events is observed for the ^{235}U (^{239}Pu) spectrum compared with the normalized Huber-Mueller model prediction. The significance of discrepancy is 4.0σ for ^{235}U spectral shape compared with the Huber-Mueller model prediction. The shape of the measured inverse beta-decay prompt energy spectrum disagrees with the prediction of the Huber-Mueller model at 5.3σ. In the energy range of 4-6 MeV, a maximal local discrepancy of 6.3σ is observed.
Collapse
Affiliation(s)
- D Adey
- Institute of High Energy Physics, Beijing
| | - F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai
| | | | - H R Band
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - D Cao
- Nanjing University, Nanjing
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Shenzhen University, Shenzhen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- Institute of High Energy Physics, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | - A Chukanov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | | | - N Dash
- Institute of High Energy Physics, Beijing
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - M Dvořák
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - A Higuera
- Department of Physics, University of Houston, Houston, Texas 77204
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | | | - Y B Huang
- Institute of High Energy Physics, Beijing
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - L W Koerner
- Department of Physics, University of Houston, Houston, Texas 77204
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - C Li
- Shandong University, Jinan
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S J Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Y Liu
- Shandong University, Jinan
| | | | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - J S Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - I Mitchell
- Department of Physics, University of Houston, Houston, Texas 77204
| | - L Mora Lepin
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J P Ochoa-Ricoux
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - V Pec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - L Pinsky
- Department of Physics, University of Houston, Houston, Texas 77204
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - W Wang
- Nanjing University, Nanjing
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - S C F Wong
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - M S Yang
- Institute of High Energy Physics, Beijing
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - C C Zhang
- Institute of High Energy Physics, Beijing
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | | | - X F Zhang
- Institute of High Energy Physics, Beijing
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y M Zhang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
29
|
Berryman JM. Constraining sterile neutrino cosmology with terrestrial oscillation experiments. Int J Clin Exp Med 2019. [DOI: 10.1103/physrevd.100.023540] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Ashenfelter J, Balantekin AB, Band HR, Bass CD, Bergeron DE, Berish D, Bowden NS, Brodsky JP, Bryan CD, Cherwinka JJ, Classen T, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Hackett BT, Hans S, Hansell AB, Heeger KM, Insler J, Jaffe DE, Ji X, Jones DC, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Surukuchi PT, Telles AB, Tyra MA, Varner RL, Viren B, White C, Wilhelmi J, Wise T, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X. Measurement of the Antineutrino Spectrum from ^{235}U Fission at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2019; 122:251801. [PMID: 31347897 DOI: 10.1103/physrevlett.122.251801] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/22/2019] [Indexed: 06/10/2023]
Abstract
This Letter reports the first measurement of the ^{235}U ν[over ¯]_{e} energy spectrum by PROSPECT, the Precision Reactor Oscillation and Spectrum experiment, operating 7.9 m from the 85 MW_{th} highly enriched uranium (HEU) High Flux Isotope Reactor. With a surface-based, segmented detector, PROSPECT has observed 31678±304(stat) ν[over ¯]_{e}-induced inverse beta decays, the largest sample from HEU fission to date, 99% of which are attributed to ^{235}U. Despite broad agreement, comparison of the Huber ^{235}U model to the measured spectrum produces a χ^{2}/ndf=51.4/31, driven primarily by deviations in two localized energy regions. The measured ^{235}U spectrum shape is consistent with a deviation relative to prediction equal in size to that observed at low-enriched uranium power reactors in the ν[over ¯]_{e} energy region of 5-7 MeV.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37916, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A B Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| |
Collapse
|
31
|
Abstract
This is a pedagogical introduction to the main concepts of the sterile neutrino - a hypothetical particle, coined to resolve some anomalies in neutrino data and retain consistency with observed widths of the W and Z bosons. We briefly review existing anomalies and the oscillation parameters that best describe these data. We discuss in more detail how sterile neutrinos can be observed, as well as the consequences of its possible existence. In particular, we pay attention to a possible loss of coherence in a model of neutrino oscillations with sterile neutrinos, where this effect might be of a major importance with respect to the 3ν model. The current status of searches for a sterile neutrino state is also briefly reviewed.
Collapse
|
32
|
Qian X, Peng JC. Physics with reactor neutrinos. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:036201. [PMID: 30523922 DOI: 10.1088/1361-6633/aae881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Neutrinos produced by nuclear reactors have played a major role in advancing our knowledge of the properties of neutrinos. The first direct detection of the neutrino, confirming its existence, was performed using reactor neutrinos. More recent experiments utilizing reactor neutrinos have also found clear evidence for neutrino oscillation, providing unique input for the determination of neutrino mass and mixing. Ongoing and future reactor neutrino experiments will explore other important issues, including the neutrino mass hierarchy and the search for sterile neutrinos and other new physics beyond the standard model. In this article, we review the recent progress in physics using reactor neutrinos and the opportunities they offer for future discoveries.
Collapse
Affiliation(s)
- Xin Qian
- Physics Department, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | | |
Collapse
|
33
|
Danilov M, Demidov S, Gorbunov D. Constraints on Hidden Photons Produced in Nuclear Reactors. PHYSICAL REVIEW LETTERS 2019; 122:041801. [PMID: 30768300 DOI: 10.1103/physrevlett.122.041801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/21/2018] [Indexed: 06/09/2023]
Abstract
New light vector particles-hidden photons-are present in many extensions of the standard model of particle physics. They can be produced in nuclear reactors and registered by neutrino detectors. We obtain new limits on the models with the hidden photons from an analysis of published results of the TEXONO neutrino experiment. Accounting for oscillations between the visible and hidden photons, we find that the neutrino experiments are generally insensitive to the hidden photons lighter than ∼0.1 eV.
Collapse
Affiliation(s)
- Mikhail Danilov
- Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Sergey Demidov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Dmitry Gorbunov
- Institute for Nuclear Research of the Russian Academy of Sciences, Moscow 117312, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
34
|
Abstract
The 760-ton ICARUS T600 detector has completed a successful three-year physics run at the underground LNGS laboratories, searching for atmospheric neutrino interactions and, with the CNGS neutrino beam from CERN, performing a sensitive search for LSND-like anomalous ν e appearance, which contributed to constraining the allowed parameters to a narrow region around Δ m 2 ∼ eV 2 , where all the experimental results can be coherently accommodated at 90% C.L. The T600 detector underwent a significant overhaul at CERN and has now been moved to Fermilab, to be soon exposed to the Booster Neutrino Beam (BNB) to search for sterile neutrinos within the SBN program, devoted to definitively clarifying the open questions of the presently-observed neutrino anomalies. This paper will address ICARUS’s achievements, its status, and plans for the new run and the ongoing analyses, which will be finalized for the next physics run at Fermilab.
Collapse
|
35
|
Shirchenko M, Skrobova N. Searches for sterile neutrinos at the DANSS experiment. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921908002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
DANSS is a highly segmented 1 m3 plastic scintillator detector. The DANSS detector is placed under an industrial 3.1 GWth reactor of the Kalinin Nuclear Power Plant 350 km NW from Moscow. The distance to the core is varied on-line from 10.7 m to 12.7 m. The reactor building provides about 50 m water-equivalent shielding against the cosmic background. DANSS detects almost 5000 νe per day at the closest position with the cosmic background less than 3%. The inverse beta decay process is used to detect νe. Sterile neutrinos are searched for assuming the 4ν model (3 active and 1 sterile ν). The exclusion area in the Δm142,sin22θ14 plane is obtained using a ratio of positron energy spectra collected at different distances. Therefore results do not depend on the shape and normalization of the reactor νe spectrum nor the detector efficiency. Results are based on 966 thousand antineutrino events collected at three different distances from the reactor core. The excluded area covers a wide range of the sterile neutrino parameters down to sin22θ14 < 0.01 in the most sensitive region.
Collapse
|
36
|
Kudenko Y. New results and perspectives in neutrino physics. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921201005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A brief review of new results and perspectives in neutrino physics is presented. An emphasis on a search for CP violation in neutrino oscillations and a search for sterile neutrinos is given. Status of measurement of the direct neutrino mass measurement and searches for neutrinoless double beta decay are also discussed.
Collapse
|
37
|
Ashenfelter J, Balantekin AB, Baldenegro C, Band HR, Bass CD, Bergeron DE, Berish D, Bignell LJ, Bowden NS, Bricco J, Brodsky JP, Bryan CD, Bykadorova Telles A, Cherwinka JJ, Classen T, Commeford K, Conant AJ, Cox AA, Davee D, Dean D, Deichert G, Diwan MV, Dolinski MJ, Erickson A, Febbraro M, Foust BT, Gaison JK, Galindo-Uribarri A, Gilbert CE, Gilje KE, Glenn A, Goddard BW, Hackett BT, Han K, Hans S, Hansell AB, Heeger KM, Heffron B, Insler J, Jaffe DE, Ji X, Jones DC, Koehler K, Kyzylova O, Lane CE, Langford TJ, LaRosa J, Littlejohn BR, Lopez F, Lu X, Martinez Caicedo DA, Matta JT, McKeown RD, Mendenhall MP, Miller HJ, Minock JM, Mueller PE, Mumm HP, Napolitano J, Neilson R, Nikkel JA, Norcini D, Nour S, Pushin DA, Qian X, Romero-Romero E, Rosero R, Sarenac D, Seilhan BS, Sharma R, Surukuchi PT, Trinh C, Tyra MA, Varner RL, Viren B, Wagner JM, Wang W, White B, White C, Wilhelmi J, Wise T, Yao H, Yeh M, Yen YR, Zhang A, Zhang C, Zhang X, Zhao M. First Search for Short-Baseline Neutrino Oscillations at HFIR with PROSPECT. PHYSICAL REVIEW LETTERS 2018; 121:251802. [PMID: 30608854 DOI: 10.1103/physrevlett.121.251802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Indexed: 06/09/2023]
Abstract
This Letter reports the first scientific results from the observation of antineutrinos emitted by fission products of ^{235}U at the High Flux Isotope Reactor. PROSPECT, the Precision Reactor Oscillation and Spectrum Experiment, consists of a segmented 4 ton ^{6}Li-doped liquid scintillator detector covering a baseline range of 7-9 m from the reactor and operating under less than 1 m water equivalent overburden. Data collected during 33 live days of reactor operation at a nominal power of 85 MW yield a detection of 25 461±283 (stat) inverse beta decays. Observation of reactor antineutrinos can be achieved in PROSPECT at 5σ statistical significance within 2 h of on-surface reactor-on data taking. A reactor model independent analysis of the inverse beta decay prompt energy spectrum as a function of baseline constrains significant portions of the previously allowed sterile neutrino oscillation parameter space at 95% confidence level and disfavors the best fit of the reactor antineutrino anomaly at 2.2σ confidence level.
Collapse
Affiliation(s)
- J Ashenfelter
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A B Balantekin
- Department of Physics, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - C Baldenegro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H R Band
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - C D Bass
- Department of Physics, Le Moyne College, Syracuse, New York 13214, USA
| | - D E Bergeron
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D Berish
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - L J Bignell
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - N S Bowden
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - J Bricco
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - J P Brodsky
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - C D Bryan
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - A Bykadorova Telles
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J J Cherwinka
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - T Classen
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Commeford
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A J Conant
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - A A Cox
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - D Davee
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - D Dean
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - G Deichert
- High Flux Isotope Reactor, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M J Dolinski
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Erickson
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - M Febbraro
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B T Foust
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J K Gaison
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - A Galindo-Uribarri
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - C E Gilbert
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K E Gilje
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - A Glenn
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - B W Goddard
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - B T Hackett
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - K Han
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A B Hansell
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K M Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - J Insler
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Ji
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D C Jones
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - K Koehler
- Physical Sciences Laboratory, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | - O Kyzylova
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - C E Lane
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - T J Langford
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - J LaRosa
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - F Lopez
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - X Lu
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - D A Martinez Caicedo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - R D McKeown
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M P Mendenhall
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - H J Miller
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J M Minock
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - P E Mueller
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - H P Mumm
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - J Napolitano
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - R Neilson
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - J A Nikkel
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - D Norcini
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S Nour
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - D A Pushin
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - E Romero-Romero
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Sarenac
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - B S Seilhan
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - R Sharma
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - P T Surukuchi
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - C Trinh
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - M A Tyra
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - R L Varner
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J M Wagner
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - W Wang
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - B White
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - C White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - J Wilhelmi
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - T Wise
- Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - H Yao
- Department of Physics, College of William and Mary, Williamsburg, Virginia 23185, USA
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Y-R Yen
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | - A Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Zhang
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, USA
| | - M Zhao
- Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
38
|
Kim C, Castro GL, Sahoo D. Constraints on a sub-eV scale sterile neutrino from nonoscillation measurements. Int J Clin Exp Med 2018. [DOI: 10.1103/physrevd.98.115021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
39
|
Carr R, Coleman J, Gratta G, Heeger K, Huber P, Hor Y, Kawasaki T, Kim SB, Kim Y, Learned J, Lindner M, Nakajima K, Seo SH, Suekane F, Vacheret A, Wang W, Zhan L. Neutrino physics for Korean diplomacy. Science 2018; 362:649-650. [PMID: 30409877 DOI: 10.1126/science.aav8136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Rachel Carr
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA.
| | | | - Giorgio Gratta
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Karsten Heeger
- Wright Laboratory, Department of Physics, Yale University, New Haven, CT 06520, USA
| | - Patrick Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - YuenKeung Hor
- School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Takeo Kawasaki
- Department of Physics, Kitasato University, Sagamihara, Japan
| | - Soo-Bong Kim
- Department of Physics, Seoul National University, Seoul, Korea
| | - Yeongduk Kim
- Center for Underground Physics, Institute for Basic Science, Daejeon, Korea
| | - John Learned
- University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Manfred Lindner
- Max-Planck Institute for Nuclear Physics, Heidelberg, Germany
| | - Kyohei Nakajima
- Graduate School of Engineering, University of Fukui, Fukui, Japan
| | - Seon-Hee Seo
- Center for Underground Physics, Institute for Basic Science, Daejeon, Korea
| | - Fumihiko Suekane
- Research Center for Neutrino Science, Tohoku University, Sendai, Japan
| | | | - Wei Wang
- School of Physics, Sun Yat-Sen University, Guangzhou, China
| | - Liang Zhan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
40
|
Almazán H, Sanchez PDA, Bernard L, Blanchet A, Bonhomme A, Buck C, Favier J, Haser J, Hélaine V, Kandzia F, Kox S, Lamblin J, Letourneau A, Lhuillier D, Lindner M, Manzanillas L, Materna T, Minotti A, Montanet F, Pessard H, Real JS, Roca C, Salagnac T, Schoppmann S, Sergeyeva V, Soldner T, Stutz A, Zsoldos S. Sterile Neutrino Constraints from the STEREO Experiment with 66 Days of Reactor-On Data. PHYSICAL REVIEW LETTERS 2018; 121:161801. [PMID: 30387650 DOI: 10.1103/physrevlett.121.161801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/14/2018] [Indexed: 06/08/2023]
Abstract
The reactor antineutrino anomaly might be explained by the oscillation of reactor antineutrinos toward a sterile neutrino of eV mass. In order to explore this hypothesis, the STEREO experiment measures the antineutrino energy spectrum in six different detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this Letter, results from 66 days of reactor turned on and 138 days of reactor turned off are reported. A novel method to extract the antineutrino rates has been developed based on the distribution of the pulse shape discrimination parameter. The test of a new oscillation toward a sterile neutrino is performed by comparing ratios of cells, independent of absolute normalization and of the prediction of the reactor spectrum. The results are found to be compatible with the null oscillation hypothesis and the best fit of the reactor antineutrino anomaly is excluded at 97.5% C.L.
Collapse
Affiliation(s)
- H Almazán
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - P Del Amo Sanchez
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - L Bernard
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Blanchet
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Bonhomme
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C Buck
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - J Favier
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - J Haser
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Hélaine
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - F Kandzia
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - S Kox
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - J Lamblin
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Lindner
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - L Manzanillas
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - A Minotti
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - F Montanet
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - H Pessard
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - J-S Real
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - C Roca
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - T Salagnac
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - S Schoppmann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Sergeyeva
- Univ. Grenoble Alpes, Université Savoie Mont Blanc, CNRS/IN2P3, LAPP, 74000 Annecy, France
| | - T Soldner
- Institut Laue-Langevin, CS 20156, 38042 Grenoble Cedex 9, France
| | - A Stutz
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| | - S Zsoldos
- Univ. Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, 38000 Grenoble, France
| |
Collapse
|
41
|
Park YS, Jang YM, Joo KK. Constructing experimental devices for half-ton synthesis of gadolinium-loaded liquid scintillator and its performance. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:043302. [PMID: 29716317 DOI: 10.1063/1.5021971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper describes in brief features of various experimental devices constructed for half-ton synthesis of gadolinium(Gd)-loaded liquid scintillator (GdLS) and also includes the performances and detailed chemical and physical results of a 0.5% high-concentration GdLS. Various feasibility studies on useful apparatus used for loading Gd into solvents have been carried out. The transmittance, Gd concentration, density, light yield, and moisture content were measured for quality control. We show that with the help of adequate automated experimental devices and tools, it is possible to perform ton scale synthesis of GdLS at moderate laboratory scale without difficulty. The synthesized GdLS was satisfactory to meet chemical, optical, and physical properties and various safety requirements. These synthesizing devices can be expanded into massive scale next-generation neutrino experiments of several hundred tons.
Collapse
Affiliation(s)
- Young Seo Park
- Department of Physics, Institute for Universe and Elementary Particles, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Yeong Min Jang
- Department of Physics, Institute for Universe and Elementary Particles, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| | - Kyung Kwang Joo
- Department of Physics, Institute for Universe and Elementary Particles, Chonnam National University, Yongbong-ro 77, Puk-gu, Gwangju 61186, South Korea
| |
Collapse
|
42
|
Abstract
The 760 ton liquid argon ICARUS T600 detector performed a successful threeyear physics run at the underground LNGS laboratories, studying neutrino oscillations with the CNGS neutrino beam and searching for atmospheric neutrino interactions in cosmic rays. A sensitive search for LSND like anomalous ve appearance has been performed, contributing to constrain the allowed parameters to a narrow region around Δm2 ~ eV2, where all the experimental results can be coherently accommodated at 90% C.L.. After a significant overhauling, the T600 detector will be exposed at Fermilab to the Booster Neutrino Beam acting as the far detector, in order to search for sterile neutrino within the SBN program. In the present contribution, the ICARUS LNGS achievements, the present status of the detector and the ongoing analyses also finalized to the next physics run at Fermilab will be addressed.
Collapse
|
43
|
Letourneau A. High-statistics reactor anti-neutrino energy spectra for fission and beta-decay studies. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819301006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
With the availability of high-statistics and high-resolution anti-neutrino energy spectra, measured in experiments dedicated to the study of the neutrino oscillation in proximity of a nuclear reactor, we can now envisage to use these data as integral measurements to constrain fission and beta-decay models and nuclear data libraries. In this paper we present the ingredients for the simulation of an anti-neutrino energy spectrum and their sensitivity to the constraint by measured energy spectrum.
Collapse
|
44
|
Kudenko Y. Study of oscillations with accelerator and reactor neutrinos. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201819101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present status of accelerator and reactor neutrino experiments and new results are presented. A short overview of future projects is also given. The experimental status of sterile neutrino searches is briefly discussed.
Collapse
|
45
|
Abstract
ICARUS is the largest imaging LAr TPC ever operated. During its LNGS run on the CNGS neutrino beam, from 2010 to 2013, produced some thousands neutrino events of unprecedented quality. This was possible thanks its mechanical precision and stability, liquid argon purity and electronics front-end and DAQ. Actually ICARUS T600, in view of its operation at FNAL on the SBN neutrino beam, is undergoing a major overhauling that implies cathode mechanics improvement, additional PMTs installation and a new electronics front-end and DAQ. This electronics implements a new architecture, integrated onto the flange proprietary design, and a new front-end that improves S/N and induction signals treatment. This issue will be presented in detail together with data recently recorder at CERN in the FLIC, 50 litres, LAr facility.
Collapse
|
46
|
Choubey S, Dutta D, Pramanik D. Imprints of a light sterile neutrino at DUNE, T2HK, and T2HKK. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.96.056026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Cianci D, Furmanski A, Karagiorgi G, Ross-Lonergan M. Prospects of light sterile neutrino oscillation and
CP
violation searches at the Fermilab Short Baseline Neutrino Facility. Int J Clin Exp Med 2017. [DOI: 10.1103/physrevd.96.055001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Park HK. Detecting Dark Photons with Reactor Neutrino Experiments. PHYSICAL REVIEW LETTERS 2017; 119:081801. [PMID: 28952775 DOI: 10.1103/physrevlett.119.081801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Indexed: 06/07/2023]
Abstract
We propose to search for light U(1) dark photons, A^{'}, produced via kinetically mixing with ordinary photons via the Compton-like process, γe^{-}→A^{'}e^{-}, in a nuclear reactor and detected by their interactions with the material in the active volumes of reactor neutrino experiments. We derive 95% confidence-level upper limits on ε, the A^{'}-γ mixing parameter, ε, for dark-photon masses below 1 MeV of ε<1.3×10^{-5} and ε<2.1×10^{-5}, from NEOS and TEXONO experimental data, respectively. This study demonstrates the applicability of nuclear reactors as potential sources of intense fluxes of low-mass dark photons.
Collapse
Affiliation(s)
- H K Park
- Center for Underground Physics, Institute for Basic Science (IBS), Daejeon 34047, Korea
- University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|